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Background and Aims. Hepatocellular carcinoma (HCC) is the common tumor of the liver. Unfortunately, most HCC seem to be
resistant to conventional chemotherapy and radiotherapy. The poor efficacy of antitumor agents is also due, at least in part, to the
inefficient drug delivery and metabolism exerted by the steatotic/cirrhotic liver that hosts the tumor. Thus, novel approaches in
chemotherapy may be needed to improve the survival rate in patients with HCC. Metformin (METF) has been found to lower
HCC risk; however, the mechanisms by which METF performs its anticancer activity are not completely elucidated. Previous
studies have showed METF action on growth inhibition in the liver in a dose/time-dependent manner and its antitumor role by
targeting multiple pathways. We investigated molecular effects of METF in an in vitro human hepatoma model (HepG2),
studying cell cycle regulators, tumorigenesis markers, and insulin-like growth factor (IGF) axis regulation. Materials and
Methods. HepG2 cells were treated with METF (400 μM) for 24, 48, and 72 hours. METF action on cell cycle progression and
cellular pathways involved in metabolism regulation was evaluated by gene expression analysis, immunofluorescence, and
Western blot assay. Results. By assessing HepG2 cell viability, METF significantly decreased growth cell capacity raising
KLF6/p21 protein content. Moreover, METF ameliorated the cancer microenvironment reducing cellular lipid drop
accumulation and promoting AMPK activity. The overexpression of IGF-II molecule and the IGF-I receptor that plays a main
role in HCC progression was counteracted by METF. Furthermore, the protein content of HCC principal tumor markers, CK19
and OPN, linked to the metastasis process was significantly reduced by METF stimulus. Conclusion. Our data show that METF
could suppress HepG2 proliferation, through induction of cell cycle arrest at the G0/G1 phase. In addition, METF effect on the
cancer microenvironment and on the IGF axis leads to the development of new METF therapeutic use in HCC treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is a significant health issue,
particularly in developing countries, where it is inevitably
fatal: it represents the third most frequent cause of
cancer-related death, with an annual incidence of 700,000
new cases [1]. Half of HCC cases occur in China, where B
and C hepatitis are the major risk factors for HCC [1]. The
other 30–40% of cases, which occurs in Western countries,
are probably attributable to nonalcoholic fatty liver disease

(NAFLD) or metabolic syndrome [2]. Indeed, epidemiologic
studies have shown that diabetes mellitus (DM), with insulin
resistance, is an independent risk factor for HCC and it is
positively associated with increased risk of liver cancer [2].

Though, in recent years, the diagnosis of HCC is largely
improved as well as the management of the early stage, the
prognosis of liver cancer remains extremely poor [1, 3]. In
most cases, chemotherapy and radiotherapy have palliative
effects. Reducing the risks or delaying the onset of HCC
represent promising chemopreventive strategies.
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HCC metastases and invasiveness are significant causes
of cancer-related morbidity and mortality [4], and metastasis
incidence is expected to decrease with the improvements of
systemic therapies. Recent works have showed the impor-
tance of the microenvironment for tumor initiation and
development, including metabolic alterations, growth, and
metastasis [5]. However, the mechanisms of metastatic cas-
cade remain poorly understood [6]. Cytokeratin-19 (CK19)
expression was correlated with metastasis, early tumor
reappearance after resection, and radiofrequency ablation.
Indeed, the CK19 knockdown cells significantly reduced
HCC invasive ability instead; human CK19-positive tumor
cells showed increased invasiveness [7].

Recent works have showed the importance of the
microenvironment for tumor initiation and growth and
for the development of metabolic alterations and metas-
tasis [6, 8]. Chronic inflammation is intimately associ-
ated with the pathogenesis of HCC and metastatic
formation [9].

Osteopontin (OPN), secretary phosphorylated glyco-
protein, plays a key role in promoting the metastatic pro-
cess in HCC [10]. In fact, OPN, involved in various
pathological conditions including inflammation and angio-
genesis, is secreted by malignant cells in advance metastatic
cancer and induces epithelial-mesenchymal transition with
upregulation of the mesenchymal markers and E-cadherin
downregulation [11].

Moreover, annexin A5, a calcium- and
phospholipid-binding protein, is generally used to detect
apoptosis phenomena. Nonetheless, there is recent evidence
that annexin A5 is related to the efficacy of cancer therapies.
In particular, Jeong et al. have demonstrated that annexin A5
plays an important role as a mediator of cisplatin antitumor-
igenesis action [12]. Recently, Li et al. have demonstrated
that annexin A5 overexpression in the uterine cervical
carcinoma might negatively regulate cell proliferation [13].
Thus, these studies suggest how induction of annexin A5
could be a promising target in cancer therapy.

IGF axis components, as the insulin-like growth factors
I and II (IGF-I and IGF-II) and their receptors, are impli-
cated in tumor formation, growth, and metastasis in vivo.
In particular, a crucial role has been attributed to the
IGF-I receptor, which mediates mitogenic signals, and it
is necessary for the malignant transformation of certain
types of cells [14].

Metformin (METF) is the most commonly used drug in
the treatment of type 2 diabetes, introduced into clinical
practice in the 1950s [15]. It reduces the risk of hyperglyce-
mia predominantly by decreasing hepatic glucose production
via inhibition of gluconeogenesis, enhancing glucose uptake,
and utilization by reversal of insulin resistance in peripheral
tissues [15]. The glucose-lowering action of METF is
reliant on liver kinase B1- (LKB1-) dependent activation
of adenosine monophosphate-activated protein kinase
(AMPK), a conserved cellular energy sensor that is activated
in response to an increased AMP/ATP ratio caused by
various cellular stresses [16]. Moreover, it has been shown
that METF-mediated activation of AMPK increases fatty acid
oxidation in the liver [15, 17], decreasing lipogenesis [18]

through the inhibition of specific enzymes, transcription fac-
tors, and malonyl CoA’s activation [19, 20].

Interestingly, several works suggest that the central ther-
apeutic properties of METF are regulated independently by
the AMPK pathway [20, 21].

A surprising finding in recent articles is that METFmight
be useful in the prevention and treatment of several common
cancers [22, 23]: it acts through both insulin-dependent [24]
and insulin-independent mechanisms [25]. Epidemiological
studies have shown that METF, used among diabetic
patients, resulted in a 50% risk reduction in HCC incidence
[22, 26]. On the other hand, insulin and insulin secretagogues
have been associated with a 62% increase and a 161%
increase of incidence and cancer-related mortality [27].

However, the mechanisms by which metformin performs
its anticancer activity are not completely explained.

Recent in vitro and in vivo studies have shown that in the
liver, METF is able to inhibit selectively the growth of cancer
cells [28], without action of normal hepatocytes, in a dose-
and time-dependent manner [29]. The METF-activated
AMPK could contribute to inhibitory effects of METF in
HCC cells [30, 31], even if several authors propose an
AMPK-independent drug effect [20, 32].

Surely, METF acts on the main regulators of the cell
cycle, as cyclin, cyclin-dependent kinases (CDKs), and
CDK inhibitors (CDKIs), by blocking the cells in the
G0/G1 phases [30, 32]. p21CIP1 and p27KIP1 can prevent
inappropriate cyclin/CDK activity in the G1 phase [33].
Moreover, p53, a tumor suppressor and an upstream reg-
ulator of p21CIP1, can indirectly affect the cell cycle [33].
These mechanisms, associated with the control of restric-
tion point, are usually impaired in cancer cells. Hence,
the repair of uncontrolled cell cycle progression might be
an effective strategy for the treatment of HCC.

Many in vitro and in vivo studies have already shown
that METF could exert its antitumor effect by targeting
multiple pathways such as cell cycle/apoptosis, AMPK/m-
TOR, anti-inflammatory pathway, insulin/IGF-IR, and
angiogenesis.

However, because the dosage of METF used in these
studies (1–20mM) was much higher than the dose used in
the treatment of diabetic patients, the aim of this study was
to describe the in vitro effects of human therapeutic concen-
tration of METF (400μM) in liver cancer cells. In particular,
we have investigated the action of the drug on the major pro-
teins regulating cell cycle, on tumorigenesis marker synthesis,
and on IGF/insulin axis regulation.

2. Materials and Methods

2.1. Chemicals and Reagents. Metformin (1,1-dimethylbi-
guanide) was purchased from Sigma (Sigma Chemical Co.,
Saint Louis, MO, USA). All primary antibodies: calnexin
(H-70), GAPDH (FL-335), annexin A5 (R-20), AMPKα1/2
(H-300), cytokeratin 19 (N-13), IGF-IRβ (C-20), KLF6
(R-173), OPN (K-20), PGC-1α (H-300), p53 (FL-393),
p21 (C-19), Rb (C-15), pRb (Ser249/Thr252),
peroxidase-conjugated econdary antibodies for Western
blot analysis, and Rhodamine/FITC-conjugated antibodies
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for immunofluorescence analysis were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA).

Primary antibody p-AMPKα (Thr 172) was purchased
from Cell Signaling Technology (Danvers, MA, USA).

2.2. Cell Lines and Culture Conditions.Human hepatocellular
carcinoma cell line HepG2 was obtained from the European
collection of cell cultures (ECACC) and maintained in
MEM containing 10% fetal bovine serum (FBS), 1% penicil-
lin streptomycin, 1% glutamine, and 1% of nonessential
amino acids. The cells were incubated in a humidified atmo-
sphere of 5% CO2 at 37°C and passaged by trypsinization
when they reached 80% confluence. The culture medium
was changed every day, following literature indications. For
experiments, HepG2 cells were treated with METF 400μM
as indicated in the legend of Figure 1.

2.3. Growth Curve and Cell Viability Test. HepG2 cells
(2× 105) were plated on 60mm× 15mm culture dishes at
40% confluence and grown in MEM. The cells were treated
or not with METF 400μM (Figure 1(a)). At 24, 48, and
72 h after treatment, cells were trypsinized, stained with try-
pan blue, and counted using hemocytometer. The average
values for each single day were used to plot a growth curve.
Cell viability was calculated by dividing the nonstained viable
cell count by the total cell count. In addition, morphological
changes were examined daily by phase contrast microscopy.

2.3.1. 5-Bromo-2′-deoxyuridine (BrdU) Assay. HepG2 cells
(1.5× 105) were seeded on 60mm× 15mm culture dishes
and grown inMEM. The cells were treated or not with METF
400μM for 24, 48, and 72h. Briefly, BrdU solution was added
to each well and cells were incubated at 37°C for 3 h, in a cell
culture incubator protected from light. Cell medium was
removed and cells were fixed with 4% paraformaldehyde
for 15min. Cells were permeabilized with 0.3% Triton
X-100 in PBS for 10min and blocked with 5% bovine serum
albumin in PBS with 0.2% Triton X-100 solution for 1 h. Cel-
lular DNA was denatured by DNase RQ1 (Promega, France)
in PBS with 0.2% Triton X-100 solution. The incorporated
BrdU was stained with anti-BrdU monoclonal antibody
(Sigma Chemical Co., Saint Louis, MO, USA). Nuclei were
revealed with DAPI staining. Cell images of each treatment
were captured with Nikon Eclipse 50I microscopy. Auto-
mated quantification signal was performed by using ImageJ
program (http://imagej.nih.gov/ij/).

2.4. Real-Time PCR (RT-PCR) Analysis.HepG2 (1× 106) cells
were cultured in 100mm dishes and treated with METF
400μM for 24h. Total RNA was extracted from human
hepatocellular carcinoma cells HepG2 with RNeasy Plus
Mini QIAGEN Kit (Qiagen GmbH, Germany) according to
the manufacturer’s instructions. The quantity of the RNA
in the extraction was determined by measuring the absor-
bance ratio of A260 and A280 using a spectrophotometer
(NanoDrop 8000). The prepared RNA was then reversely
transcribed to single-stranded cDNA using RT/PCR kit
(GoScript, Promega, France), and it is used as template for
analysis of gene expression level.

The sequence of primers to determine the expression of
the target gene was listed as follows:

hIGF-II: 5′-CTTCCAGACACCAATGGGAAT-3′, 3′-
GTCCCCACAGACGAACTGGA-5′, hIGF-IR: 5′-CTAAA
CCCGGGGAACTACACAG-3′, 3′-TTCACAGAGGCATA
CAGCAC-5′, hIGF-IIR: 5′-TACAACTTCCGGTGGTACA
CCA-3′, 3′-CATGGCATACCAGTTTCCTCCA-5′, hGAP
DH: 5′-CGAGATCCCTCCAAAATCAA-3′, 3′-TTCACAC
CCATGACGAACAT-5′.

The PCRs consisted of 10 minutes at 95°C, followed
by 40 cycles of denaturation for 10 seconds at 95°C,
annealing, and primer extension for 1 minute at 60°C.
All measurements were performed in triplicate. The com-
parative CT method was used to quantitate the expres-
sion of genes using GAPDH as the normalized control.
The expression level of the housekeeping genes chosen
for normalization in the threshold cycle (Ct) for each
experimental condition and then the fold change (ΔΔCt)
for each gene from the treatment group compared to
the control group was calculated. If the ΔΔCt is greater
than 1, then the result may be reported as a fold upreg-
ulation. If the ΔΔCt is less than 1, then the result may be
reported as a fold downregulation.

2.5. Western Blot Analysis. Western blot analysis was
performed as described previously [34]. HepG2 cells were
grown in 100mm culture dishes with or without METF. Cell
extracts were prepared by lysing the cells in RIPA buffer.
30μg of protein was separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and electrophoretically trans-
ferred to nitrocellulose membranes (Protran®, Whatman®
Schleicher & Schuell). The blots were then blocked and
incubated with specific primary antibodies, followed by
incubation with anti-species-specific secondary antibodies.
To confirm equal protein loading per sample, we used
anti-calnexin or anti-GAPDH antibody. Finally, detection
of specific proteins was performed by enhanced chemilumi-
nescence reagent (Western Lightning ECL Pro, PerkinEl-
mer). Quantitative measurement of immunoreactive band
intensities was performed by densitometric analysis using
the Scion Image software (Scion Corporation, Frederick,
MD, USA). Data were then converted into fold changes
(FC) of the control.

2.6. Immunofluorescence. HepG2 cells were grown on cov-
erslips with or without 400μM METF. After 24, 48, and
72 hours of treatment, cells were washed 3 times with
PBS, then fixed in prepared 4% paraformaldehyde for 20
minutes, and raised three times in PBS. The cells on the
coverslips were washed with PBS and incubated for 30
minutes at room temperature with 1% bovine serum albu-
min in PBS with 0.2% Triton X-100. Then HepG2 cells
were incubated with primary antibodies for 150 minutes.
To detect primary antibody, binding site cells were washed
three times in PBS and followed by incubation with spe-
cific rhodamine/FITC-conjugated antibodies for 90
minutes. Nuclei were revealed with DAPI staining. Cover-
slips with cells were mounted and observed using Nikon

3International Journal of Endocrinology

http://imagej.nih.gov/ij/


Eclipse 50I microscopy. The images were captured using
NIS-Elements D 4.00 software. Data were analyzed using
Adobe Photoshop CS4.

2.7. Oil Red O Coloration. This technique is based on the
staining of intracellular lipids by Oil Red O (Sigma Chemical
Co., Saint Louis, MO, USA). HepG2 cells were fixed in
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Figure 1: Metformin action on the proliferative phase of HepG2 cells: (a) experimental scheme of HepG2 treatments; (b) growth curve and
viability determination: treatment with 400μMMETF significantly decreased the proliferative capacity of HepG2 without inducing cell death;
(c) BrdU incorporation assay: METF did not suppress HepG2 cell proliferation at 24 and 48 h while at 72 h of treatment, METF significantly
induced a proliferation decrease. Representative images related to BrdU assay were added as supplementary data (available here); (d) to
confirm the results obtained by the growth curve, we analyzed p53 protein content: the protein content of p53 at day 3 of the growth curve
decreased with respect to that of control in the presence of 400μM METF; (e) METF significantly risen Rb activation. Conversely, the p21
protein level was increased in response to 72 h METF treatment. Data are expressed as fold change (FC) mean± SD. Representative
Western blots were added as supplementary data. Significance: t-test: ∗p ≤ 0 05 vs MEM, ∗∗p ≤ 0 01 vs MEM. For growth curve, viability,
and BrdU assay, ANOVA test followed by Sidak’s multiple comparison test was used. ANOVA test: §p ≤ 0 05 and §§p ≤ 0 01.
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prepared 4% paraformaldehyde for 30 minutes at room
temperature and washed in distilled water. Then cells were
incubated with Oil Red O. solution according to the manu-
facturer’s procedures. The cells on the coverslips were
washed in distilled water. Coverslips with cells were mounted
and observed by phase contrast microscopy.

Automated quantification signal was performed by using
ImageJ program (http://imagej.nih.gov/ij/).

2.8. Statistical Analysis. All experiments were performed
three times. The data are presented as the mean± standard
deviation, and statistical comparisons were performed with
specific statistical packages (Prism v 7.00 GraphPad Soft-
ware, San Diego, CA, USA). Statistically significant differ-
ences were determined using Student’s t-test or ANOVA
test followed by Sidak’s multiple comparison test.

Results were considered statistically significant when
p ≤ 0 05.

3. Results

3.1. Metformin Treatment Decreases Cell Proliferation and
Does Not Induce Cell Death. In order to determine whether
400μM METF influences human liver cancer cell prolifera-
tion, we analyzed the effects of this drug on HepG2, an
in vitro model of human liver carcinoma.

Cells were cultured in a growth medium with or without
METF treatment for three days. As shown in Figure 1(b),
400μM METF decreased HepG2 cell proliferation and, in
this condition, we did not observe cell death: cell viability
was not influenced during METF treatment. Using a BrdU
incorporation assay, we confirmed that METF did not sup-
press HepG2 cell proliferation at 24 and 48h while at 72 h
of treatment, METF significantly induced cell cycle arrest
(Figure 1(c)).

To corroborate this evidence, by Western blot assay, we
evaluated protein content of p53, a key transcriptional factor
associated with induction of cell cycle arrest and apoptosis:
METF decreased the p53 protein level with respect to control
at day 3 of the growth curve (Figure 1(d)).

Based on these data, we hypothesized that 400μMMETF
could exert an effect on HepG2 cell growth, leading to a sig-
nificant decrease in proliferation.

3.2. Metformin Treatment Regulates Cell Cycle Proteins. Inap-
propriate cell cycle progression determines an unlimited cell
division in cancer cells. To investigate the molecular mecha-
nisms responsible for the METF-induced cell growth inhibi-
tion, Western blot and immunofluorescence assays were used
to analyze METF impact on cell cycle-related proteins in
HepG2. In proliferating HepG2, the level of phosphorylated
Rb was progressively decreased: conversely, the p21 protein
level was increased in response to 72hours of METF treat-
ment (Figure 1(e)).

These in vitro data seem to demonstrate that 400μM
METF might affect the expression and the phosphorylation
of key proteins of the cell cycle and it leads to an arrest in
the G0/G1 phase in hepatocellular cancer cells [30, 32].

As shown in Figure 2, p21 was mainly localized in
HepG2 nuclei after 24 h of treatment. Recent studies show
that p21 can act both as a tumor suppressor gene and as
an oncogene depending on its cellular localization. When
p21 is localized to the nucleus, it arrests cell growth by
inhibiting cyclin-dependent kinases and DNA synthesis
through interactions with proliferating cell nuclear antigen,
PCNA [30].

3.3. The Antiproliferative Effect of Metformin Is Not Mediated
by p53 Protein. A similar trend was also observed when
HepG2 cells have reached 80% confluence: in this phase,
the Rb/pRb ratio and p21 protein content were improved at
all time points after the addition of METF, regardless of
p53 levels (Figure 3). Additionally, p21 nuclei localization
was confirmed by immunofluorescence assay after 48 hours
of treatment (Figure 4(a)).

Kruppel-like factor 6 (KLF6) is a transcriptional factor
which plays roles in human tumorigenesis [35]: in partic-
ular, KLF6 enhances p21 expression independently from
p53 [36, 37]. KLF6 was raised after 48 hours of treatment
with METF (Figure 4(b)).

3.4. Metformin and AMPK. To detect whether metformin
affects AMPK protein synthesis in HepG2 cells, AMPK
expression was measured by immunofluorescence assay.
The data confirmed that metformin increases the kinase’s
protein expression (Figure 5(a)) and its activation
(Figure 5(b)), as shown by Western blot assay. AMPK
might play an important role in metformin-induced
growth inhibition.

Since AMPK inhibits limiting steps in lipogenesis, lead-
ing to decreased lipid deposition [19, 38], metformin could

p21-24 h proliferation

20X 40X 

MEM  

METF  

MEM  

METF  

Figure 2: METF action on p21 nuclear translocation: METF
stimulated p21 nuclear translocation, confirming that it is able to
arrest cell growth by inhibiting cyclin-dependent kinases. These
images showed the different localization of the signal in cells
treated with METF in respect to MEM control. Scale bars: 200 μm
(20X) and 100μm (40X).
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improve hepatic steatosis by increasing its phosphorylation.
The effects of metformin on lipolysis were confirmed by
Western blotting for peroxisome proliferator-activated
receptor-γ coactivator-1α (PGC-1α), a transcriptional coacti-
vator that has emerged as a master regulator of hepatic
energy metabolism [39]: 400μMMETF increases the protein
content of PGC-1α (Figure 5(b)). Through various interac-
tions, PGC-1α plays an important role in fatty acid oxidation
[40] and gluconeogenesis in the liver [41].

Above all, Oil Red O staining showed that intracellular
lipid deposition significantly decreased with 400μM metfor-
min (Figure 5(c)).

3.5. Metformin Inhibits the Invasive Potential of HCC Cells
In Vitro. The anticancer effects of METF are associated to
cell cycle arrest, induction of apoptosis, and inhibition of
metastasis invasion. For this reason, we investigated the
action of 400μM METF on the main markers of liver
tumorigenesis.

Cytokine osteopontin (OPN), one of the metastatic
genes, was upregulated in HCC, and the increase of its
expression was correlated with the metastatic ability of
HCC and invasiveness of liver tumor-derived cell lines
in vitro [11, 42]. Recently, Zhu et al. have demonstrated that
OPN enhances CCR1 expression, an important chemokine
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Figure 3: METF action on cell cycle protein: METF significantly increased p21 and Rb protein content at 24, 48, and 72 h of treatment in
respect to MEM control, without modification of the p53 protein level. Data are expressed as fold change (FC) mean± SD. Representative
Western blots were added as supplementary data. Significance: t-test: ∗p ≤ 0 05 vs MEM, ∗∗p ≤ 0 01 vs MEM, and ∗∗∗p ≤ 0 001 vs MEM.
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receptor, through the PI3K/AKT/HIF-1a signaling pathway.
The CCR1 receptor plays a key role in promoting HCC
metastasis. As shown in Figure 6(a), the OPN protein

content in HepG2 cells, which express constitutively high
levels of the protein [11], was decreased after 48 hours
of drug treatment.
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MEM

METF

(a)

KLF6-48 h
20X
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(b)

Figure 4: METF action on antiproliferative marker expression: (a) immunofluorescence data indicated that METF enhanced p21 nuclear
translocation, confirming that METF was able to influence the key regulators of cell cycle; (b) immunofluorescence assay showed that
METF improved KLF6 protein content after 48 h of treatment. Scale bars: 200 μm (20X) and 100 μm (40X).
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Figure 5: METF action on lipid metabolism: (a) immunofluorescence assay confirmed the increase of AMPK protein expression with respect
to control at 48 h of treatment; (b) Western blot results pointed out that METF significantly increased the pAMPK/AMPK ratio and PGC-1α
protein level; (c) Oil Red O coloration and relevant quantification revealed that METF decreased lipid accumulation in HepG2. Data are
expressed as fold change (FC) mean± SD. Representative Western blots were added as supplementary data. Significance: t-test: ∗p ≤ 0 05
vs MEM and ∗∗∗p ≤ 0 001 vs MEM. Scale bars: 200 μm (20X) and 100 μm (40X).
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Cytokeratin 19 (CK19) positivity in HCC cells was well
correlated with the clinical and pathological features of
tumor aggressiveness and poor prognosis [43, 44]. Moreover,

CK19 positivity in HCC was associated with increased
expression of epithelial-mesenchymal transition- (EMT-)
related genes and invasion-related proteins [8]. METF
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40X
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METF
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Annexin A5 - 48 h
40X

MEM

METF
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Figure 6: METF action on tumorigenesis marker expression: (a) after 48 h of differentiation, METF treatment could decrease OPN protein
expression compared with MEM control; (b) immunofluorescence assay of CK19 after 48 h of treatment showed how METF could decrease
CK19 protein expression in respect to MEM control; (c) immunofluorescence assay for annexin A5 after 48 h of treatment revealed that
METF was able to increase protein expression in respect to MEM control. Scale bars: 200μm (20X) and 100μm (40X).
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inhibits the expression of this marker after 48 hours of
treatment (Figure 6(b)).

Therefore, the data collected indicate that METF may
influence adversely markers of tumorigenesis, such as OPN
and CK19, and constrain the cell migration and invasion in
liver cancer cells.

Considering the new role of annexin A5 in cancer
therapy [12], we analyzed the action of METF on
annexin A5 by immunofluorescence assay. As shown in
Figure 6(c), after 48 h of treatment, METF increased annexin
A5 protein content.

3.6. Metformin Role on the IGF Axis. The insulin-like growth
factor (IGF) signalling pathway is another important path-
way in the process of hepatocarcinogenesis: three IGF axis
members are known to be involved in the development of
HCC [45].

In 16%–40% of human HCC, IGF-II overexpression
has been evidenced [46]. Experimental induction of
IGF-II expression was positively correlated with enhanced
cell growth and tumor neovascularization; moreover, its
inhibition promoted apoptosis [47, 48]. Healthy hepato-
cytes do not express IGF-IR, whereas HCC cells exhibit
overexpression and overactivation of the IGF-I receptor
[49]. Rodriguez-Tarduchy et al. reported that the primary
tumorigenic effects of IGFs are regulated by IGF-IR [50].

We decided to analyze these three IGF axis members in
HepG2 cells treated with METF. Real-time PCR data showed
that after 6 hours of treatment with 400μM METF,
IGF-II/IGF-IIR gene expression was significantly reduced
(Figure 7(a)). Furthermore, HepG2 cells exposed to METF
produced significantly less IGF-IR at all time points
(Figure 7(b)).

4. Discussion

HCC is a type of malignant cancer associated with a high
incidence and rate of mortality. Nowadays, the therapeutic
approaches available for the treatment of HCC are
insufficient.

Recent data suggest that metformin could protect
patients with type II diabetes from cancer [22] and, in partic-
ular, it could inhibit liver cancer cell proliferation in vitro and
in vivo [28, 31]. The HCC risk in these patients was found to
be as high as 7.1 higher than that in nondiabetic patients,
depending on the duration of diabetes and the protocol used
in the treatment [27, 51].

Over two hundred clinical trials about metformin as anti-
cancer drug, completed or in progress, have not yet registered
positive clinical results. Probably, the major obstacle of these
unsatisfactory results is the concentration of metformin on
target organs [52].

The maximum concentration of drug in the circulating
system is less than 60μM via oral administration, much less
than 2mM, the minimum effective antitumor concentration
suggested in in vitro works [53]. In addition, increase of the
oral dose of metformin is not the right solution because you
have more side effects, as gastrointestinal discomfort and lac-
tic acidosis, due to the pharmacokinetics of drug [52]. For

these reasons, we performed our experiments using a
400μM metformin dose, which corresponds to the in vitro
human therapeutic dose.

Previous studies have revealed that metformin is able to
inhibit HCC growth through regulation of the
AMPK-dependent pathway [31]. However, Xiong et al.
showed that the induction of HCC cell cycle arrest and apo-
ptosis by metformin was through an AMPK-independent
pathway [20, 21, 54]. Indeed, AMPK can also influence the
metabolism of fatty acids [19], whose alterations are mainly
responsible for the inflammatory microenvironment favour-
ing the development of the same HCC [55]. In this study, we
observed that 400μM metformin significantly increased
AMPK phosphorylation on Thr 172 and is able to decrease
the accumulation of intracellular lipids (Figure 5) Therefore,
metformin, and other molecules that target AMPK, may play
a dual action, both as antiproliferative agent and as agents
able to counteract the inflammatory microenvironment.

In liver tumor cells, the invasiveness, the intrahepatic dis-
semination, and metastasis generate a high level of aggres-
siveness. Clinical and experimental evidence, regarding the
link between OPN and HCC metastasis, makes OPN an
attractive potential therapeutic target against HCCmetastasis
[56]. OPN is markedly elevated in the plasma of HCC
patients, [57] and, when neutralized with antibody, it inhibits
the in vitro invasion and in vivo lung metastasis of highly
metastatic HCC cells [58]. Using immunofluorescence assay,
we found that 400μM of METF decreased expression levels
of OPN in HepG2 (Figure 6(a)).

Our results show that 400μMmetformin is the sufficient
dose to decrease HepG2 cell proliferation through the arrest
in the G0/G1 phase of the cell cycle, without cell death
(Figures 1–3). Many studies performed in liver cancer cells
have shown that metformin selectively induces or enhances
apoptosis [30] but only at high concentrations, incompatible
with the human health. Conversely, several studies demon-
strated that metformin protects against apoptosis in normal
cells [29].

The phosphorylation of Rb plays a crucial role in the pro-
gression of the G1 phase and the transition of the G1 to the S
phase [33, 59, 60]. Our results (Figures 2 and 3) suggest that
treatment with 400μMmetformin increased the protein con-
tent of p21, resulting in hypophosphorylation of Rb, which
arrests the cell at the G1 phase [57, 59, 60].

Indeed, our data show that the increase in p21 expres-
sion levels after metformin treatment (Figure 4(a)) is not
due to the action of p53 but to KLF6. KLF6 is frequently
inactivated in HCC [35] and, when overexpressed in
carcinoma-derived cells, interacts with cyclin D to disrupt
cyclin/CDK complexes, to redistribute p21 to CDK2,
which promotes G1 cell cycle arrest [61]. Furthermore, it
has been showed that the silencing of KLF6 induces death
cell by apoptosis through p53 upregulation and the inhibi-
tion of Bcl-xL expression: this shows that KLF6, increasing
the level of p21 protein by the p53 protein, is essential for
liver cancer cells to evade apoptosis. Our results on the
KLF6/p21/Rb axis contribute to explain the growth inhib-
itory effect of 400μM metformin on the human hepatic
cancer HepG2.
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The effect of 400μM metformin on CK19 protein seems
to be very interesting above all those related to Sorafenib.
This drug, an orally available kinase inhibitor, is the only
standard clinical treatment against advanced HCC. However,
many patients show drug resistance. Increasing evidence sug-
gests that this phenomenon in HCC is correlated with the
activation of epithelial-mesenchymal transition (EMT) and
enrichment of cancer stem cell (CSC) traits [62]. Increased
expression of CK19 is related to these events. Metformin, act-
ing on CK19 synthesis, could increase the sensitivity of HCC
cells to Sorafenib and inhibit HCC recurrence and metastasis
[63]. In support of this our speculation, Kang et al. showed
that the combined administration of metformin and Sorafe-
nib significantly inhibits the recurrence and metastasis of

primary liver cancer in HCC patients, after surgical resec-
tion [64]. Moreover, we observed that METF stimuli
increased annexin A5 protein expression (Figure 6(c)):
recent data indicate how the upregulation of this protein
ameliorates antitumoral response, acting on cell cycle regula-
tors [12, 13]. We speculated that METF, acting on annexin
A5, could represent a novel coadjuvant in cancer therapy.

Molecular target therapy is now developing as a novel
anticancer modality and seems to be a promising way for
prolonging advanced HCC patient survival. Insulin-like
growth factor (IGF) signaling is specifically required for
hepatocyte malignant transformation and HCC progression
[65, 66], especially the IGF-I receptor (IGF-IR) [13] and
IGF-II expression in hepatocarcinogenesis [46, 65]. IGF-IR
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Figure 7: METF action on IGFs axis: (a) real-time PCR results showed that METF significantly decreased IGF-II and IGF-II R
expression; (b) Western blot data indicated that METF significantly reduced IGF-I R protein content. Data are expressed as fold
change (FC) mean± SD. Representative Western blots were added as supplementary data. Significance: t-test: ∗p ≤ 0 05 vs MEM, ∗∗p ≤ 0 01
vs MEM, and ∗∗∗p ≤ 0 001 vs MEM.
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stimulates growth of HCC cells through the activation of the
IGF-II/IGF-IR pathway: this receptor is not expressed in
healthy mature hepatocytes, whereas HCC cells exhibit
abnormal activation. These observations are in agreement
with previous data exhibiting that IGF-I or IGF-II is higher
in tumors over other liver tissues [67]. IGF-II is overex-
pressed at the early stage of HCC [46, 68] and mediated cell
proliferation mainly via a transmembrane tyrosine kinase
by a paracrine mechanism then leads to activation of the
phosphatidylinositol 3-kinase- and Ras/mitogen-activated
protein kinase pathways [69]. Yao et al. confirmed that the
IGF-IR gene silencing through the IGF-II/IGF-IR pathway
is one of the molecular mechanisms that inhibited HCC cell
proliferation because its activation is likely a progression
switch selected by function that promotes HCC dissemina-
tion [70, 71]. Interfering with signaling via IGF-IR has an
antitumor effect by inhibiting cell growth. Hypoxia inducible
factors upregulate IGF-II that, in turn, promotes VEGFA
expression leading to angiogenesis [72]. Moreover, it has
been reported that blockage of IGF-II expression causes
downregulation of VEGFA and inhibits growth in HCC cells
[70]. Altogether, these results suggest that IGF-II might play
a role in regulating tumor angiogenesis in HCC. We showed
that 400μM of METF is able to significantly decrease not
only IGF-IR level expression but also the expression of the
IGF2-II/IGF-IIR genes, already after 6 hours of treatment
(Figure 7). The present data confirmed that acting on
IGF-IR should have effect on the biological functions of
HCC cells in vitro through the IGF-II/IGF-IR pathway, sug-
gesting that the IGF-IR pathway should be a novel therapeu-
tic target for HCC.

5. Conclusion

The data of this study take particular importance since it is
the first work in which the dose of 400μM metformin
showed antiproliferative effects on HCC cells: in fact, previ-
ous works used a high dose of metformin with dangerous
effects. Interestingly, our in vitro data show that 400μMmet-
formin decreases cell proliferation, indicating how this dose
could be sufficient to exhibit anticancer effects. Of course,
this dose of the drug may not be considered curative but a
great adjuvant in current therapies for the treatment of
HCC. METF, in this dose, could represent an interesting
and promising adjuvant in traditional and new therapies
for the treatment of HCC, i.e., radiotherapy.

Further studies should be performed in order to investi-
gate METF clinical application and its combination with
other chemotherapy.
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