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Body Fat Distribution, Overweight, and 
Cardiac Structures in School-Age Children: 
A Population-Based Cardiac Magnetic 
Resonance Imaging Study
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BACKGROUND: Adiposity is associated with larger left ventricular mass in children and adults. The role of body fat distribution in 
these associations is not clear. We examined the associations of body fat distribution and overweight with cardiac measures 
obtained by cardiac magnetic resonance imaging in school-age children.

METHODS AND RESULTS: In a population-based cohort study including 2836 children, 10 years of age, we used anthropometric 
measures, dual-energy X-ray absorptiometry, and magnetic resonance imaging to collect information on body mass index, 
lean mass index, fat mass index, and abdominal visceral adipose tissue index. Indexes were standardized by height. Cardiac 
measures included right and left ventricular end-diastolic volume, left ventricular mass, and mass-to-volume ratio as a marker 
for concentricity. All body fat measures were positively associated with right and left ventricular end-diastolic volumes and left 
ventricular mass, with the strongest associations for lean mass index (all P<0.05). Obese children had a 1.12 standard devia-
tion score (95% CI, 0.94–1.30) larger left ventricular mass and a 0.35 standard deviation score (95% CI, 0.14–0.57) higher 
left ventricular mass-to-volume ratio than normal weight children. Conditional on body mass index, higher lean mass index 
was associated with higher right and left ventricular end-diastolic volume and left ventricular mass, whereas higher fat mass 
measures were inversely associated with these cardiac measures (all P<0.05).

CONCLUSIONS: Higher childhood body mass index is associated with a larger right and left ventricular size. This association is 
influenced by higher lean mass. In childhood, lean mass may be a stronger determinant of heart growth than fat mass. Fat 
mass may influence cardiac structures at older ages.
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See  Editorial by Christopher

Overweight and obesity are strongly associated 
with cardiovascular disease in adults.1 Previous 
studies suggested that cardiac adaptations in 

response to overweight start already in childhood.2 
Higher childhood body mass index (BMI) is associ-
ated with adult left ventricular remodeling and larger 

left ventricular mass (LVM).2 Left ventricular remodel-
ing is generally categorized in eccentric and concen-
tric remodeling. Eccentric remodeling, an increase in 
both left ventricular mass and volume, is associated 
with heart failure.3 Concentric remodeling, in which the 
mass-to-volume ratio is increased, is also associated 
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with stroke and coronary heart disease.3 Concentric 
remodeling is, in general, thought to be caused by 
hypertension, but is also observed in obesity, inde-
pendent of blood pressure.4 Obesity is a condition 
associated with different and heterogeneous cardio-
vascular outcomes.5 This may be because obesity is 
based on BMI, which does not distinguish between 
lean mass, subcutaneous fat mass, and visceral fat 
mass. The important role of body fat distribution is re-
flected by studies showing that visceral adipose tissue 
is more strongly associated with metabolic syndrome 
and hypertension than subcutaneous adipose tissue.6 
Body composition and, more specifically, fat distribu-
tion may also affect cardiac structure. Studies focused 
on body composition instead of BMI suggest that lean 
body mass is more strongly related to LVM than BMI 
or fat mass in adults.7 Also, adiposity around the hips 
was associated with eccentric remodeling character-
ized by an increase in LVM and left ventricular end-
diastolic volume (LVEDV), whereas central obesity was 
associated with concentric remodeling characterized 
by an increase in left ventricular mass-to-volume ratio 

(LMVR).8 We have previously reported that body fat 
distribution was associated with cardiovascular risk 
factors in childhood.9 To our knowledge, no studies 
have examined the associations of detailed general 
and abdominal adiposity measures with both right and 
left ventricular measures in childhood. Insight into the 
possible associations between body composition be-
yond BMI and cardiac measures in childhood could 
give clues to the primordial origins of cardiac disease.

We hypothesized that general and abdominal 
body fat distribution influence right and left cardiac 
measures from childhood onward. Therefore, in a 
population-based study among 2836 school-aged 
children, we examined the associations of general and 
abdominal body fat measures and being overweight 
with right and left ventricular structure and function 
based on cardiac magnetic resonance imaging (cMRI).

METHODS
Data, analytical methods, and study materials will not 
be made available to other researchers for purposes 
of reproducing the results or replicating the procedure.

Design and Study Population
This study was embedded in the Generation R Study, a 
population-based, prospective cohort study from fetal 
life onward in Rotterdam, The Netherlands.10 Response 
rate at birth was 61% (2002–2006).10 Child ethnicity was 
classified by country of parents’ birth, categorized as 
Dutch or non-Dutch.10 The largest non-Dutch ethnicities 
are European, Turkish, Moroccan, Surinamese, Cape 
Verdian, and Dutch Antilles. The children’s sex was 
obtained from midwife and hospital registries at birth. 
Childhood BMI, body composition, and cardiac meas-
ures were assessed during 2 visits at 10 years of age. 
Median time difference between the 2 visits was 1.1 
(95% CI, 0–24.8) months. In total, 4135 singleton born 
children participated in the magnetic resonance imaging 
(MRI) studies. We obtained good-quality cMRI scans in 
2836 children without cardiac abnormalities (see flow-
chart in Figure S1). Written informed consent was ob-
tained from all parents of study participants. The study 
was approved by the local medical ethics committee.

General and Abdominal Body Fat 
Distribution Assessments
Trained staff at a dedicated research center meas-
ured the children’s height and weight at 9.9 (95% CI, 
9.5–11.8)  years of age, according to specific research 
protocols. BMI (kg/m2) and body surface area were cal-
culated.11 We obtained sex- and age-specific BMI stand-
ard deviation scores (SDSs) based on Dutch reference 
growth curves.12 Childhood overweight status was de-
fined according to age- and sex-specific cutoff points.13

CLINICAL PERSPECTIVE

What Is New?
•	 Obese children have higher left ventricular mass 

and left ventricular mass-to-volume ratio than 
normal-weight children.

•	 Lean mass index is associated with relatively 
larger left and right cardiac measures.

•	 Fat mass index is associated with relatively 
smaller left and right cardiac measures.

What Are the Clinical Implications?
•	 In childhood, lean mass may be a stronger de-

terminant of cardiac growth.
•	 Fat mass may may influence cardiac structure 

at later ages.

Nonstandard Abbreviations and Acronyms

BMI	 body mass index
cMRI	 cardiac magnetic resonance imaging
LMVR	 left ventricular mass-to-volume ratio
LVEDV	 left ventricular end-diastolic volume
LVEF	 left ventricular ejection fraction
LVM	 left ventricular mass
RVEDV	 right ventricular end-diastolic volume
RVEF	 right ventricular ejection fraction
SDS	 standard deviation score
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Total body and regional fat and lean mass were 
measured using a dual-energy X-ray absorptiometry 
scanner (iDXA; GE-Lunar, 2008, Madison, WI) and 
analyzed using enCORE software version 12.6.14 We 
divided total fat mass by height4 to obtain a fat mass 
index uncorrelated with height, as confirmed by a 
log–log regression analysis.15 Lean body mass was 
divided by height squared to obtain lean mass index. 
Correlations between general and specific body com-
position measures are presented in Table S1.

Visceral fat was obtained by MRI, as described 
previously, and in Data S1.10,16 IDEAL IQ and LavaFlex 
acquisitions were used to obtain abdominal fat im-
aging. These were analyzed by Precision Image 
Analysis (Precision Image Analysis, Kirkland, WA) 
using sliceOmatic (TomoVision, Magog, QC, Canada) 
software. The visceral adipose tissue index uncor-
related with height was calculated as visceral adi-
pose tissue / height3.15

Cardiac Magnetic Resonance Imaging
As described previously, we acquired localizer im-
ages, followed by ECG gated breath-hold scans 
for 2 and 4-chamber views.17 A short-axis steady-
state free precession cine stack was then obtained 
over several end-expiration breath-holds. Offline 
image analyses were performed by Precision Image 
Analysis using QMASS software (Medis, Leiden, 
The Netherlands), following the guidelines of the 
Society for Cardiovascular Magnetic Resonance.18 
Papillary muscle was included in the ventricular cav-
ity. Cardiac measurements included right ventricular 
end-diastolic volume (RVEDV), right ventricular ejec-
tion fraction (RVEF), LVEDV, left ventricular ejection 
fraction (LVEF), and LVM. We calculated LMVR as 
LVM/LVEDV, as a marker of concentric remodeling. 
We also obtained stroke volume and cardiac output. 
We used systemic vascular resistance as a proxy 
for afterload, which was calculated as mean arte-
rial pressure divided by cardiac output. We added 
this measure to explore the associations between 
body composition and afterload, which may explain 
how adiposity is associated with cardiac remodeling 
through changes in cardiac hemodynamics and wall 
stress.

Blood Pressure Measurements
Childhood systolic and diastolic blood pressure 
were measured on the right brachial artery 4 times 
using a validated automatic sphygmomanometer 
(Accutorr Plus; Datascope, Fairfield, NJ). Mean val-
ues of the last 3 measurements were used in our 
analyses. Mean arterial pressure was calculated as 
1/3 × systolic blood pressure + 2/3 × diastolic blood 
pressure.19

Statistical Analysis
First, we compared childhood characteristics between 
different childhood weight categories using one-way 
analysis of variance, Mann–Whitney U test, and chi-
square test. Second, we used linear regression mod-
els to assess the associations of childhood general 
and abdominal body fat measures (BMI, lean mass 
index, fat mass index, and visceral adipose tissue 
index) with cardiac measures (RVEDV, RVEF, LVEDV, 
LVEF, LVM, LMVR, stroke volume, and systemic vas-
cular resistance). Basic models were adjusted for 
age, sex, ethnicity, and time difference between the 
2 visits. A second model was also adjusted for child-
hood blood pressure (blood pressure model). We used 
similar models to assess the associations of childhood 
overweight with LVM and LMVR. We created SDSs ac-
cording to (observed value − mean) / SD, for all deter-
minants and outcomes, to enable comparison of effect 
estimates. We did not observe a significant statistical 
interaction between child sex and being overweight 
or body composition in relation to cardiac measures. 
Finally, we used conditional regression analyses to as-
sess whether the associations of general and abdomi-
nal body fat measures with cardiac outcomes were 
statistically independent of BMI.20 For these models, 
we regressed each of the body composition measures 
on BMI to create standardized residuals, independent 
of BMI (scatterplots before and after residualization are 
shown in Figure S2). This approach enables analyses of 
body composition measures independent of BMI in re-
lation to cardiac outcomes.9,20 Because our outcomes 
are correlated, we considered Bonferroni correction for 
multiple testing too strict; in Table 2, we specify P<0.01 
or P<0.05. Missing data of covariates were imputed 
using multiple imputations. Five data sets were cre-
ated and analyzed together.21 For multiple imputation, 
we used Fully Conditional Specification, an iterative 
of the Markov-chain Monte Carlo approach. For each 
variable, the fully conditional specification method 
fits a model using all other available variables in the 
model as predictors, and then imputes missing values 
for the specific variable being fit.21 In the imputation 
model, we included all covariates. Furthermore, we 
also added the studied determinants and outcomes in 
the imputation model as prediction variables only; they 
were not imputed themselves.22 These analyses were 
performed using the SPSS version 21.0 for Windows 
(IBM Corp, Armonk, NY).

RESULTS
Subject Characteristics
Overweight and obese children had higher lean mass 
index, fat mass index, visceral adipose tissue index, 
and blood pressure than normal-weight children 
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(Table 1). Also, cardiac volume, mass, mass-to-volume 
ratio, and stroke volume were highest in obese children. 
RVEF was lower in overweight and obese children, but 
no difference was observed for LVEF. Systemic vascu-
lar resistance was lowest in obese children.

General and Abdominal Body Fat 
Distribution and Cardiac Measures
BMI was positively associated with RVEDV, LVEDV, 
and LVM, with the strongest association between 
BMI and LVEDV (a 1-SD increase in BMI was as-
sociated with 0.41 SDS [95% CI, 0.38–0.44] higher 
LVEDV) (Table 2). The strength of the association of 
BMI with LMVR was smaller (difference: 0.07 SDS 
[95% CI, 0.04–0.11] per increase of 1 SD in BMI). BMI 
was inversely associated with systemic vascular re-
sistance (difference: −0.20 SDS [95% CI, −0.24 to 
−0.17]). The associations of lean mass index with all 

cardiac measures were stronger than those for BMI, 
and the strongest associations were with LVEDV (dif-
ference: 0.51 SDS [95% CI, 0.48–0.54]). Fat mass 
index and visceral adipose tissue index were also 
positively associated with RVEDV, LVEDV, LVM, and 
LMVR, and inversely associated with systemic vas-
cular resistance. Most associations attenuated only 
slightly after adjustment for blood pressure (Table 
S2). Associations with RVEF, LVEF, and stroke vol-
ume are shown in Table S3. Children with obesity 
had a 1.12-SDS (95% CI, 0.94–1.30) higher LVM and 
a 0.35-SDS (95% CI, 0.14–0.57) higher LVMR than 
normal-weight children (Table S4).

Body Fat Distribution and Cardiac 
Measures
The associations of general and abdominal body fat 
mass measures with cardiac measures independent 

Table 1.   Characteristics of the Children in the Study

Underweight, N=189 
(6.7%)

Normal Weight, 
N=2149 (75.8%)

Overweight, N=412 
(14.5%)

Obese, N=86 
(3.0%) P Value*

Age at magnetic resonance 
imaging, y

9.9 (9.4–11.8) 9.9 (9.5–11.8) 10.0 (9.5–11.8) 9.9 (9.5–11.7) 0.74

Male sex, N 99 (52.4) 1064 (49.5) 173 (42.0) 37 (43.0) 0.02

Non-Dutch ethnicity, N 71 (38.4) 728 (34.6) 226 (56.1) 56 (67.5) <0.01

Height, cm 140.0 (7.1) 141.1 (6.4) 144.1 (6.9) 145.0 (6.6) <0.01

Weight, kg 27.6 (22.2–34.7) 33.0 (26.0–43.4) 44.0 (35.2–56.8) 53.2 (43.2–72.3) <0.01

Body mass index, kg/m2 14.2 (12.7–14.9) 16.6 (14.7–19.4) 21.1 (19.6–23.8) 25.1 (23.7–31.1) <0.01

Body surface area, m2 1.02 (0.88–1.20) 1.13 (0.97–1.36) 1.33 (1.14–1.58) 1.48 (1.27–1.81) <0.01

Lean mass index, kg/m2 10.6 (9.0–11.8) 11.8 (10.2–13.6) 12.8 (11.3–14.7) 13.8 (11.4–16.3) <0.01

Lean mass, kg 20.8 (15.8–26.1) 23.4 (18.2–30.2) 26.4 (20.4–33.7) 29.2 (23.0–37.5) <0.01

Fat mass index, kg/m4 1.43 (1.01–2.40) 2.04 (1.20–3.46) 3.69 (2.40–5.19) 5.02 (3.51–6.97) <0.01

Fat mass, kg 5.5 (3.6–8.3) 8.0 (4.7–13.9) 15.7 (10.2–22.5) 22.3 (15.5–34.5) <0.01

Visceral adipose tissue index, g/m3 0.09 (0.05–0.17) 0.12 (0.06–0.25) 0.21 (0.09–0.40) 0.26 (0.12–0.53) <0.01

Visceral adipose tissue, g 244 (133–496) 337 (162–696) 600 (266–1206) 853 (357–1648) <0.01

Systolic blood pressure, mm Hg 99.1 (7.2) 102.4 (7.4) 107.3 (7.7) 112.3 (8.9) <0.01

Diastolic blood pressure, mm Hg 57.4 (6.3) 58.5 (6.3) 59.4 (6.2) 61.5 (7.6) <0.01

Right ventricular end-diastolic 
volume, mL

87.9 (15.7) 98.7 (18.5) 110.0 (21.3) 114.5 (19.8) <0.01

Right ejection fraction, % 58.6 (5.2) 58.3 (4.9) 57.5 (4.7) 57.6 (4.4) <0.01

Left ventricular end-diastolic 
volume, mL

88.3 (14.0) 99.2 (16.5) 109.3 (19.3) 115.1 (18.7) <0.01

Left ventricular ejection fraction, % 58.6 (4.6) 58.4 (4.6) 58.4 (4.6) 58.3 (4.7) 0.97

Left ventricular mass, g 42.5 (9.1) 48.2 (9.8) 54.3 (9.9) 59.0 (11.0) <0.01

Left ventricular mass-to-volume 
ratio

0.48 (0.08) 0.49 (0.08) 0.50 (0.08) 0.52 (0.08) <0.01

Left ventricular stroke volume, mL 51.6 (9.2) 57.9 (10.2) 63.9 (11.8) 67.0 (11.3) <0.01

Cardiac output, mL/min 3.8 (0.8) 4.2 (0.9) 4.7 (1.0) 5.0 (1.0) <0.01

Heart rate, bpm 74 (13) 73 (13) 74 (12) 75 (12) 0.17

Systemic vascular resistance, 
mm Hg/min/mL

19.6 (4.0) 18.2 (3.9) 16.9 (4.3) 16.3 (3.7) <0.01

Data expressed as mean (standard deviation), median (95% CI), or number (%), on the basis of original, nonimputed data.
*Derived from analysis of variance, Mann–Whitney U test, or chi-square test.
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of BMI are shown in Figure. Children who had a higher 
lean mass index had larger RVEDV and LVEDV (all 
P<0.05; FigurA), whereas those who had a higher 
fat mass index or visceral adipose tissue index had 
smaller RVEDV and LVEDV (all P<0.05). Similar results 
were observed for LVM (FigurB), but no associations 
were observed with LMVR (FigurB). Children with 
higher lean mass index had lower systemic vascular 
resistance, independent of BMI, whereas higher fat 
mass index or visceral adipose tissue index was as-
sociated with higher systemic vascular resistance 
(FigurC). Higher lean mass index was associated with 
lower RVEF and LVEF, whereas higher fat mass index 
and visceral adipose tissue index were associated with 
higher RVEF and LVEF (all P<0.05; Figure S3).

DISCUSSION
In this population-based cohort study, we observed 
that overweight and obesity were associated with left 
and right cardiac measures. General and abdominal 
fat mass were across their full spectrum associated 
with higher RVEDV, LVEDV, LVM, and LMVR, and with 
lower systemic vascular resistance. Obese children 
have higher LVM and LMVR. The association of higher 
BMI with larger cardiac measures seems to be driven 
mainly by the increase in lean mass index.

Interpretation of Main Results
Studies in adults on the associations of adipos-
ity with cardiac structure and function showed that 
obesity is associated with higher RVEDV, LVEDV, 
and LVM.23,24 Obesity or BMI cannot distinguish be-
tween lean and adipose body mass, which are both 
increased in overweight and obese subjects.25,26 The 
exact mechanisms that could explain the associa-
tions between obesity and cardiac disease remain 
unclear. An major role seems to be reserved for the 

cardiometabolic changes associated with obesity 
and visceral adipose tissue.27 In adults, abdominal 
fat mass is associated with cardiovascular disease.28 
Visceral adiposity, but not subcutaneous adiposity, 
was found to be associated with LVM and LMVR, in-
dependent of weight.27 Another study showed that 
adiposity of the hip region was associated with ec-
centric remodeling of the left ventricle, and visceral 
adiposity was associated with concentric remod-
eling.8 Thus far, it remains unclear by which mecha-
nisms general and abdominal fat mass affect cardiac 
structure and function in childhood.

In this cross-sectional study we have examined 
the associations of childhood general and abdominal 
fat mass with cardiac structure and function. We ob-
served that all general and abdominal fat mass mea-
sures were associated with larger RVEDV, LVEDV, and 
LVM, independently of blood pressure. However, inde-
pendently of BMI, only higher lean mass index was as-
sociated with an increase in RVEDV, LVEDV, and LVM, 
whereas higher fat mass index and visceral adiposity 
index were associated with lower RVEDV, LVEDV, and 
LVM. Our results are in line with previous studies sug-
gesting that obesity was associated with increase in 
LVEDV and LVM in both adults and children.29,30 One 
study suggested that lean body mass was the main 
determinant of LVM in childhood, not total body fat or 
blood pressure.31 Lean body mass is associated with 
an increase in blood volume, leading to a higher pre-
load and thus increase in LVM and LVEDV, whereas 
adipose mass is less metabolically active.32 Thus, the 
higher RVEDV, LVEDV, and LVM that can be observed 
in children who are overweight are mainly determined 
by the increase in lean mass and not by higher fat 
mass or higher blood pressure.

Measures of concentric remodeling, in which the 
LMVR is increased, add information additional to left 
ventricular hypertrophy on prediction of cardiovascu-
lar events.3,33 Concentric remodeling is often thought 

Table 2.  Associations of General and Abdominal Body Fat Mass Measures With Cardiac Measures (N=2836)

Body fat mass 
measure in SDS

Cardiac Measures in SDS

Right Ventricular End-
Diastolic Volume

Left Ventricular End-
Diastolic Volume

Left Ventricular 
Mass

Left Ventricular Mass-
to-Volume Ratio

Systemic Vascular 
Resistance

Body mass index 0.39 (0.36–0.42)* 0.41 (0.38– 0.44)* 0.39 (0.36– 0.42)* 0.07 (0.04–0.11)* −0.20 (−0.24 to −0.17)*

Lean mass index 0.50 (0.47–0.53)* 0.51 (0.48– 0.54)* 0.47 (0.44–0.52)* 0.06 (0.02–0.10)* −0.24 (−0.27 to −0.20)*

Fat mass index 0.15 (0.11–0.19)* 0.17 (0.13–0.20)* 0.19 (0.15–0.23)* 0.07 (0.03–0.11)* −0.09 (−0.13 to −0.05)*

Visceral adipose 
tissue index

0.09 (0.05–0.12)* 0.09 (0.06–0.13)* 0.12 (0.09–0.16)* 0.09 (0.06–0.13)* −0.07 (−0.11 to −0.03)*

Data expressed as linear regression coefficients (95% CI). The estimates represent differences in SDS of the cardiac measures per SDS of childhood general 
and abdominal body fat measure (determinants). Models are adjusted for child age, sex, ethnicity, and time difference between measurement of body fat mass 
measures and cardiac magnetic resonance imaging. Models also adjusted for blood pressure are shown in Table S2. SDS indicates standard deviation score.

*P<0.01.
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to be caused by pressure overload and increased 
wall stress, as observed in individuals with hyper-
tension.34 However, obese individuals have concen-
tric remodeling, independent of blood pressure.35 
Concentric remodeling has also been observed in 
obese children.36 Abdominal adiposity may play a 
major mechanistic role. A previous study showed that, 
although increased hip fat in adults was associated 
with eccentric remodeling, more abdominal fat was 
associated with concentric remodeling.8 That study 
also showed that increased hip fat was associated 
with lower systemic vascular resistance, whereas 
abdominal fat was associated with relatively higher 
systemic vascular resistance.8 These varied hemo-
dynamic findings may relate to differences in arterial 
compliance; central obesity is associated with higher 
arterial stiffness, whereas hip fat is associated with 
lower arterial stiffness.8 We also observed lower sys-
temic vascular resistance with increasing BMI, and 
that both fat mass index and visceral adipose tissue 
index were associated with relatively higher systemic 
vascular resistance. However, neither fat mass index 
nor visceral adipose tissue index was associated 
with increased LMVR, independently of BMI. When 
combined, these observations could indicate that 
hemodynamic changes related to total fat increase 
afterload and may lead to remodeling later in life. 
Other mechanisms leading from increased visceral 
adipose tissue to concentric remodeling may play a 
role. Visceral adiposity can elicit endocrine and im-
mune responses that affect cardiovascular structure 
and function directly and through worsening of other 
cardiovascular and metabolic risk factors.24 A study 
in adults showed that LMVR was not only associated 
with abdominal adiposity, but also with insulin resis-
tance and biomarkers of inflammation, independent 
of BMI.37 Because we did not yet observe an inde-
pendent association of visceral adipose tissue index 
with LMVR, it is possible that these changes take 
place after longer exposure to adverse abdominal fat 
deposition.

Obesity is not only associated with cardiac struc-
ture, but also with function. Studies in adults and chil-
dren showed changes in strain in obese individuals, 
indicating subclinical damage, but no changes in RVEF 

or LVEF were observed.29,38 In line with these studies, 
we observed no associations between BMI and LVEF. 
However, we did observe that BMI was associated 
with lower RVEF. One other study has reported a re-
lation between childhood body size and lower RVEF.39 
A study in adults showed that increased visceral adi-
pose tissue index was associated with lower LVEF.27 In 
obese adults, especially when sleep apnea is present, 
the right cardiac function can be affected.4 However, 
we consider it as unlikely that sleep apnea or pulmo-
nary hypertension could have been a factor in our 
study with relatively healthy 10-year-old children. The 
associations and mechanisms connecting obesity and 
visceral adiposity with RVEF and LVEF require further 
study.

In our study, childhood body composition was as-
sociated with small changes in cardiac structure. In 
adults, cardiac hypertrophy and concentric remod-
eling are associated with increased cardiovascu-
lar disease and mortality.33 It remains unclear how 
childhood cardiac structure relates to adult cardiac 
structure. However, previous research has sug-
gested that childhood body size is associated with 
adult cardiac structure, independent of adult body 
size.2 Also, cardiac structure has been shown to 
track from childhood to adulthood.40 These findings 
suggest that body composition across the full spec-
trum in childhood is associated with cardiac adap-
tations and subsequently predispose an individual 
for later cardiovascular disease. More research is 
needed to disentangle the mechanisms linking child-
hood body composition with adult cardiac structure 
and cardiovascular disease. To disentangle physio-
logic from pathologic remodeling in childhood, there 
may be a role for other imaging techniques, such as 
3-dimensional imaging of the ventricles or strain im-
aging. Strain imaging could provide more information 
on cardiac function and hold prognostic informa-
tion.41 Three-dimensional imaging could give better 
insight into cardiac remodeling patterns.42 Because 
weight loss in adults can have beneficial effects on 
cardiac structure, the adverse changes in childhood 
cardiac structure and geometry could also be revers-
ible.43 It is important to better understand the mech-
anisms behind the associations between obesity, 

Figure.  Associations of general and abdominal body fat mass measures with cardiac measures, independent of body mass 
index. 
A, Represents differences in right and left ventricular end-diastolic volume per standardized residual change of general or abdominal 
fat mass measure conditional on body mass index. B, Represents differences in left ventricular mass and left ventricular mass-
to-volume ratio per standardized residual change of general or abdominal fat mass measure conditional on body mass index. C, 
Represents differences in systemic vascular resistance per standardized residual change of general or abdominal fat mass measure 
conditional on body mass index. SDS indicates standard deviation score. Values are expressed as standardized regression coefficients 
(95% CI) from conditional analyses with body mass index as exposure. The estimates represent the differences in cardiac measures 
per standardized residual change of general or abdominal fat mass measure conditional on body mass index. Models are adjusted for 
child age, sex, ethnicity, time difference between measurement of body composition and cardiac magnetic resonance imaging, and 
childhood systolic and diastolic blood pressure.
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body composition, and cardiac remodeling, and how 
this progresses from early life onward. This could 
eventually help to reduce the burden of cardiovascu-
lar disease in future generations.

Methodological Considerations
The main strengths of this study are its population-
based design and the large number of body compo-
sition measurements and cardiac imaging available. 
Using dual-energy X-ray absorptiometry, MRI, and 
cMRI, we were able to study the associations of spe-
cific body composition measures on both the right 
and the left ventricle, but there some limitations. Not 
all children participating in our studies had success-
ful cMRIs. Poor-quality cardiac MRI scans were often 
caused by logistical or participant constraints. This 
could lead to bias if obesity is related to the success 
rate of cMRI. We did not observe any association of 
BMI with success rate of cMRI in our nonresponse 
analyses (results not shown). In our study, BMI and 
dual-energy X-ray absorptiometry measurements 
were performed at a different timepoint than the MRI 
scans. However, the majority of children (65%) had 
the 2 visits within 2  months, when there was more 
time between the measurements, so the body com-
position at the time of the cMRI may have changed. 
We adjusted our analyses for the time difference, so 
this measurement error could have led to some at-
tenuation of the effect estimates. In our population, 
17.5% of the children were overweight or obese, as 
compared with 75.8% of the normal-weight children. 
This relatively lower number could have favored asso-
ciations within the normal-weight category; however, 
we did not observe an interaction between our de-
terminants and outcomes and the weight categories. 
Although we adjusted for some confounders, residual 
confounding may be of concern, as with any observa-
tional study. We did not have information on physical 
activity and fitness, or on diet, and thus these factors 
could have influenced the associations observed.

CONCLUSIONS
Higher childhood BMI is associated with both larger 
right and left ventricular sizes. Our findings suggest 
that these associations are mainly influenced by higher 
lean mass. In childhood, lean mass may be a stronger 
determinant of heart growth than fat mass.
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Magnetic Resonance Imaging 

Abdominal adiposity Magnetic Resonance Imaging 

MRI scanning was performed on a wide-bore GE Discovery MR 750 3T scanner (General Electric, 

Milwaukee, MI, USA). Briefly, children were introduced with the scanning environment through the use 

of a simulated scanning session. Three abdominal fat scans were acquired. A fat scan centered at the liver 

was performed using an axial volume and a proton-density weighted 3-point DIXON technique (IDEAL 

IQ). A second fat scan followed using an axial volume comprising the lower liver, abdomen and part of 

the upper pelvis using a proton density weighted 2-point DIXON acquisition (LavaFlex). Finally, a high 

resolution free-breathing coronally acquired scan centered at the head of the femurs was performed using 

a T1-weighted 2-point DIXON technique (LavaFlex). For both IDEAL IQ and LavaFlex measurements, 

water, fat, in-phase and out-of-phase 3D volumes were reconstructed. The obtained fat scans were 

analyzed by the Precision Image Analysis company (PIA, Kirkland, Washington, United States), using 

the sliceOmatic (TomoVision, Magog, Canada) software package. All extraneous structures and any 

image artifacts were removed manually.(16) Total visceral fat volumes ranged from the dome of the liver 

to the superior part of the femoral head. Fat masses were obtained by multiplying the total volumes by the 

specific gravity of adipose tissue, 0.9 g/ml. VAT index (VATI) uncorrelated with height was calculated 

as: VAT/height3, confirmed by a log-log regression analysis.(15)  



Figure S1. Flow chart of participants included in the analysis. 
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Singleton live born children attending the MRI 

center  
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Children with information about childhood 
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Excluded: No cardiac MRI was performed, 

due to logistic or participant constraints 
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Figure S2. Simple scatter plots of BMI with body composition measures before and after 

residualization. 

 

 

 
 



 

 
 



 
 

 

 
 

 

 



Figure S3. Associations of body mass index, and body composition and abdominal fat mass 

measures independent of body mass index, with cardiac function measures. 

  

 

SDS, standard deviation score; CI, confidence interval; Values are standardized regression coefficients 

(95% CI) from conditional analyses. The estimates represent the differences in cardiac measures per 

standardized residual change of body composition or abdominal adiposity measure, conditional on body 

mass index. Models are adjusted for child age; sex; ethnicity; time difference between measurement of 

body composition and cMRI; and childhood systolic and diastolic blood pressure.



Table S1. Correlation coefficients between general and abdominal body fat mass measures. 

 Height Weight Body mass 

index 

Lean body 

mass index 

Fat mass 

index index 

Visceral 

adipose tissue 

index 

Height NA      

Weight 0.671** NA     

Body mass index 0.215** 0.861** NA    

Lean body mass index 0.195** 0.634** 0.707** NA   

Fat mass index index -0.042* 0.607** 0.803** 0.291** NA  

Visceral adipose tissue index -0.043* 0.452** 0.602** 0.230** 0.730** NA 

Values are Pearson correlation coefficients. 

*P-value <0.05; **P-value <0.01. 

  



Table S2. Associations of general and abdominal body fat mass measures with cardiac measures, blood pressure model (N=2,836). 

 Cardiac measures in SDS 

Body fat mass measures 

in SDS 

Right ventricular 

end-diastolic volume 

Left ventricular end-

diastolic volume 

Left ventricular mass Left ventricular 

mass-to-volume ratio 

Systemic vascular 

resistance 

 

Body mass index 0.37 (0.34, 0.40)** 0.39 (0.36, 0.42)** 0.38 (0.35, 0.41)** 0.07 (0.03, 0.10)** -0.20 (-0.24, -0.17) ** 

Lean mass index 0.48 (0.45, 0.51)** 0.49 (0.46, 0.52)** 0.45 (0.42, 0.48)** 0.06 (0.02, 0.10)** -0.22 (-0.26, -0.19) ** 

Fat mass index 0.15 (0.11, 0.18)** 0.16 (0.13, 0.21)** 0.18 (0.15, 0.22)** 0.06 (0.02, 0.10)** -0.10 (-0.14, -0.06) ** 

Visceral adipose tissue 

index 

0.08 (0.04, 0.11)** 0.08 (0.05, 0.12)** 0.11 (0.07, 0.14)** 0.05 (0.02, 0.09)** -0.08 (-0.12, -0.04) ** 

 

N, number; SDS, standard deviation scores; 

Values are linear regression coefficients (95% confidence interval). The estimates represent differences in cardiac measures per SDS of childhood 

general and abdominal body fat mass measure (determinants). Models are adjusted for child age; sex; ethnicity; time difference between 

measurement of body fat mass measures and cMRI; and childhood systolic and diastolic blood pressure.  

* p<0.05; ** p<0.01. 

  



Table S3. Associations of general and abdominal body fat mass measures with cardiac function measures (N=2,836). 

 Cardiac measures in SDS Cardiac measures in SDS 

blood pressure model 

Body fat mass 

measures in SDS 

Right ventricular 

ejection fraction 

Left ventricular 

ejection fraction 

Stroke volume 

 

Right ventricular 

ejection fractiona 

Left ventricular 

ejection fractiona 

 Stroke volumea 

Body mass index -0.08 (-0.12, -0.05)** -0.02 (-0.06, 0.01) 0.38( 0.35, 0.41) ** -0.08 (-0.12, -0.05)** -0.03 (-0.07, 0.01) 0.36 (0.33, 0.39) ** 

Lean mass index -0.14 (-0.18, -0.10)** -0.04 (-0.08, -0.01)* 0.47 (0.44, 0.50) ** -0.14 (-0.18, -0.10)** -0.06 (-0.10, -0.02)** 0.45 (0.41, 0.48) ** 

Fat mass index -0.02 (-0.06, 0.02) 0.02 (-0.02, 0.06) 0.16 (0.13, 0.20) ** -0.02 (-0.06, 0.02) 0.02 (-0.02, 0.06) 0.16 (0.13, 0.20) ** 

Visceral adipose 

tissue index 

-0.05 (-0.08, -0.01)* -0.01 (-0.05, 0.03) 0.10 (0.07, 0.14) ** 0.00 (-0.04, 0.04) 0.03 (-0.01, 0.07) 0.09 (0.06, 0.13) ** 

 

 N, number; SDS, standard deviation scores; 

Values are linear regression coefficients (95% confidence interval). The estimates represent differences in SDS of the cardiac measures per SDS of 

childhood general and abdominal body fat mass measure (determinants). Models are adjusted for child age; sex; ethnicity; and time difference 

between measurement of body fat mass measures and cMRI. 

a Models additionally adjusted for systolic and diastolic blood pressure.  

* p<0.05; ** p<0.01 

 



Table S4. Associations of childhood overweight with left ventricular mass and mass-to-volume ratio 

(N=2,836). 

  Cardiac measures in SDS 

  Left ventricular mass Left ventricular mass-to-volume 

ratio 

Weight status N   

Underweight 189 -0.54 (-0.67, -0.42)** -0.06 (-0.20, 0.09) 

Normal weight 2149 Reference Reference 

Overweight 412 0.64 (0.55, 0.73)** 0.15 (0.04, 0.26)** 

Obesity 86 1.12 (0.94, 1.30)** 0.35 (0.14, 0.57)** 

 

N, number; SDS, standard deviation scores; 

Values are linear regression coefficients (95% confidence interval). The estimates represent differences in 

SDS of the cardiac measures compared to the reference category (normal weight). Models are adjusted for 

child age; sex; ethnicity; time difference between measurement of body fat mass measures and cMRI; 

systolic and diastolic blood pressure.  

* p<0.05; ** p<0.01 

 

 

 


