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Cell-to-cell transport of plant viruses is mediated by virus-encoded movement proteins and occurs through plasmodesmata
interconnecting neighboring cells in plant tissues. Three movement proteins coded by the “triple gene block” (TGB) and named
TGBp1, TGBp2 and TGBp3 have distinct functions in viral transport. TGBp1 binds viral genomic RNAs to form ribonucleoprotein
complexes representing the transport form of viral genome, while TGBp2 and TGBp3 are necessary for intracellular delivery of such
complexes to plasmodesmata. Recently, it was revealed that overexpression of Potato virus X TGBp3 triggers the unfolded protein
response mitigating the endoplasmic reticulum (ER) stress leading to cell death if this protein reaches high levels in the ER. Here
we report microscopic studies of the influence of the Poa semilatent hordeivirus TGBp3 overexpressed in Nicotiana benthamiana
epidermal cells by particle bombardment on cell endomembranes and demonstrate that the protein C-terminal transmembrane
segment contains a determinant responsible for vesiculation and coalescence of the endoplasmic reticulum and Golgi presumably
accompanying the ER stress that can be induced upon high-level TGBp3 expression.

1. Introduction

Transport of plant virus genomes from infected to neigh-
boring healthy cells, termed “virus cell-to-cell movement”,
occurs through plasmodesmata and involves dedicated virus-
encoded movement proteins (MPs) [1, 2]. Many positive-
stranded RNA phytoviruses possess three MPs encoded by
overlapping genes organized in a “triple-gene block” (TGB)
[3, 4]. In recent years, the molecular mechanism of TGB-
mediated cell-to-cell movement was studied for several viral
genera including the genera Hordeivirus and Potexvirus [4,
5].

The hordeiviral TGB proteins, termed TGBp1, TGBp2,
and TGBp3, are extensively characterized both structurally

and functionally [5]. TGBp1, the largest of the TGB proteins
with the molecular mass of 50 to 63 kDa in different
hordeiviruses, binds viral genomic RNAs to form ribonu-
cleoprotein complexes (RNPs), which are believed to be a
transport form of the viral genome [5]. TGBp2 and TGBp3
are smaller (14–18 kDa) proteins integrated into cell mem-
branes due to two hydrophobic segments found in each of
these proteins [4, 5]. Subcellular localization studies employ-
ing fusions of TGBp2 and TGBp3 to fluorescent reporter
proteins revealed that (i) TGBp2 alone is localized to the
endoplasmic reticulum (ER) structures and ER-associated
vesicles; (ii) TGBp3 is localized to cell wall-appressed periph-
eral membrane bodies (PMBs) located in close vicinity of
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plasmodesmata and containing an ER marker that points to
their ER origin; (iii) in the presence of TGBp3, TGBp2 is
also targeted to PMBs [4–6]. Furthermore, BSMV TGBp1,
which is localized to cytoplasmic bodies of unknown nature
when expressed alone, is targeted to plasmodesmata in the
presence of both TGBp2 and TGBp3 [7]. Additionally, as it is
demonstrated for Potato mop-top virus, TGBp2 and TGBp3
not only direct TGBp1 to plasmodesmata but also mediate its
transport through plasmodesmata to neighboring cells [8, 9].
Analysis of the pathway of TGBp3 intracellular transport
from sites of its cotranslational integration into the ER
membrane to plasmodesmata-associated sites reveals that it
does not involve exit from the ER in COPII-coated trans-
port vesicles and thus employs an unconventional mecha-
nism [10], which can involve a lateral diffusion of protein
molecules in the lipid bilayer of ER membranes as it
is proposed for the intracellular transport of the MP of
Tobacco mosaic virus [11]. Deletion analysis of hordeivirus
TGBp3 reveals that the signal of plasmodesmata targeting
is composite and consists of at least two parts, the central
hydrophilic region containing an invariant pentapeptide
YQDLN and the C-terminal transmembrane domain [10].
Recently, we have demonstrated that the YQDLN-containing
conserved region is essential for TGBp3 incorporation into
high-molecular-mass protein complexes representing the
form in which TGBp3 is found in virus-infected plants
[12]. Most importantly, the formation of such complexes
is necessary for entering the TGBp3-specific pathway of
intracellular transport and protein delivery to PMBs. On
the other hand, the C-terminal transmembrane segment is
a bona fide signal of TGBp3 intracellular transport since the
transport to PMBs of the protein with disabled YQDLN-
containing region is restored by fusion to a heterologous
peptide capable of multimer formation [12].

The ratio for accumulation of TGBp1, TGBp2, and
TGBp3 proteins in infected plant tissues is estimated to
be 100 : 10 : 1, respectively [5]. Increase of the TGBp3 to
TGBp2 ratio leading to over-expression of TGB3 has been
shown to interfere with protein plasmodesmata targeting
and virus cell-to-cell movement [4]. Recently, Potato virus
X (PVX) TGBp3 was reported to stimulate unfolded protein
response (UPR) when expressed from the heterologous virus
vectors [13]. Upon protein overexpression, the ER protein
folding machinery reaches a limit, as the demands for protein
folding exceed the capacity of the system. Under these
conditions, misfolded or unfolded proteins accumulate in
the ER, triggering UPR [14]. UPR mitigates the ER stress
by upregulating the expression of genes encoding compo-
nents of the protein folding machinery or the ER-associated
degradation system.

Despite recent progress in our understanding of virus
protein- and stress-induced plant UPR at biochemical level,
little is known about the influence of these stress conditions
on the structure and morphology of cell endomembrane sys-
tem. In this paper we report the effect of wild type (nonfused)
TGBp3 of Poa semilatent virus (PSLV, genus Hordeivirus)
on the ER and Golgi in cells transiently expressing this
protein after particle bombardment with a 35S-promoter-
driven expression vector.

2. Materials and Methods

2.1. Particle Bombardment. Wild-type PSLV TGBp3 and its
mutant, as well as marker proteins, were expressed in ep-
idermal cells of Nicotiana benthamiana leaves by particle
bombardment with recombinant plasmids performed using
the flying disc method with a high-pressure helium-based
PDS-1000 system (Bio-Rad) as described in [17].

2.2. Plasmid Constructs. Recombinant plasmids pRT-GFP-
18K encoding a GFP fusion of the PSLV TGBp3, pRT-18K
encoding the nonfused PSLV TGBp3, pRT-GFP-18Kmut62
encoding a GFP-fused TGBp3 mutant [6], pRT-m-GFP5-ER
encoding an ER marker [15], and pRT-ST-YFP encoding a
Golgi marker [16] have been described earlier. To obtain
the mutant 18KIId8 the TGBp3 gene was amplified with
plus-sense primer Left [6] and a minus-sense primer 5′-
GCTCTAGATTACTTGAATAATAAACCTACATAAAACTTA
AGAG. BamHI/XbaI-digested product was cloned into sim-
ilarly digested pRT-GFP-18K to replace the wild type se-
quence. To generate YFP fusions of TGBp3 derivatives, the
GFP gene was replaced with the YFP gene using appropriate
restriction sites.

2.3. Cell Imaging. Imaging of bombarded cells was carried
out with a Leica TCS SP2 system as described in [18]. GFP
was visualized with an argon ion laser at 488 nm and an ac-
quisition window of 500–530 nm. YFP was visualized with
an argon ion laser at 514 nm and an acquisition window of
525–575 nm. For imaging of coexpressed yellow fluorescent
protein (YFP) and GFP constructs, argon ion laser-excitation
lines (488 nm for GFP and 514 nm for YFP) were used
alternately. Accordingly, the fluorescence of GFP and YFP
was detected alternately by using the “switching between
lines” option of the confocal system in the 496–510 nm
acquisition window for GFP and the 560–615 nm window
for YFP. The software package provided by the manufacturer
was used for projections of serial optical sections and image
processing.

3. Results

3.1. Reorganization of the ER and Golgi Structures in the
Presence of the Wild Type PSLV TGBp3. During virus infec-
tion, hordeivirus TGBp3 is expressed at very low levels [5],
and immunological detection of TGBp3 is only possible in
samples highly enriched in cell membranes [12]. Therefore,
for studies of the TGBp3 subcellular localization we have
employed GFP-fused TGBp3 expressed in plants in the
absence of viral infection [6, 10, 15, 19]. In particle bom-
bardment experiments, we have found that the GFP-fused
PSLV TGBp3 (18 K) was colocalized with an ER marker
in PMBs [15]. In this paper we analyzed the effect of
the nonfused 18 K expressed by particle bombardment in
the absence of other viral products on the morphology of
the ER and Golgi. 18 K was coexpressed with the ER and
Golgi marker proteins in epidermal cells of N. benthamiana
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Figure 1: Co-expression of non-fused 18 K with the ER and Golgi markers in bombarded epidermal cells of N. benthamiana leaves. (a)
ST-YFP. (b)–(d) ST-YFP + 18 K. (e) m-GFP5-ER. (f) and (g) m-GFP5-ER + 18 K. (h) ST-YFP + m-GFP5-ER + 18 K. In (h), GFP signal is
shown in the left panel, YFP signal—in the middle panels, and the merged image—in the right panel. All images except (b) and (c) and
the insert in (g) are reconstructed by superposition of series of confocal optical sections. Arrowheads in (h) point to round structures of
0.5–1.0 μm in diameter presumably representing Golgi stacks remained unaffected upon the 18 K expression. Scale bar: 20 μm in (a), (b),
(f), (g), and (h); 10 μm in (e); 4 μm in (c) and (d); 3 μm in the insert in (g).

leaves by particle bombardment with 35S promoter-driven
expression vectors. This method ensures co-expression of
two proteins in all transfected cells [6, 9, 15]. Co-expression
of 18 K with ST-YFP revealed considerable changes in the
localization of this Golgi marker. Instead of numerous
motile Golgi structures of regular spherical shape visible in
control cells expressing only ST-YFP (Figure 1(a)), ST-YFP
co-expressed with the non-fused 18 K was found in immobile
groups of irregularly shaped vesicular structures of different
sizes forming large “islands” sometimes interconnected by
rare ST-YFP-containing membrane tubules resembling the
tubules of cortical ER (Figures 1(b)–1(d)). Additionally, ST-
YFP accumulated in the nuclear envelope (Figure 1(b)). In

cells coexpressing the nonfused 18 K with the ER marker
m-GFP5-ER the typical polygonal network of cortical ER
(Figure 1(e)) was not observed. Instead, the fluorescent
marker was localized in groups of granular structures,
in the nuclear envelope, and in rare residual ER tubules
interconnecting the granular clusters (Figures 1(f) and
1(g)). It should be emphasized that our previous studies
revealed that 18 K N-terminally fused to fluorescent proteins
GFP and DsRed did not exhibit any effect on the general
endomembrane system structure in similar experimental
conditions [10, 15]. Therefore, one can propose that the
mode of 18 K interaction with membranes can be altered
when the protein N-terminus is fused to a reporter protein.
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Figure 2: Schematic representation of TGBp3 mutant 18KmutIId8.
The box represents TGBp3 sequence. Hydrophobic sequence seg-
ments are shown as dark grey boxes. Conserved amino acid motifs
are indicated. Sequences of the C-terminal hydrophobic segment in
the wild-type protein and 18KmutIId8 are shown below the protein
scheme. Hydrophobic regions are underlined; the positively charged
Lys residues are shown in bold. Dots show identical residues, and
dashes indicate deletions.

Since ST-YFP and m-GFP5-ER were localized in similar
structures upon their individual coexpression with 18 K,
we further analyzed weather the ER and Golgi markers
are colocalized upon co-expression with 18 K. Independent
detection of GFP and YFP signals and subsequent image
superposition revealed the colocalization of GFP and YFP
in the vesicular clusters (Figure 1(h)). Additionally, the YFP
signal (but not the GFP signal) was found in some round
structures of 0.5–1.0 μm in diameter (Figure 1(h)), which
presumably represented Golgi stacks remained unaffected
upon the 18 K expression.

Collectively, these data indicate that the nonfused 18 K
protein expressed in plant cells by particle bombardment
with a 35S-promoter-driven vector in the absence of other
viral proteins can induce reorganization of the cortical
ER and Golgi structures and their coalescence resulting in
formation of the vesicular clusters. We hypothesize that
TGBp3 primarily affects the ER that results in its vesiculation
and presumably in a blockage of ER-to-Golgi transport
that would lead to disintegration of Golgi stacks and accu-
mulation of Golgi-specific proteins in the ER-derived vesicu-
lar clusters [20, 21].

3.2. A Mutation in the C-Terminal Transmembrane Domain
Influences TGBp3-Induced Reorganization of the Cell
Endomembrane System. Previously we reported that a dele-
tion of four C-terminal amino acid residues of the second
transmembrane domain blocked the GFP-18 K ability for
transport to cell peripheral compartments [10]. Here we
analyzed a mutant with a longer deletion in this trans-
membrane segment, 18KIId8 with eight residues deleted
(Figure 2). GFP-18KIId8 was not associated with PMBs and
localized in numerous granular structures often grouped
in clusters (Figures 3(a)–3(c)), that resembled localization
of m-GFP5-ER and ST-YFP in the presence of non-fused
18 K (Figure 1). We therefore analyzed whether 18KIId8
fused to a fluorescent reporter can affect the ER and Golgi
similarly to the nonfused wild-type protein. Co-expression
of YFP-18KIId8 with m-GFP5-ER revealed that the GFP
and YFP signals were colocalized in granular clusters in
the cytoplasm (Figure 3(e)). Similar colocalization was
revealed for co-expression of ST-YFP and GFP-18KIId8
(Figure 3(d)). To determine whether non-fused 18KIId8

can induce the coalescence of structures derived from
the ER and Golgi, 18KIId8 was coexpressed with both
m-GFP5-ER and ST-YFP. It was found that GFP and YFP
signals in such cells mostly overlapped (Figure 3(f)). One
can conclude that GFP-fused 18KIId8 with the deletion of
eight residues in the C-terminal transmembrane segment, in
contrast to GFP-18K, retains the ability of wild-type 18 K to
induce, upon high-level expression, morphological chan-
ges in the ER and Golgi structures. Presumably, the 18 K
C-terminal transmembrane domain represents an important
determinant involved in the interaction with ER and
responsible for the observed effect of 18 K high-level ex-
pression on the ER and Golgi.

4. Discussion

The data presented in this paper show dramatic effects of
the wild-type 18 K and GFP-18KIId8 on the cell endomem-
branes. It should be emphasized that the TGBp3 expression
levels reached in bombardment experiments most likely
considerably exceed those in virus infection. Therefore,
the coalescence of the ER and Golgi structures could be
considered as a result of an overexpression of TGBp3. Such
severe influence on the cell endomembranes could account
for the blockage of plasmodesmata targeting and cell-to-
cell movement previously observed upon increase of TGBp3
to TGBp2 ratio in beny-, pomo-, and hordeiviruses [4, 5].
We hypothesize that the observed effects of 18 K and GFP-
18KIId8 recapitulate, though in a hypertrophic way, the
processes of UPR and cell death-causing ER-stress that take
place in virus-infected cells [13]. As a result of high-level
expression in bombarded cells, demands for protein folding
can exceed the functional capability of protein folding
machinery, resulting in the ER stress and leading to severe
structural perturbations in the plant endoplasmic reticulum
and Golgi [13, 22]. It was found in animal and yeast models
that protein over-expression affected global ER and Golgi
structure and resulted in the biogenesis of novel membrane
arrays with Golgi and ER hybrid composition. In fact, a
number of ER and Golgi resident proteins together with
itinerant proteins that normally cycle between ER and Golgi
were localized in the proliferated stacked membranes under
the ER stress conditions [22, 23].

An alternative mechanism for the TGBp3 influence on
the cell endomembrane system and, in particular, the mech-
anism of vesiculation of the ER structures can be proposed
on the basis of the recent finding that TGBp3 encoded
by Bamboo mosaic virus is colocalized in PMBs with cell
proteins called Rtn1 and Yop1 [24]. The reticulon (Rtn1) and
DP1/Yop1 belong to two families of integral ER membrane
proteins that facilitate formation of highly curved membrane
tubules and thus take a part in shaping the cortical ER
[25, 26]. There are two features shared by (Rtn1) and
DP1/Yop1 on one hand and hordeivirus TGBp3 on another.
First, similarly to the hordeivirus TGBp3, the “reticulon
homology domain” shared by Rtn1 and DP1/Yop1 comprises
two transmembrane segments separated by a conserved
hydrophilic region and can therefore possess a TGBp3-like
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Figure 3: Co-expression of 18KIId8 and its fusions with the ER and Golgi markers in bombarded epidermal cells of N. benthamiana leaves.
(a)–(c) GFP-18KIId8. (d) ST-YFP + GFP-18KIId8. (e) m-GFP5-ER + YFP-18KIId8. (f) m-GFP5-ER + ST-YFP + 18KIId8. In (d)–(f), GFP
signal is shown in the left panels, YFP signal—in the middle panels, and merged images—in the right panels. All images except (c) are
reconstructed by superposition of series of confocal optical sections. (c) represents a single optical section in a cell peripheral region. Scale
bar: 20 μm in (a), (d)–(f); 10 μm in (b); 4 μm in (c).

topology in the ER membrane. Second, similarly to Rtn1
and DP1/Yop1, TGBp3 can form high-molecular weight
complexes in cell membranes [8]. It could be hypothesized
that the mechanism of TGBp3 targeting to PMBs involves
sorting to highly curved membrane compartments where
Rtn1 and DP1/Yop1 reside. On the other hand, one can

presume that, similarly to reticulons, TGBp3 expressed to
high levels can itself generate a membrane curvature that
would result in general changes in the ER morphology.
Similarly, the expression of the Arabidopsis thaliana reticulon
RTNLB13 in plant cells results in vesiculation of the cortical
ER tubules, and the extent of vesiculation correlates with
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the level of RTNLB13 expression [27]. Moreover, in striking
similarity to TGBp3, the RTNLB13-induced vesiculation
was significantly milder when RTNLB13 was fused to a
fluorescent protein [27].
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