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ABSTRACT

Introduction: As life expectancy increases for
lung cancer patients with bone metastases, the
need for personalized local treatment to reduce
pain is expanding.

Methods: Patients were treated by a multidis-
ciplinary team (MDT), and local treatment
including surgery, percutaneous osteoplasty, or
radiation. Visual analog scale (VAS) and quality
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of life (QoL) scores were analyzed. VAS at
12 weeks after treatment was the main out-
come. We developed and tested machine
learning models to predict which patients
should receive local treatment. Model discrim-
ination was evaluated by the area under curve
(AUC), and the best model was used for
prospective decision-making accuracy
validation.

Results: Under the direction of MDT, 161
patients in the training set, 32 patients in the
test set, and 36 patients in the validation set
underwent local treatment. VAS in surgery,
percutaneous osteoplasty, and radiation groups
decreased  significantly to  4.78 + 1.28,
437 £1.36, and 5.39 & 1.31 at 12 weeks,
respectively (p < 0.05), with no significant dif-
ferences among the three datasets, and
improved QoL was also observed (p < 0.05). A
decision tree (DT) model that included VAS,
bone metastases character, Frankel classifica-
tion, Mirels score, age, driver gene, aldehyde
dehydrogenase 2, and enolase 1 expression had
a best AUC in predicting whether patients
would receive local treatment of 0.92 (95% CI
0.89-0.94) in the training set, 0.85 (95% CI
0.77-0.94) in the test set, and 0.88 (95% CI
0.81-0.96) in the validation set.

Conclusion: Local treatment provided signifi-
cant pain relief and improved QoL. There were
no significant differences in reducing pain and
improving QoL among training, test, and vali-
dation sets. The DT model was best at
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determining whether patients should receive
local treatment. Our machine learning model
can help guide clinicians to make local treat-
ment decisions to reduce pain.

Trial registration: Trial registration number
ChiCRT-ROC-16009501.

Keywords: Bone metastases; Local treatment;
Machine learning model; Multidisciplinary
team; Pain; Quality of life

Key Summary Points

Why carry out this study?

Local treatment for lung cancer patients
with bone metastases must be
individually tailored to each patient with
consideration for multiple factors.

What was learned from the study?

Local treatment performed by
multidisciplinary team could provide
significant pain relief.

A decision tree model had the best AUC in
predicting whether patients would receive
local treatment.

There were no significant differences in
reducing pain among training, test, and
validation sets.

Machine learning algorithms can help
guide local treatment decisions to reduce
pain in clinical use.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14095903.

INTRODUCTION

Bone metastases develop in 36% of patients
with advanced lung cancers [1]. Bone metas-
tases can lead to skeletal-related events (SREs)
such as severe pain, pathologic fracture (PF),
spinal cord compression (SCC), required radia-
tion, bone surgery, and hypercalcemia [2],
thereby significantly reducing the quality of life
(QoL) of patients with lung cancer [3].
Although systemic medical treatments can
control lung tumor growth [2], they are not
sufficient to reduce pain, restore the integrity of
bones, and allow a return to light weight-bear-
ing [4]. Recent progression in lung cancer
treatments, such as development of molecular-
targeted agents, has improved patient survival
[5]. With increasing life expectancy, there is
growing need for effective local treatment for
bone metastases to reduce pain and improve
QoL. Surgery can restore the integrity of bones,
but the decision of whether to perform surgery
can be difficult, as the risks may outweigh
benefits of pain reduction and improved func-
tion [6]. Alternatively, percutaneous osteoplasty
(POP) is an effective and safe palliative therapy
to reduce pain and improve QoL [7]. Further,
radiation can improve reduced QoL caused by
painful bone metastases [8]. In addition, previ-
ous work has emphasized the requirement of a
multidisciplinary team (MDT) approach
involving a team of specialists in oncology to
reduce pain and improve patients’ QoL [9].
Local treatment indications have been con-
troversial, and local treatment for lung cancer
patients with bone metastases must be individ-
ually tailored to each patient with consideration
for multiple factors. As there is increasing need
for automatic and accurate analysis for clinical
use, machine learning offers a solution to gen-
erate reasonable generalizations, discover pat-
terns, and enable more accurate decision-
making [10]. Machine learning may facilitate
more effective assessments by physicians [11].
We previously built machine learning models to
predict SREs risk [12]. The purpose of this study
was (1) to evaluate the feasibility and effective-
ness of applying our local treatment algorithm
to reduce chronic pain and improve patients’
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QoL, and (2) to develop and validate machine
learning models for local treatment decision-
making to reduce pain in lung cancer patients
with bone metastases.

METHODS

Patient Selection

This study was approved by the ethics com-
mittee of Shanghai Sixth People’s Hospital
Affiliated to Shanghai Jiaotong University in
October 20, 2016 and was registered in the
Chinese Clinical Trial Registry (No. ChiCRT-
ROC-16009501) in October 20, 2016. Principles
of the Declaration of Helsinki were followed.
Written informed consent was obtained from
all participants in this study.

Inclusion criteria were: (1) age over 18 years,
(2) pathology-proven diagnosis of lung cancer
and radiographical/pathological evidence of
bone metastases, (3) no previous treatment for
bone metastases, and (4) good general condi-
tion, as measured by Eastern Cooperative
Oncology Group (ECOG) performance scores of
0-2 with an estimated survival time of more
than 3 months.

Management Algorithm

Indications for systemic treatments, including
chemotherapy, target therapy, and bone-tar-
geting agents (BTAs), as well as local treatment,
including surgery, POP, and radiation, were
evaluated by an MDT of medical oncologists,
radiation oncologists, interventional radiolo-
gists, orthopedic oncologists, and pain special-
ists. The algorithm is shown in Fig. 1.

Spinal stability was ascertained using Spinal
Instability Neoplastic Scores (SINS) [13], and the
risk of pathological fracture for the appendicu-
lar skeleton was ascertained using the Mirels
scoring system [14]. Surgical procedures fol-
lowed guidelines of the Global Spine Tumor
Study Group and Italian Orthopedic Society
[15-18]. Procedures for POP were introduced by
our MDT in 2012 [7]. Radiation was performed
mainly with 6-MV photons using linear

accelerators. Dose fractionation schedules
included multi-fraction radiation, such as 30 Gy
in ten fractions. Adjuvant therapy-like radiation
[19] was used after surgery or POP to prevent
tumor recurrence.

Informed consent was obtained for all
patients in the study. If local treatment was
performed, informed consent by the patient or
a legal guardian was obtained 24 h before initi-
ation and after thorough explanation of the
methods, potential complications, and alterna-
tive treatments.

Data Collection and Follow-up

Medical records were reviewed to collect clinical
data. The driver gene of lung cancer (primary
lung tissue or bone metastases tissue) and five
differentially expressed proteins of bone
metastases (bone metastases tissue)—enolase 1
(ENO1), ribosomal protein lateral stalk subunit
P2 (RPLP2), calcyphosine (CAPS1), NME/NM23
nucleoside diphosphate kinase 2
(NME1-NME2), and aldehyde dehydrogenase 2
(ALDH2) [20]—were also collected.

Patients were asked to complete a question-
naire that assessed severity of pain using the
mean daily visual analog scale (VAS) [21] and
QoL wusing the European Organization for
Research and Treatment of Cancer Quality of
Life Questionnaire Bone Metastases Module
(EORTC QLQ-BM22) [22, 23] 1 day before and at
1, 6, 12, and 24 weeks after local treatment or
enrollment. VAS at 12 weeks was the main
outcome. Patients were followed for survival
every 3 months.

Cost Valuation

Cost analyses of individual patients were esti-
mated from a payer perspective using health
resource utilization data from patient charts.
Costs of procedures performed during an inpa-
tient stay were assumed to be captured in
diagnosis-related group costs.
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Fig. 1 Flow chart of local treatment algorithm for lung cancer patients with bone metastases
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Model Development

Decision trees (DT) (eXtreme Gradient Boost-
ing, XGBoots), support vector machine (SVM),
and Bayesian neural networks (BNN) were used
to build local treatment decision-making mod-
els. On the basis of our previous research [12],
we selected the following predictor variables:
sex, age, ECOG, VAS, bone metastases character,
extent of bone metastases, visceral metastases,
Frankel classification, and Mirels scale. As
additional predictor variables, we selected lung
cancer pathology, lung cancer driver gene, and
five differentially expressed bone metastasis
proteins. The model output was 0, no local
treatment; or 1, local treatment. The training
set including patients who had improved VAS
and QoL measures after local treatment.

Model Performance

In the training set, we used tenfold cross vali-
dation. The test set consisted of data not asso-
ciated with the training set. Model
discrimination was evaluated by area under the
receiver operator characteristic curves (AUC).
Sensitivity, specificity, and accuracy were used
to evaluate model performance.

Model Validation

The validation subset was used to prospectively
evaluate the accuracy of DT models in predict-
ing whether patients would receive local treat-
ment. DT models made the decision whether to
take local treatment or not. The MDT made the
final decision about which local treatment to
provide to patients and could reject the model’s
decision. Compared with MDT, the AUC, sen-
sitivity, specificity, and accuracy were used to
evaluate model performance.

Statistical Analysis

Stata Corp 2013 (Stata Statistical Software:
Release 13; StataCorp LP, College Station, TX,
USA) and Python Version 3.6 (Python Software
Foundation, Wilmington, DE, USA) were used

to analyze data and build the model. Median
values and ranges were determined for descrip-
tive statistics. Chi-square and Fisher’s exact tests
were used for categorical variables. Student’s
ttests and Mann-Whitney tests were used for
continuous and ordinal variables. Wilcoxon
signed-rank tests were used to compare paired
outcomes at various follow-up times. The
Kaplan-Meier method was used to estimate
survival. A p < 0.05 was considered statistically
significant.

RESULTS

Demographic and Clinical Characteristics

We enrolled 746 patients: the training set
included 513 patients enrolled from October 24,
2016 to June 30, 2018; the test set included 108
patients enrolled from July 1, 2018 to October
31, 2018; and the validation set included 125
patients enrolled from November 1, 2018 to
February 25, 2019. Of these, 161 patients in the
training set, 32 patients in the test set, and 36
patients in the validation set underwent local
treatment. A flow chart of the study is shown in
Fig. 2a. Patient demographics and clinical
characteristics did not significantly differ
among the three datasets as shown in Table 1.
Treatments in training, test, and validation sets
are shown in Fig. 2b-d.

Post-treatment Pain

VAS scores before treatment for all 746 patients
in surgery, POP, radiation, and no local treat-
ment groups were 5.70 £ 1.22, 5.53 £ 1.34,
6.62 £ 1.48, and 3.37 + 1.38, respectively;
scores were highest in the radiation group and
lowest in the no local treatment group
(p <0.05). VAS scores in surgery, POP, and
radiation groups decreased significantly to
4.78 +£1.28, 4.37 £1.36, and 5.39 +1.31,
respectively, at 12 weeks after local treatment
(p < 0.05). VAS scores for patients in the no
local treatment group did not significantly dif-
fer 12 weeks after enrollment. Detailed scores
are shown in Fig. 3a.
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«Fig. 2 Flow diagram of the study (a). Treatments in
training (b), test (c), and validation (d) sets

VAS scores in training, test, and validation
sets all decreased significantly at 12 weeks after
surgery, POP, or radiation (p < 0.05), with no
significant differences among the three sets.
Detailed scores are shown in Fig. 3b-d.

Post-treatment QoL

Pain sites (PS) and pain characteristic (PC)
scores of the QLQ-BM22 before treatment for all
746 patients were highest in the radiation group
and lowest in the no local treatment group
(p < 0.05), while functional interference (FI)
and psychosocial aspects (PA) scores were
highest in the no local treatment group and
lowest in the radiation group (p < 0.05).
Patients had improved QoL scores 12 weeks
after surgery, POP, or radiation (p < 0.05). PS
and PC scores decreased significantly while FI
and PA scores increased significantly at
12 weeks after local treatment in surgery, POP,
and radiation groups (p < 0.05). PS, PC, FI, and
PA scores for patients in the no local treatment
group did not significantly differ 12 weeks after
enrollment. Pre-treatment and post-treatment
subscores in pain and functional domains in
QLQ-BM22 are shown in Fig. 3a.

In training, test, and validation sets, PS and
PC scores decreased significantly while FI and
PA scores increased significantly at 12 weeks
after surgery, POP, or radiation (p < 0.05), with
no significant differences among the three sets.
Detailed scores are shown in Fig. 3b-d.

Cost Valuation

Mean costs during 24 weeks for all 746 patients
in surgery, POP, radiation, and no local treat-
ment groups were $21,172 £+ 8626,
$16,142 £ 5078, $15,899 £ 5527, and
$13,526 £ 5685, respectively; costs were high-
est in the surgery group and lowest in the no
local treatment group (p < 0.05). There were no
significant differences in mean costs among
training, test, and validation sets in the four

treatment groups. Detailed costs are shown in
Fig. 4a and b.

Survival

Median follow-up was 15 months (range
6-41 months). The endpoint of analyses was
overall survival time (OS), and a total of 548
patients died. The OS was 18.03 £ 0.45 months
in all 746 patients, and the 1-year survival rate
was  65.55%. OS was  15.50 + 1.08,
16.72 + 1.04, 16.90 £ 1.08, and
18.25 £+ 0.54 months in surgery, POP, radia-
tion, and no local treatment groups, respec-
tively, with no significant differences. One-year
survival rates were 61.11%, 60.68%, 63.38%,
and 66.73% in surgery, POP, radiation, and no
local treatment groups, respectively, with no
significant differences. OS did not significantly
differ among the three datasets.

Model Development and Validation

The DT model included VAS, bone metastases
character, Frankel classification, Mirels scale,
age, driver gene, and ALDH2 and ENOI1
expression. Compared with the MDT, the DT
model was superior to the other two machine
learning models in predicting whether patients
would receive local treatment, with an AUC of
0.89 for the DT model (95% CI 0.86-0.93), 0.77
for SVM model (95% CI 0.72-0.82), and 0.71 for
BNN model (95% CI 0.66-0.76) (p > 0.05). The
DT model had 89.44% sensitivity, 90.34%
specificity, and 90.06% accuracy.

The DT model was also superior to the other
two machine learning models in the test set,
with an AUC of 0.85 for the DT model (95% CI
0.77-0.94), 0.78 for SVM model (95% CI
0.68-0.80), and 0.68 for BNN model (95% CI
0.57-0.80) (p > 0.05). The DT model had
83.87% sensitivity, 87.01% specificity, and
86.11% accuracy.

The DT model was used for further valida-
tion in clinical use. In the validation set, the
MDT rejected the DT model decision to provide
local treatment for nine patients and not pro-
vide local treatment for five patients. The AUC
for DT was 0.88 (95% CI 0.81-0.96), with
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Table 1 Demographics and clinical characteristics for patients

Training Test Validation p value
Women, n (%) 251 (48.93) 51 (47.22) 62 (49.60) 0.93
Age, mean (SD), years 60.70 (10.34) 59.80 (12.03) 59.87 (11.45) 0.60
ECOG scores, 7 (%) 0.59
0-1 412 (80.31) 1 (84.26) 103 (82.40)
2 101 (19.69) 7 (15.74) 2 (17.60)
VAS scores*, n (%) 0.90
Grade 1 183 (35.67) 40 (37.04) 46 (36.80)
Grade 2 271 (52.83) 56 (51.85) 67 (53.60)
Grade 3 59 (11.50) 12 (1L.11) 12 (9.60)
Opioids use, 7 (%) 0.47
Yes 118 (23.00) 19 (17.59) 8 (22.40)
No 395 (77.00) 89 (82.41) 7 (77.60)
Bone metastases character, 7 (%) 0.79
Lytic 292 (5692) 64 (59.26) 69 (55.20
Blastic 80 (15.59) 7 (1574) 0 (16.00)
Mixed 141 (27.49) 27 (25.00) 36 (28.80)
Extent of bone metastases [24], # 0.88
Soloway 1 183 (35.67) 41 (37.96) 43 (34.40)
Soloway 2 218 (42.50) 45 (41.67) 56 (44.80)
Soloway 3-4 112 (21.83) 2 (20.37) 26 (20.80)
Visceral metastases™, 7 (%) 0.76
Without 315 (61.40) 64 (59.26) 0 (64.00)
With 198 (38.60) 44 (40.74) 45 (36.00)
Frankel classification™*, » (%) 0.82
0 151 (29.43) 33 (30.56) 35 (28.00)
1 3 (0.58) 1(0.93) 1 (0.80)
2 6 (1.17) 2 (1.85) 1 (0.80)
3 10 (1.95) 3 (278) 2 (1.60)
4 35 (6.82) 7 (6:48) 9 (7.20)
5 308 (60.04) 62 (57.41) 77 (61.60)
Mirels scale*™***, n (%) 0.93
0 172 (33.53) 39 (36.11) 40 (32.00)
1 211 (41.13) 42 (38.89) 54 (43.20)
2 102 (19.88) 20 (1852) 24 (19.20)
3 28 (5.46) 7 (6.48) 7 (5.60)
Pathology*****, » (%) 0.90
1 242 (47.17) 54 (50.00) 7 (45.60)
2 97 (1891) 8 (16.67) 5 (20.00)
3 132 (25.73) 6 (24.07) 2 (25.60)
4 0 (3.90) 5 (4.63) 6 (4.80)
5 22 (4.29) 5 (4.63) 5 (4.00)
Driver gene, 7 (%) 0.87
Wild type 202 (39.38) 42 (38.89) 49 (39.20)
Epidermal growth factor receptor (EGFR) mutation 278 (54.19) 57 (52.78) 70 (56.00)
Anaplastic lymphoma kinase (ALK) rearrangement 7 (3.31) 4 (3.70) 4 (3.20)
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Table 1 continued

Training Test Validation p value

Unknown 16 (3.12) S (4.63) 2 (1.60)

ENOL, 7 (%) 091
+ 112 (21.83) 25 (23.15) 26 (20.80)
- 401 (78.17) 83 (76.85) 99 (79.20)

RPLP2, # (%) 0.86
+ 82 (15.98) 19 (17.59) 22 (17.60)
- 431 (84.02) 89 (82.41) 103 (82.40)

CAPSL, 7 (%) 0.94
+ 260 (50.68) 56 (51.85) 62 (49.60)
- 253 (49.32) 52 (48.15) 63 (50.40)

NME1-NME2, 7 (%) 0.59
+ 227 (44.25) 43 (39.81) 58 (46.40)
- 286 (55.75) 65 (60.19) 67 (53.60)

ALDH?2, # (%) 0.69
+ 175 (34.11) 34 (31.48) 46 (36.80)
- 338 (65.89) 74 (68.52) 79 (63.20)

*Pain level on a 10-point scale, with 0 representing no pain and 10 representing maximum pain intensity imaginable. Grade 1, 0-3; grade 2, 4-6; grade 3,

7-10

*Visceral metastases defined as distant metastases, except for BM, including brain metastases

**Frankel classification defined as 0, without spine metastasis; 1, A; 2, B; 3, C; 4, D; 5, E

****Mirels scale defined as 0, without extremity metastasis; 1, 4-6; 2, 7-9; 3, 10-12

****Pathology defined as 1, adenocarcinoma; 2, squamous cell carcinoma; 3, poorly differentiated cancer; 4, large cell carcinoma; 5, small cell carcinoma

86.11% sensitivity, 89.89% specificity, and
88.80% accuracy.

DISCUSSION

Management of bone metastases has been con-
sidered palliative and not associated with
patient prognosis and thus has not been given
much importance in the past. Recently, how-
ever, it has become necessary to initiate bone
management programs concurrently with can-
cer treatment to effectively reduce pain and
improve patients’ QoL.

Similar to previous studies, surgery, POP, or
radiation in this study provided significant pain
relief and improved QoL [6, 8, 25-28]. We
found that pain-related scores can be relieved
quickly, but functional relief was slower than
pain relief, especially in patients who under-
went surgery and radiation. Surgical patients
need to recover from postoperative trauma, and
radiation has a slower effect on the recovery of
mechanical stability. However, we found that

the pain increased after 6 months after treat-
ment, which was related to the characteristics of
bone metastasis. Some patients underwent sec-
ondary local treatment. Breakthrough cancer
pain (BTcP) is defined as “a transitory flare of
pain that occurs on a background of relatively
well-controlled baseline pain” [29]. It occurs in
patients with cancer regardless of chronic pain
management. Typical BTcP episodes are of
moderate to severe intensity, rapid in onset
(min), and of relatively short duration (median
30 min). In our study, local treatment was good
at controlling chronic pain, but can not be rapid
in onset of action.

In this study, we found that our MDT algo-
rithm was effective in providing treatment
decisions that provided significant pain relief
and improved QoL. The mechanical stability,
neurological risk, oncological parameters, and
preferred treatment (MNOP) algorithm [30]
suggests surgery or radiation as the main treat-
ment for spinal metastases. Minimally invasive
approaches such as POP are also recommended
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«Fig. 3 Pre-treatment and post-treatment visual analog
scale (VAS) scores and Quality of Life Questionnaire Bone
Metastases Module (QLQ-BM22) subscores in all patients
(a) and in training (b), test (c), and validation (d) sets.
Unfilled circles indicate not significantly different from
pre-treatment  score (p > 0.05). Filled circles indicate
significantly  different  from  pre-treatment  score
(p <0.05). LT local treatment, POP percutaneous
osteoplasty

by our algorithm. We have treated hundreds of
spinal PF and instabilities with POP instead of
high-risk surgery. We find that patients recover
spinal stability after POP with low morbidity,
and our results here show that mean costs for
spine metastases in the POP group were much
lower than those in the surgery group. However,
we note that POP does not easily restore struc-
tural integrity and weight-bearing for the
appendicular skeleton and that surgery can
quickly restore these functions with less risk. To
prevent PF, we have used preventive surgery or
POP, and our algorithm shows that surgery and
POP are complementary. We prefer POP for
spinal metastases and surgery for appendicular
skeleton metastases.

Our results show that local treatment did not
negatively influence OS for lung cancer patients
with bone metastases. According to some stud-
ies, patients surgically treated for bone metas-
tases survive for less than 10 months [26].
Recently, Tang et al. reported OS of 14 months
in lung cancer patients with spinal metastases,
and patients who underwent surgery had longer
survival [27]. However, our study excluded
patients with a life expectancy of less than
3 months, 92.6% patients received systemic
medical treatments (57.9% for targeted agents),
and Frankel classification in the no local treat-
ment group was almost E, while in Tang’s study
it was A-D, possibly accounting for the longer
survival in our study.

Machine learning models can help guide
treatment decisions. Although the MDT
approach is an effective method to manage
bone metastases, it can be difficult to manage
patients who may develop serious SREs in a
timely manner by holding weekly meetings.

Alternatively our machine learning models
based on routinely available clinical parameters
were constructed for local treatment decision-
making. XGBoost is a novel boosting tree-based
ensemble algorithm that has gained wide pop-
ularity in the machine learning community
[31]. The DT model showed greater accuracy
than SVM and BNN models, and it included
driver genes and that ALDH2 and ENOI1
expression had higher accuracy, which is in line
with current needs for precision medicine. For
ethical reasons, the final decision was still left to
the MDT. However, pain, QoL, mean cost, and
OS of the four treatment groups did not signif-
icantly differ among training, test, and valida-
tion sets. Feasibility and stability of the DT
model were satisfactory, and the DT model was
good at determining whether patients should
receive local treatment in prospective clinical
validation. Thus, the DT model may help clin-
icians decide on local treatment for individual
patients to reduce pain and improve patients’
QoL.

To the best of our knowledge, this is the first
attempt to use machine learning techniques for
local treatment decision-making models in lung
cancer patients with bone metastases. However,
the algorithm cannot completely solve the
problem of patient classification, and some
treatments have not been carried out in our
study, which represents a weakness. For exam-
ple, stereotactic body radiation therapy for
painful spine metastasis shows better results in
local control and pain relief than standard 2D or
3D techniques [30], and recent development of
immune checkpoint inhibitors has fundamen-
tally changed how patients with metastatic lung
cancer are treated [5]. However, machine
learning models could only guide decisions
about whether to apply local treatment or not,
and only the accuracy of the DT model in local
treatment decision-making compared with
MDT was evaluated. However, as more patients
receive local treatment, thus increasing data
availability, we will be able to develop addi-
tional models that can better guide types of
local treatment. Further, this study is limited in
that it involved a single center and the number
of patients in the test and validation sets is
small. A randomized controlled multicenter
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Fig. 4 Mecan costs during 24 weeks in surgery, POP,
radiation, and no local treatment groups (a). Mean costs
during 24 weeks in all patients and in training, test, and
validation sets (b). *Significantly higher cost compared to

trial to compare DT with MDT would be an
effective validation in the future, although
standardizing and homogenizing use of local
treatment in different centers are challenging
problems that remain to be solved.

Training Set

Test Set Validation set

other three group (p < 0.05). *Significantly lower cost
compared to other three group (p < 0.05). LT local
treatment, POP percutancous osteoplasty

CONCLUSION

Local treatment not only had no negative
influence on OS but also provided significant
pain relief and improved QoL in patients in our
study. There were no significant differences in
reducing pain and improving QoL among
training, test, and validation sets. The DT model
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was best at determining whether patients
should receive local treatment. Our machine
learning model using clinical data can help
guide clinicians to make local treatment deci-
sions to reduce pain and improve patients’ QoL.
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