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When describing motion along both the horizontal and vertical axes,

languages from different families express the elements encoding verticality

before those coding for horizontality (e.g., going up right instead of right up).

In light of the motor grounding of language, the present study investigated

whether the prevalence of verticality in Path expression also governs the

trajectory of arm biological movements. Using a 3D virtual-reality setting, we

tracked the kinematics of hand pointing movements in five spatial directions,

two of which implied the vertical and horizontal vectors equally (i.e., up

right +45◦ and bottom right −45◦). Movement onset could be prompted

by visual or auditory verbal cues, the latter being canonical in French

(“en haut à droite”/up right) or not (“à droite en haut”/right up). In two

experiments, analyses of the index finger kinematics revealed a significant

effect of gravity, with earlier acceleration, velocity, and deceleration peaks

for upward (+45◦) than downward (−45◦) movements, irrespective of the

instructions. Remarkably, confirming the linguistic observations, we found

that vertical kinematic parameters occurred earlier than horizontal ones

for upward movements, both for visual and congruent verbal cues. Non-

canonical verbal instructions significantly affected this temporal dynamic:

for upward movements, the horizontal and vertical components temporally

aligned, while they reversed for downward movements where the kinematics

of the vertical axis was delayed with respect to that of the horizontal

one. This temporal dynamic is so deeply anchored that non-canonical

verbal instructions allowed for horizontality to precede verticality only for

movements that do not fight against gravity. Altogether, our findings provide

new insights into the embodiment of language by revealing that linguistic path

may reflect the organization of biological movements, giving priority to the

vertical axis.
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Introduction

English and French speakers can “climb the stairs
backwards” and “monter les escaliers à reculons,” or “click
on the top right corner of a screen” and “cliquer en haut à
droite d’un écran.” These instances express Path, a research
topic that has been extensively studied in cognitive linguistics
and semantic typology. Path refers to the place occupied or the
path followed by an entity (i.e., the Figure) with respect to a
reference entity (i.e., the Ground; Talmy, 1985, 1991, 2000; see
also Imbert, 2012). Path can be characterized by its Axiality,
namely whether it is organized with respect to a vertical (e.g.,
up and down) or horizontal (e.g., backward and forward) axis
(Imbert, 2013). In the above examples, Path is expressed both
on the vertical and horizontal axes and it is noteworthy that
the elements encoding verticality are expressed first, within or
closer to the verb, before those elements encoding horizontal
Path. It would indeed seem odd to “go back the stairs up.”
Investigations in linguistic typology suggest that these instances
may actually reflect a tendency of several languages to favor the
vertical direction over the horizontal one when expressing Path.
In a crosslinguistic comparison, Imbert (2013, 2016) reported
that languages from different language families (from Mayan
to Sinitic languages through Indo-European languages) that
otherwise share little regarding their morphosyntactic rules
show striking similarities in organizing axial Path-encoding
elements. When the Figure moves both along the vertical
and horizontal axes, the morphemes encoding vertical Path
are always closer to the main verb or verb root (i.e., they are
encoded first) than the elements encoding horizontal Path.
Many languages also demonstrate an asymmetry between their
multiple ways of expressing verticality (e.g., above/over, upward,
higher. . .) and the paucity of words expressing locations on
the horizontal and sagittal axes (e.g., to the left/right, in front
of/behind) (Levinson, 2003, p. 46; see also Forker, 2020 for
an asymmetry in demonstratives). Besides, constant spatial
relations between objects along the vertical axis contrast with
the changing relations on the horizontal plane. This asymmetry
may explain why, after reading narratives, participants are
faster to judge the spatial position of objects with respect to a
reference object when they are located on the vertical rather
than the horizontal axis (Bryant et al., 1992).

These typological findings raise the question of whether
the primacy of verticality in language may find an echo in
other related domains such as biological movement. Large
empirical evidence reveals that language and action do not
only co-exist but share functional commonalities. The most
obvious instantiations of this interplay are probably co-verbal
manual gestures. Gestures spontaneously accompany speech
irrespective of the culture and linguistic background, even
in congenitally blind speakers (Iverson and Goldin-Meadow,
1998), and would ease lexical access and word retrieval in

children with language impairment (Iverson and Braddock,
2011) and patients with aphasia (Hadar et al., 1998; Lanyon
and Rose, 2009; see also Krauss et al., 2000). Healthy gesturing
speakers have been shown to omit necessary spatial information
in their verbal descriptions of pictures more often than
non-gesturing speakers (Melinger and Levelt, 2004; see also
Graham and Heywood, 1975 for more elaborated verbal
expressions in speakers who were not allowed to gesture).
The existence of co-verbal gestures in every culture and
language has bolstered the hypothesis that language evolved
from manual gestures (Arbib, 2002; Corballis, 2002, 2010;
Gentilucci and Corballis, 2006). Convincing evidence has shown
that language and manual actions indeed entertain a close
relationship. Developmental studies revealed that fine and
gross motor skills are predictive markers of concurrent and
subsequent language development in infancy and childhood
(Bates and Dick, 2002; Iverson, 2010; Gonzalez et al.,
2019). The onset of reduplicated babbling coincides with
increased rhythmic arm movements (Locke et al., 1995; Iverson
et al., 2007). The use of deictic gestures toward objects
and of gesture-plus-word combinations furthermore predicts
the production of words and of two-word combinations,
respectively (Iverson and Goldin-Meadow, 2005; Iverson et al.,
2008). Motor and language development therefore go hand in
hand, which may account for the frequent co-occurrence of
motor and language disorders in atypical development (Hill,
2001).

Studies in adults also highlight the intimate links between
language and manual actions. Hand and mouth motor
representations occupy close cortical territories (Farnè et al.,
2002) and most noticeably, speech perception and production
do not only increase the excitability of the oro-facial motor
cortical region (Roy et al., 2008; D’Ausilio et al., 2012) but
also that of the hand motor representation (Flöel et al., 2003;
Meister et al., 2007). Nice parallels between syllable production
and execution/observation of arm movements have also been
reported (Higginbotham et al., 2008; Gentilucci et al., 2009;
see also Bernardis et al., 2008 for evidence in 9- to 11-
month-old infants). Grasping a large object, with respect to
a smaller one, while pronouncing the syllable /ba/ induces
larger lip opening and increases the vowel second formant
(Gentilucci, 2003; Gentilucci et al., 2004a,b). Reciprocally,
finger opening is larger when participants simultaneously
articulate the open vowel /a/ as opposed to closed vowel /i/
(Gentilucci and Campione, 2011). Other studies furthermore
revealed systematic correspondence between grip types and
articulatory gestures (Vainio et al., 2013, 2014, 2017; Tiainen
et al., 2017). Beyond speech perception and production, a
large body of behavioral and neuroimaging studies has also
demonstrated that semantic processing of language is grounded
in the sensorimotor system (see Willems and Hagoort, 2007;
Fischer and Zwaan, 2008; Pulvermüller and Fadiga, 2010
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for reviews; see also Roy et al., 2013; Brozzoli et al., 2019;
Thibault et al., 2021 for evidence for syntax). The motor
cortex resonates somatotopically during processing of words
or sentences describing bodily actions (Hauk et al., 2004;
Tettamanti et al., 2005; Boulenger et al., 2009; Desai et al., 2010)
and in turn, action words can affect the kinematics of movement
execution (Boulenger et al., 2006; Fargier et al., 2012; see also
Frak et al., 2010). Compatibility effects between the direction
evoked by sentences and the direction of manual responses have
also been reported (Glenberg and Kaschak, 2002; Gianelli et al.,
2011; Aravena et al., 2012). Interestingly, words have also been
shown to modulate low-level sensory perception. In a recent
study, we revealed the facilitatory influence of reading verbs
denoting tactile perception on the speed of detection of tactile
stimulations (Boulenger et al., 2020). In the visual domain,
Meteyard et al. (2007) nicely demonstrated that upward and
downward motion verbs reduced perceptual sensitivity for the
detection of incongruent vertical motion (see also Richardson
et al., 2003; Zwaan et al., 2004; Kaschak et al., 2005; Meteyard
et al., 2008). Verticality is central to perception – of our body
configuration and of our environment – and to action, especially
in relation to gravity. Indeed, knowing which way is up or down
is fundamental to handle gravitational forces and thus maintain
verticality for posture and safe locomotion. When performing
upward or downward movements toward objects, we also excel
in continuously controlling for gravity loads of our upper limb
and of the objects for optimal motor execution (White et al.,
2020 for a review).

Given the intertwining of language and action, we here
hypothesized that the same rules may govern the trajectory
of arm movements and the expression of Path in language,
namely by prioritizing the vertical axis over the horizontal
one. To test this, we tracked the kinematics of arm pointing
movements in five different spatial directions in a 3D virtual-
reality setting. Crucially for our purpose, targets to be
pointed could be located up right or bottom right in the
virtual environment, namely they implied equal horizontal and
vertical vectors. Through fine-grained analysis of the finger
kinematics in the X, Y, Z coordinate frame, we assessed
whether parameters such as acceleration and velocity peaks
occur earlier on the vertical (Z) than on the horizontal axis
(X) when movements imply both directions. In one block,
visual (non-verbal) cues indicated the targets to point, allowing
to test the primacy of verticality in biological movements
irrespective of language. In another block, auditory verbal
instructions were provided to assess the potential imprint
of language on action. Verbal instructions could be either
congruent (“en haut à droite”/“up right”) or incongruent (“à
droite en haut”/“right up”) with the organization of Path-
encoding elements in French. We examined whether and
how non-canonical linguistic Path expression that do not
prioritize verticality affects movement kinematics with respect
to canonical instructions.

Experiment 1

Materials and methods

Participants
Twenty French native healthy adults [13 females, mean

age ± SD = 20.4 ± 1.76 years old, age range (18–24 years old)]
took part in this experiment. All were right-handed according
to the Edinburgh handedness inventory (Oldfield, 1971) and
had normal or corrected-to-normal vision. They reported
no language, motor or any other neurological disorders.
Participants were naive to the purpose of the study. The protocol
conformed to the declaration of Helsinki and was approved by a
national ethics committee (Comité de Protection des Personnes
Sud-Est II). All participants signed an informed consent before
the experiment and they were paid for their participation.

Apparatus and stimuli
The experiment took place at the Neuro-immersion research

facility,1 using virtual reality (VR) and a VICON R© optical-
passive motion capture system. VICON R© uses cameras to track
the position of reflective markers illuminated by near infrared
(NIR) light source with a submillimeter accuracy (between
0.06 and 0.15 mm in static condition, and 0.2/0.3 mm in
dynamic condition; Windolf et al., 2008; Merriaux et al., 2017).
We used a setup of 7 camera Bonita (1-megapixel resolution)
with the software Vicon Tracker R©, that allowed to acquire
participants’ motion with a frequency of 250 Hz. Participants
were equipped with a virtual-reality headset (Oculus Rift2;
resolution: 960 × 1,080 per eye, frequency: 75 Hz, field of view:
106◦). Two reflective markers were placed on their right arm:
one on their wrist and one on the tip of their index finger.
A third marker was placed on their right shoulder for calibration
(see Procedure). The experiment was implemented within Unity
(Version 5.2.2; Unity Technologies, San Francisco, CA, USA)
and Oculus Runtime (Oculus Configuration Utility version
1.10, SDK 0.8.0.0) software. These were used to create the VR
environment with an avatar, display experimental stimuli on
the head-mounted display (HMD) and through a loudspeaker
(for verbal instructions), and record the exact position of all
tracked elements (markers on the wrist and index finger).
The experiment was run on a computer with an Intel Core
i7 processor, Nvidia 1080 8G graphics card, and Windows
10 operating system. The scene was rendered in Oculus Rift
DK2 software (Oculus Configuration Utility version 1.10, SDK
0.8.0.0).

Targets for pointing movements were five virtual 3D light-
gray spheres (diameter 25 mm) located on the right part of a
virtual plane situated in front of the participants, 45 cm from

1 https://www.crnl.fr/en/plateforme/neuro-i

2 https://www.oculus.com
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FIGURE 1

Illustration of the experimental setup. The participant was
equipped with an Oculus Rift and was required to point to one of
five spherical targets in the virtual environment. All targets were
equidistant from the starting position and located up, up right
(+45◦), right, bottom right (–45◦) or at the bottom. In the visual
block, the target to point was indicated by a change of color of
the sphere from gray to yellow (as illustrated on the right panel
for the +45◦ target), whereas in the verbal block the instruction
was delivered auditorily. Feedback was provided by coloring all
spheres in green (see the bottom left panel for another trial) for
correct pointing, and in red for incorrect pointing.

their sternum. These spherical targets were equidistant from
15 cm from a virtual central starting point (sphere of the same
diameter) also located in front of the participants at the level of
their chin. In the X, Y, Z coordinate frame, targets were displayed
at five different spatial positions with respect to the horizontal
axis (X): 90◦ (up), +45◦ (up right), 0◦ (right), −45◦ (bottom
right), and bottom (−90◦; Figure 1).

The experiment was divided in two blocks. In one block,
the instructions on which target to point were visual, namely
a change of color of the target. In another block, verbal
instructions were delivered auditorily. There was a total of seven
verbal instructions. Three of them were recorded (44.1 kHz,
mono, 16 bits) by a male French native speaker in a sound-
attenuated booth using ROCme software (Ferragne et al., 2012):
“en haut” (up; stimulus duration = 340 ms), “à droite” (right;
471 ms) and “en bas” (bottom; 396 ms). The four remaining
instructions, “en haut à droite” (up right), “en bas à droite”
(bottom right), “à droite en haut” (right up) and “à droite
en bas” (right bottom), were created by concatenating the
three previously recorded stimuli using Praat (Boersma and
Weenik, 2012). This prevented any effect of stimulus duration
or pronunciation (e.g., intonation) in the comparison between
canonical (“en haut à droite” and “en bas à droite”) and non-
canonical (“à droite en haut” and “à droite en bas”) expression
of Path in French. All sound files were finally normalized at a
mean intensity of 70 dB with Praat.

Procedure
The participants were sitting on a chair in the experimental

room and were equipped with the Oculus Rift. A calibration
phase first aimed at verifying that the avatar (female or male
depending on the participant) was well-aligned with the markers
placed on the participant’s wrist and shoulder as well as adjusted
to their height. To determine the arm length of the avatar,
participants were asked to point to a position in front of them,
45 cm distant from their chest. The orientation of the avatar’s
hand was determined based on the marker on the participant’s
index finger. Participants were then asked to point to the central
starting position and to each of the five targets sequentially,
ensuring all were at a reachable distance. This allowed the
collection of the 3D position of the targets (based on the index
finger marker). The experiment could then start. Half of the
participants started with the visual block and the other half
with the verbal block. For each block, written instructions were
displayed through the VR headset.

In the visual block, each trial ran as follows: participants
were asked to point to the central starting position, which
triggered the display of a yellow circular gauge (with no ticks).
Participants were required to stay in this position until the
gauge swept from 0◦ to 360◦ for a duration of 2 s, after which
the kinematic recordings started. After a variable delay ranging
between 700 and 1000 ms, one of the five spherical targets
changed color from gray to yellow, indicating the participants to
point to it with their right index finger as fast and accurately as
possible. The kinematic recordings ended once the participants
reached the target. For a movement to be considered as correct,
the participants had to point to the instructed target within 2 s
from the go signal (change of color of the target), in a 50 mm
zone around the target center and stay on the target for at least
500 ms. Anticipated movements (i.e., movement onset before
the go signal), wrong targets, targets not reached within the
allocated time of 2 s and targets reached but without maintaining
the pointing for the required 500 ms were considered as
incorrect trials. Feedback was provided by coloring all spheres in
green (for 500 ms) for correct pointing, and in red for incorrect
pointing. All spheres then became gray again, indicating that the
next trial could begin. Note that each trial only started once the
participants were in the starting position, thus allowing them to
rest if needed. Each sphere (in each of the five spatial positions)
was presented as a target 15 times, resulting in a total of 75 trials
for this visual block. The trials were pseudo-randomized, with
no more than two consecutive trials with a target at the same
location. Two breaks were proposed to the participants (with
equiprobable targets in each of the three sub-blocks).

The procedure for the verbal block was globally similar.
After the participants pointed to the central starting position
and the circular gauge ended, a verbal instruction was delivered
after a variable delay (700 to 1000 ms) through a loudspeaker
(mini speaker model JBL GO Portable, HARMAN International
Industries, Northridge, CA, USA) placed on a table in front
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of the participants. The offset of the sound file triggered an
immediate change of color of the starting point from gray to
yellow, indicating the participants to point toward the instructed
target as fast and accurately as possible. Participants were
allowed a maximum of 5 s to point to the target, the remaining
procedure was similar to that of the visual block. Each of the
seven verbal instructions was delivered 15 times in a pseudo-
randomized order, for a total of 105 trials.

Trials for which participants anticipated the movements,
reached the correct targets but did not validate them (by not
pointing to them for at least 500 ms), or did not reach any
target within the 2 or 5 s period (for visual and verbal blocks,
respectively) were reintroduced at the end of each block. This
ensured a sufficient number of trials for subsequent analysis and
represented 16.9% of the trials in this experiment.

All participants underwent a short visual practice block (5
trials, 1 trial per target location) before starting the experiment
to become familiar with the apparatus and procedure. The
experiment ended with a recording of the 3D spatial position
of the spherical targets using the same procedure as previously
described. In total, the experiment lasted about 45 min.

Kinematic analyses
Due to signal loss, kinematic analyses were performed

on the trajectories of 16 participants’ index finger. For each
pointing movement, we extracted and analyzed off-line several
kinematic parameters with a custom-made MATLAB program.
We analyzed the latencies and amplitudes of the acceleration,
velocity and deceleration peaks for the index finger’s tangential
profile, namely from the combination of all three X, Y, Z axes. In
order to assess the temporal dynamic of pointing movements
toward the +45◦ and −45◦ targets, we additionally measured
the latencies of the index finger’s acceleration, velocity and
deceleration peaks on the horizontal (X) and vertical (Z) axes
separately. This was done for the six conditions of interest,
namely the +45◦ and −45◦ visual conditions, and the +45◦ and
−45◦ congruent and incongruent verbal conditions.

To control for the appropriateness of our approach, we
compared the kinematic values obtained for displacement on
the horizontal axis (X) and those on the vertical axis (Z) with
the kinematic values measured for the tangential displacement,
for movements performed to the right, bottom and up targets in
the visual block. As expected, data showed a major contribution
of the X axis to the tangential profile (T) for pointing movements
directed to the right target. Conversely, the Z-axis mainly
contributed to the tangential profile of movements toward the
targets located upward and downward (see Table 1).

Statistics
We performed two types of statistical analyses to test

our hypothesis of the primacy of verticality in movements.
The first was based on the tangential profile of the pointing
movements and aimed at determining the effect of Gravity

(targets located at −45◦ vs. +45◦) for the visual block and
for the verbal block, the main effects of Gravity, Congruency
(congruent vs. incongruent instructions) and their interaction
in a 2 × 2 full factorial design. The visual and verbal blocks
were analyzed separately but the analyses were similar. We
first performed repeated measures permutation tests (Basso
and Finos, 2012; Finos and Basso, 2014), with 5,000 random
samplings, on each of the six kinematic parameters, namely
the latency and amplitude of the acceleration, velocity, and
deceleration peaks. The analysis of all those parameters is crucial
to understand the unfolding movement and identify the motor
program. To account for the multiplicity of these six univariate
tests and control for the probability of false positives, we then
conducted a non-parametric Fischer combination of these tests
(Pesarin, 2001) to assess the effects of Gravity (in the visual
and verbal blocks) and of Congruency (in the verbal block
only) in a multivariate perspective. This test corresponds to a
non-parametric MANOVA with repeated measures.

The second analysis aimed at examining for each of
our six conditions of interest (i.e., −45◦ visual, +45◦ visual,
−45◦ congruent, +45◦ congruent, −45◦ incongruent, and +45◦

incongruent), the temporal dynamic between the vertical (Z-
axis) and horizontal (X-axis) components of the pointing
movement and their relation to the tangential profile (T). For
each condition, we calculated the difference (delta) between
the latencies of the acceleration, velocity and deceleration
peaks extracted from the X and from the tangential profiles
(i.e., delta XT). We computed the same calculations for the
Z profile with respect to the tangential one (i.e., delta ZT).
We also directly compared the horizontal X and vertical Z
components (i.e., delta XZ). This was done for the visual and
verbal blocks separately. We then conducted the same univariate
and multivariate analyses as described above for the three peak
latencies, using the deltas as response variables.

In the following section, we first report the results of the
tangential profile analysis (calculated on means of the latency
and/or amplitude peaks) and then the results of the temporal
dynamic analysis (calculated on deltas between the three axes).
Statistical results for the Fischer combination tests are provided
in the text whereas results of univariate analyses for each
kinematic parameter are reported in the Figures’ legends.

Results

Tangential profile
Gravity affected movement tangential profile,
Congruency did not

Pointing to a target located at +45◦ differed from
pointing to a target at −45◦ both for visual and congruent
verbal instructions. As can be seen from Figure 2A,
movements performed toward +45◦ upon visual instructions
were characterized by an acceleration peaking earlier
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TABLE 1 Latencies and amplitudes of the velocity peaks for tangential (T), vertical (Z) and horizontal (X) displacement of the participants’ index
finger when pointing to visually cued targets located on the right, upwards and downwards.

Target location Vel. Lat.
T (ms)

Vel. Amp.
T (mm/s)

Vel. Lat.
Z (ms)

Vel. Amp.
Z (mm/s)

Vel. Lat.
X (ms)

Vel. Amp.
X (mm/s)

Right 242 554 209 99 246 536

Up 221 537 222 518 253 74

Bottom 233 607 232 591 254 80

Vel. Lat., velocity peak latency; Vel. Amp., velocity peak amplitude. Values in bold indicate major contributions of the Z and X axes to the tangential profile for upward/downward targets
and right targets respectively.

(mean ± SD = 107 ± 23 ms) and of higher amplitude
(4,742 ± 1,624 mm/s2, t = 2.95; p = 0.0068) than
movements toward −45◦ (latency: 137 ± 21 ms; amplitude:
4,096 ± 1,265 mm/s2). Earlier velocity and deceleration peaks
were also found for the +45◦ compared to the −45◦ condition
(velocity: 219 ± 45 vs. 250 ± 41 ms, respectively; deceleration:
344 ± 62 vs. 353 ± 44 ms, respectively). The combined test
performed on the p-values extracted for the six kinematic
parameters revealed a highly significant effect of Gravity for the
visual block (Fisher combination: K = 26.38; p = 0.001).

Albeit slightly less evident, similar effects of Gravity were
observed in the verbal block, reaching significance on the time
to acceleration and velocity peaks (Figure 2B). The two peaks
occurred earlier in the +45◦ verbal condition with respect to
the −45◦ one (acceleration: 127 ± 28 vs. 172 ± 61 ms; velocity:
254 ± 37 vs. 291 ± 55 ms for +45◦ and −45◦, respectively). The
combined effect of Gravity was significant (Fisher combination:
K = 19.81; p = 0.012).

The factor Congruency did not significantly affect
movement unfolding (for univariate tests, all p-values > 0.11;
Fisher combination: K = 6.39; p = 0.36).

To sum up, in the visual and verbal blocks alike, fighting
against gravity to reach the +45◦ target yielded to anticipated
peaks of possibly higher amplitude with respect to movements
at −45◦.

Temporal dynamic
Visual and verbal congruent conditions: Vertical
parameters occurred before horizontal ones for +45◦

targets
−45◦ visual

The horizontal profile X was aligned with the tangential
one, with no significant difference between the three kinematic
parameters (all p-values > 0.4; Fisher combination: K = 1.27;
p = 0.87; Figure 3A left panel for deceleration, and
Supplementary Figure 1A for acceleration and velocity). The
vertical acceleration profile showed a later peak both with
respect to the tangential (delta TZ = 18.29 ms) and the
horizontal components (delta XZ = 17.25 ms). Velocity and
deceleration on Z did not differ neither from the tangential nor
from the horizontal profiles (all p-values > 0.2), resulting in
non-significant Fisher combinations (T vs. Z: K = 5.8; p = 0.1;
Z vs. X: K = 6.06; p = 0.09).

+45◦ visual
The latencies of the acceleration, velocity and deceleration

peaks extracted from the horizontal profile (X) occurred
significantly later than those calculated on the tangential
profile T (delta TX for acceleration: 12.90 ms; velocity:
19.70 ms; deceleration: 10.98 ms; Figure 3A right panel
and Supplementary Figure 1A). The combined effect on
these three kinematic parameters for the comparison between
X and T was significant (Fisher combination: K = 12.95;
p = 0.0052). None of the peak latencies extracted from the
vertical axis (Z) significantly differed from the tangential profile
(all p-values < 0.2; Fisher combination: K = 2.86; p = 0.41).
Accordingly, the velocity and deceleration peaks occurred
earlier on the vertical axis with respect to the horizontal one
(delta XZ for velocity: 22.83 ms; deceleration: 16.62 ms; see
Figure 3A and Supplementary Figure 1A). The combined
effect for the XZ comparison also reached significance (Fisher
combination: K = 11.81, p = 0.01).

−45◦ congruent verbal
Confirming the pattern obtained in the visual block, the

latencies of the acceleration, velocity, and deceleration peaks as
observed on the X profile did not significantly differ from those
calculated on the tangential one (all p-values > 0.2 for univariate
tests; Fisher combination: K = 2.22; p = 0.64; Figure 3B left
panel for deceleration and Supplementary Figure 1B for the
two other parameters). The same pattern was observed for the
peak latencies on Z (all p-values > 0.3; Fisher combination:
K = 1.40; p = 0.76). Similarly, we found no difference between
the X and Z latencies on any of the three kinematic parameters
(all p-values > 0.09; Fisher combination: K = 3.50; p = 0.31).

+45◦ congruent verbal
The acceleration peak extracted from the horizontal profile

occurred significantly later than the tangential one (delta
TX = 17.21 ms; Supplementary Figure 1B; Fisher combination
for T vs. X: K = 5.56; p = 0.1). On the contrary, as shown
in Figure 3B (right panel) and Supplementary Figure 1B, the
velocity and deceleration peaks on the vertical axis occurred
earlier (delta TZ = 11.30 and 12.78 ms, respectively) than those
of the tangential profile, resulting in a significant combined
effect over the three peak latencies (Fisher combination:
K = 10.30; p = 0.012). Coherent with this pattern, the kinematic
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FIGURE 2

Gravity effect on the movement tangential profile for (A) visual and (B) congruent verbal instructions in Experiment 1. The bold lines represent
peak latencies (in milliseconds) of the acceleration (left panel), velocity (middle panel), and deceleration (right panel) peaks averaged over all
participants for movements toward –45◦ and +45◦ targets. Standard errors are illustrated by rectangles. Each dot represents the mean peak
latency for one participant in the corresponding condition. Asterisk indicates a significant difference between conditions. (A) Upon visual
instructions, acceleration, velocity, and deceleration peaked earlier for movements toward +45◦ than –45◦ targets (t = –7.72; p = 0.0004;
t = –5.51; p = 0.0004; t = –2.42; p = 0.030, respectively). (B) For congruent verbal instructions (“en haut à droite”/up right and “en bas à
droite”/bottom right), earlier acceleration and velocity peaks were found in the +45◦ than in the –45◦ condition (t = –6.65; p = 0.0004 and
t = –4.03; p = 0.0028, respectively).

parameters on the vertical axis occurred earlier than those
measured on the horizontal one (delta XZ for acceleration:
20.84 ms; velocity: 19.80 ms; and deceleration: 14.67 ms), with
a significant combined effect (Fisher combination: K = 11.38;
p = 0.012; Figure 3B and Supplementary Figure 1B).

Incongruent verbal conditions: Vertical and horizontal
parameters aligned for +45◦ targets
−45◦ incongruent verbal

We did not observe any misalignment from the tangential
profile neither on the horizontal nor on the vertical axes
(for univariate analyses, all p-values > 0.1). However, the
deceleration peak occurred significantly earlier on the vertical
than on the horizontal axis (delta XZ = 20.55 ms). None of
the Fisher combinations resulted significant (T vs. X: K = 2.70;
p = 0.51; T vs. Z: K = 2.59; p = 0.43; X vs. Z: K = 5.1; p = 0.14).

+45◦ incongruent verbal
Similar to −45◦, none of the profiles significantly differed

from each other (all p-values > 0.08; (Fisher combinations:
T vs. X: K = 4.6; p = 0.19; T vs. Z: K = 4.91; p = 0.16; X
vs. Z: K = 6.4; p = 0.1). In other words, hearing incongruent

instructions mildly perturbed the temporal dynamic of the
movement, resulting in an alignment of the horizontal and
vertical kinematic parameters with the tangential profile.

Overall, when gravity was not an issue, namely when
participants pointed to the −45◦ target, irrespective of the
condition (visual, congruent verbal, or incongruent verbal), the
horizontal and vertical parameters remained aligned with the
tangential and did not differ from each other. Most importantly,
under visual and canonical verbal instructions, when the
movement was directed against gravity, toward the +45◦ target,
the horizontal profile exhibited delayed peaks with respect to
the tangential profile. On the contrary, kinematic parameters
occurred earlier on the vertical axis with respect to the tangential
and/or the horizontal profile. Non-canonical verbal instructions
disturbed the organization of +45◦ movements, resulting in an
alignment between the horizontal and vertical axes both with the
tangential and among them.

In this first experiment, verbal instructions that were
incongruent regarding Path expression in French (“à droite
en haut”) did not affect the general tangential profile of the
movement, however they subtly altered the temporal dynamic
linking the horizontal and vertical axes. Nevertheless, the effect
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FIGURE 3

Temporal dynamic of the movements toward –45◦ (left panel) and +45◦ (right panel) targets upon (A) visual and (B) congruent verbal
instructions in Experiment 1. Latencies (in milliseconds) of the deceleration peak along the horizontal (X), tangential (T), and vertical (Z) axes are
reported. The bold lines represent peak latencies averaged across participants for each axis, rectangles illustrate the standard errors. Each dot
stands for the mean peak latency for one participant in the corresponding condition. Significant difference between conditions are represented
by *. (A) When pointing toward +45◦ visually cued targets, the deceleration peak occurred later on X than on T (t = 2.35; p = 0.032) and Z
(t = –2.91; p = 0.016). (B) For movements toward +45◦ targets following verbally congruent instructions, earlier deceleration was found on Z
than on T (t = –2.66; p = 0.018) and the effect approached significance for the comparison between Z and X (t = –2.01; p = 0.06).

was not sufficient to entirely reverse the kinematic pattern with
respect to the congruent verbal condition. Kinematic parameters
on the horizontal axis were indeed not found to occur earlier
than those on the vertical or the tangential profiles. To further
assess whether movement temporal dynamic is flexible and
shows plasticity for language or whether it is immune to it, we
conducted a second experiment which was comparable to the
first one in all respects except in the timing of the movement
with respect to verbal instructions. Whereas in Experiment 1 the
go signal for the pointing movement was a visual cue delivered
after verbal instruction offset, participants were not required

to wait for the instructions’ offset to start their movement
in Experiment 2.

Experiment 2

Materials and methods

Participants
A new group of 19 French native healthy volunteers [12

females, 24 ± 2.7 years old, age range (21–30 years old)] was
recruited to participate in Experiment 2. None of them had
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FIGURE 4

Gravity effect on the movement tangential profile for (A) visual and (B) verbally congruent instructions in Experiment 2. Latencies of the
acceleration (left panel), velocity (middle panel), and deceleration (right panel) peaks are reported for movements toward –45◦ and +45◦ targets
(see Figures 2, 3 for conventions; ∗ indicates a significant difference between conditions). (A) For visually cued targets, acceleration, velocity, and
deceleration peaked earlier in the +45◦ than in the –45◦ condition (t = –10.07; p = 0.0004; t = –6.56; p = 0.0004; and t = –5.16; p = 0.0004,
respectively). (B) Upon congruent verbal instructions, the three kinematics parameters also occurred earlier when participants pointed toward
+45◦ compared to –45◦ targets (acceleration: t = –4.79; p = 0.0012; velocity: t = –5.17; p = 0.0008; deceleration: t = –3.59; p = 0.0004).

participated in the first experiment. The participants fulfilled
the same inclusion criteria as defined in Experiment 1 and they
were naive to the purpose of the study. All participants signed
an informed consent prior to the experiment, which conformed
to the declaration of Helsinki and was approved by a national
ethics committee (Comité de Protection des Personnes Sud-
Est II). The participants received monetary compensation for
their participation.

Apparatus and stimuli
The apparatus and stimuli were identical to those used

in Experiment 1.

Procedure
The procedure of the visual block was exactly the same as

in the first experiment. Only the procedure of the verbal block
was slightly different regarding the go signal for the pointing
movement. After the gauge ended and a variable delay of 700
to 1,000 ms, the auditory verbal instruction was delivered to
the participants. This was the go signal, namely they were
required to point to the designated target as fast and accurately
as possible. This procedure therefore differed from that of

Experiment 1 in that participants did not have to wait until the
very end of the verbal instruction to perform their movements.
The remaining procedure was comparable to that of Experiment
1. The % of trials reintroduced at the end of the visual and
verbal blocks due to anticipated movements, unvalidated targets
or targets unreached within the allocated time was 10.9%.

Kinematic and statistical analyses
The kinematic and statistical analyses were similar in all

respects to those in Experiment 1.

Results

Tangential profile
Gravity affected movement tangential profile

When considering the effect of Gravity, we observed a
similar pattern to that of Experiment 1 (Figure 4A for the
visual block and Figure 4B for the verbal block). In both
the visual and verbal blocks, pointing to targets located
at +45◦ led to significantly earlier acceleration compared
to movements toward −45◦ targets (mean ± SD for the
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FIGURE 5

Verbal congruency effect on the movement tangential profile in Experiment 2. Latencies (in milliseconds) of the acceleration (left panel),
velocity (middle panel), and deceleration peaks (right panel) were longer when pointing toward both upward (+45◦) and downward (–45◦)
targets upon incongruent (“à droite en haut”/right up and “à droite en bas”/right bottom) with respect to congruent (“en haut à droite”/up right
and “en bas à droite”/bottom right) verbal instructions (acceleration: t = –3.40; p = 0.003; velocity: t = –3.05; p = 0.005; deceleration: t = –2.21;
p = 0.031). The conventions are the same as in Figure 2. The symbol ∗ indicates a significant difference between conditions.

visual block: 110 ± 17 vs. 141 ± 30 ms; verbal block:
151 ± 34 vs. 220 ± 66 ms for +45◦ and −45◦, respectively).
Similarly, velocity and deceleration peaks occurred earlier
for +45◦ targets than for −45◦ ones (visual block velocity:
241 ± 38 vs. 265 ± 43 ms and deceleration: 395 ± 60 vs.
416 ± 61 ms for +45◦ and −45◦, respectively; verbal block
velocity: 293 ± 52 vs. 362 ± 71 ms and deceleration: 452 ± 86 vs.
509 ± 88 ms, respectively). In addition, for the visual and verbal
blocks alike, the acceleration peak was of higher amplitude
in the +45◦ condition than in the −45◦ condition (visual:
4,118 ± 1,157 vs. 3,518 ± 1,220 mm/s2, t = 4.67; p = 0.0004 and
verbal: 3,700 ± 859 vs. 3,059 ± 932 mm/s2, t = 5.65; p = 0.0004).
The velocity peak amplitude was also higher for +45◦ than for
−45◦ movements but only in the verbal block (503 ± 75 vs.
474 ± 81 mm/s, respectively, t = 2.54; p = 0.01), the effect being
marginally significant in the visual block (t = 2.01; p = 0.055).
Similarly, the effect on the deceleration peak amplitude only
approached significance in both blocks (visual: t = −2.01; verbal:
t = −1.97; both p < 0.063). The combined effect of Gravity for
the six kinematic parameters was significant for each of the two
blocks (visual block: Fisher combination: K = 36.98, p = 0.0008;
verbal block: Fisher combination: K = 36.21; p = 0.0008).

Non-canonical verbal instructions delayed movement
tangential profile

As illustrated in Figure 5, congruency significantly affected
all the parameters’ latency, resulting in delayed peaks for
non-canonical verbal instructions (acceleration: 225 ± 62 ms;
velocity: 361 ± 72 ms; and deceleration: 510 ± 79 ms)
with respect to canonical ones (acceleration: 186 ± 50 ms;
velocity: 327 ± 61 ms; and deceleration: 480 ± 87 ms).
The combined effect was also significant (Fisher combination:
K = 19.72; p = 0.0052). The effects of Congruency were
furthermore increased in the +45◦ condition with respect to
−45◦ as underlined by a significant interaction between the

two factors on the acceleration and velocity peaks (Interaction
Gravity × Congruency for acceleration latency: t = −2.61;
p = 0.009; velocity latency: t = −2.49; p = 0.016; deceleration
amplitude: t = −2.06; p = 0.048; combined effect: Fisher
combination: K = 15.71; p = 0.020).

As in Experiment 1, moving toward the +45◦ target
was effortful, which led to an anticipation of the kinematic
parameters possibly accompanied by an increase in their
amplitude. Most interestingly, incongruent, non-canonical
verbal instructions delayed movement kinematic parameters:
the acceleration, velocity and deceleration peaks were reached
later in the incongruent condition. This effect was however
stronger for pointing movements performed against the gravity,
that is to a target located at +45◦.

Temporal dynamic
Visual and verbal congruent conditions: Vertical
parameters occurred before horizontal ones when
fighting against gravity
−45◦ visual

When participants pointed to targets at −45◦ upon
visual instructions, the horizontal profile was aligned with
the tangential one with no significant difference in the
timing of their kinematic parameters (all p-values > 0.68 for
univariate analyses; T vs. X Fisher combination: K = 0.78;
p = 0.95; see Figure 6A left panel for deceleration and
Supplementary Figure 2A for acceleration and velocity).
The vertical acceleration profile showed a later peak both
with respect to the tangential (delta ZT = 21.57 ms) and
the horizontal profiles (delta XZ = 23.52 ms). Velocity
and deceleration on Z did not significantly differ neither
from the tangential profile nor from the horizontal axis (all
p-values > 0.4). Despite the effects were limited to one out of
the three kinematic parameters, both Fisher combination tests
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FIGURE 6

Temporal dynamic of the movements toward –45◦ (left panel) and +45◦ (right panel) targets upon (A) visual and (B) congruent verbal
instructions in Experiment 2. Latencies (in milliseconds) of the deceleration peak along the horizontal (X), tangential (T), and vertical (Z) axes are
reported (see Figure 3 for conventions; ∗ indicates a significant difference between conditions). (A) In the visual block, pointing toward +45◦

targets resulted in later deceleration on X than on T (t = 2.29; p = 0.038) and on Z (t = –2.68; p = 0.016). (B) For +45◦ targets upon verbally
congruent instructions, the deceleration peak occurred earlier on Z than on X (t = –4.18; p = 0.0008).

reached significance (Z vs. T: K = 8.70; p = 0.0096; Z vs. X:
K = 7.86; p = 0.016).

+45◦ visual
As shown in Figure 6A (right panel) and Supplementary

Figure 2A, for movements toward +45◦ visual targets, the
acceleration, velocity, and deceleration peaks extracted from the
horizontal profile (X) occurred significantly later than those
calculated on the tangential profile (delta XT for acceleration:

13 ms; velocity: 11.33 ms; and deceleration: 11.31 ms). The
combined effect on the three peak latencies was significant
(Fisher combination: K = 15.66; p = 0.0004). None of the
latencies extracted from the vertical axis (Z) differed from
the tangential profile (all p-values > 0.16; Fisher combination:
K = 2.66; p = 0.49). The direct comparison between X
and Z revealed that the three kinematic parameters peaked
significantly earlier for the vertical profile with respect to the
horizontal one (delta XZ for acceleration: 13.76 ms; velocity:
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14.85 ms; deceleration: 14.21 ms; and Fisher combination:
K = 13.58; p = 0.002).

−45◦ congruent verbal
The latencies of the acceleration, velocity and deceleration

peaks on the X profile did not significantly differ from those
calculated on the tangential profile (all p-values > 0.2 for
univariate tests; Fisher combination: K = 1.75; p = 0.72;
Figure 6B left panel for deceleration and Supplementary
Figure 2B for the other parameters). The same pattern was
observed for the Z peak latencies (all p-values > 0.5; Fisher
combination: K = 1.23; p = 0.85). No difference was observed
between the latencies of the three peaks when comparing the
horizontal and vertical components (all p-values > 0.4; Fisher
combination: K = 1.47; p = 0.77).

+45◦ congruent verbal
Two out of the three kinematic parameters on the horizontal

axis were significantly delayed with respect to the tangential
profile (delta XT for acceleration: 15.15 ms; velocity: 19.17 ms),
yielding a significant combined effect (Fisher combination:
K = 15.94; p = 0.0004; Figure 6B right panel and Supplementary
Figure 2B). Conversely, on the vertical axis, the velocity peak
occurred 10 ms earlier than on the tangential profile. The
combined test for the comparison between Z and T also
revealed a significant effect (Fisher combination: K = 8.78;
p = 0.011). Finally, the three kinematic parameters on the
vertical profile occurred significantly earlier than those recorded
on the horizontal profile (delta XZ for acceleration: 20.87 ms;
velocity: 29.12 ms; deceleration: 21.95 ms; Fisher combination:
K = 20.69; p = 0.0004).

Incongruent verbal conditions: Incongruency altered
the temporal dynamic of the movement
−45◦ incongruent verbal

The acceleration peak on the horizontal axis occurred 10 ms
earlier than the one on the tangential profile; yet the Fisher
combination did not reach significance (K = 5.14; p = 0.12;
Figure 7A for deceleration and Supplementary Figure 3 for
the other kinematic parameters). On the vertical axis, the
acceleration, velocity and deceleration peaks occurred later
than the tangential ones (delta ZT for acceleration: 30.83 ms;
velocity: 26.57 ms; and deceleration: 25.77 ms). This resulted in
a significant combined effect (Fisher combination: K = 19.31;
p = 0.0004). In line with this pattern and in contrast to all the
previously reported results, the three kinematic parameters on
the vertical profile were delayed with respect to those recorded
on the horizontal axis (delta XZ for acceleration: 56.37 ms;
velocity: 28.31 ms; deceleration: 35.76 ms; Fisher combination:
K = 18.05; p = 0.0004).

+45◦ incongruent verbal
In the incongruent +45◦ condition, we found only two

differences between the kinematic parameters of the three

profiles. With respect to the tangential profile, the deceleration
peak was delayed by 23.65 ms for the horizontal axis (Figure 7B)
and by 7.67 ms for the acceleration peak on the vertical axis
(Supplementary Figure 3 right panel). The horizontal temporal
dynamic did not differ from the vertical one (all p-values > 0.07
for univariate tests). None of the combined tests reached
significance (T vs. X: K = 5.62; p = 0.1; T vs. Z: K = 5.7; p = 0.1;
X vs. Z: K = 5.11; p = 0.14).

When scrutinizing the temporal dynamic along the
horizontal and vertical axes, the patterns observed for visual and
canonical verbal instructions accurately reproduced the results
in the first experiment. When participants pointed downward
to the −45◦ target, the misalignment with the tangential profile
was absent or anecdotal. In striking contrast, moving upward to
the +45◦ target induced a delay on the horizontal profile, while
the vertical axis remained anchored onto the temporal dynamic
exhibited by the tangential profile. When an incongruent
verbal instruction was delivered, movements fighting against
gravity (+45◦) were mildly perturbed, mostly leading to an
alignment between the horizontal and vertical parameters with
the tangential component and among them. This pattern
replicated the results from Experiment 1. Most importantly,
movements directed downward (−45◦ target) following a non-
canonical verbal instruction were deeply affected in their
temporal dynamic: the kinematics of the vertical profile was
markedly delayed with respect to that of both the horizontal and
tangential profiles.

Discussion

In light of the embodiment of language in action, the present
study sought to investigate whether the primacy of verticality in
Path expression across various languages is also reflected in the
organization of biological movements. To this aim, we examined
the kinematics and temporal dynamic of pointing movements
toward spatial locations that feature horizontal and vertical
components alike (up right +45◦ and bottom right −45◦). As
a second aim, we tackled whether and how language can affect
this organization by assessing the influence of non-canonical
verbal instructions that do not prioritize verticality (“à droite en
haut”/right up) on movement kinematics.

Results from two experiments in two groups of healthy
adults first showed a massive effect of gravity on movement
kinematics. Upon both visual and canonical verbal instructions,
kinematic parameters of movements directed to +45◦ targets
were significantly anticipated with respect to movements at
−45◦, as reflected by earlier acceleration, velocity and/or
deceleration peaks. The amplitude of the acceleration and
velocity peaks was furthermore higher in the +45◦ condition
depending on the experiment and block (visual or verbal). This
pattern of results agrees with previous findings of kinematic
asymmetries for upward and downward movements of the
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FIGURE 7

Effect of verbal incongruency on the temporal dynamic of movements toward (A) –45◦ and (B) +45◦ targets in Experiment 2. Latencies (in
milliseconds) of the deceleration peak extracted from the horizontal (X), tangential (T), and vertical (Z) axes when hearing an incongruent verbal
instruction (A: “à droite en bas”/right bottom; B: right panel: “à droite en haut”/right up; see Figure 6 for conventions; ∗ indicates a significant
difference between conditions). (A) When pointing downward toward –45◦ targets, deceleration peaked later on Z than on T (t = 3.13;
p = 0.003) and on X (t = 3.00; p = 0.002). (B) For movements upward to +45◦ targets, the deceleration peak occurred later on X than on T
(t = 2.42; p = 0.024), yet the Fischer combination test on all parameters was not significant (T vs. X: K = 5.62; p = 0.1).

upper limb (Papaxanthis et al., 1998, 2003; Le Seac’h and
McIntyre, 2007; Berret et al., 2008; Crevecoeur et al., 2009;
Yamamoto et al., 2019; Poirier et al., 2020). Gentili et al. (2007)
showed shorter duration and higher amplitude of acceleration
for pointing movements toward targets located upward vs.
downward, whereas similar profiles were observed for left-
right movements. Gaveau and Papaxanthis (2011) reported
similar duration for up and down movements but different
temporal dynamic of acceleration profiles, the latter being
performed faster. Interestingly, such kinematic differences
attenuate in microgravitational environments (Papaxanthis
et al., 2005; Gaveau et al., 2016). Anticipated acceleration
and/or velocity peaks possibly combined with higher peak
amplitudes are indicative of more effortful movements. Along
this line, previous work demonstrated acceleration peak of
shorter latency when participants reached and grasped heavy
objects as compared to lighter ones (Roy et al., 2013; Martel et al.,
2020). Our findings thus confirm that performing movements
upward, against gravitational forces that constantly pull the
body downward, is costly and implies different motor planning
strategies with respect to downward movements. Pointing
to upward targets indeed requires to integrate gravitational
constraints so as to optimize the motor commands while saving
muscle effort (Gentili et al., 2007; Gaveau et al., 2016, 2021).
Interestingly, typological analyses of motion events in different
languages reveal that the effort expended by the moving Figure
to overcome gravity is typically coded vertically (Łozińska,
2021). The saliency of verticality in language is also attested by

the frequent usage of conceptual metaphors that express abstract
ideas along the vertical dimension (Lakoff and Johnson, 1999,
2003; Gallese and Lakoff, 2005; Cian, 2017). In this regard, pitch
is metaphorically conceptualized in the vertical space in most
Western European languages and some non-Indo-European
languages, with high pitch associated with upward movements
and upper space, and low pitch associated with downward
movements and lower space (Eitan and Timmers, 2010; Clark
et al., 2013; Fernandez-Prieto et al., 2017; Holler et al., 2022; see
Walker et al., 2010 and Dolscheid et al., 2014 for evidence in
prelinguistic infants, and Shayan et al., 2011 and Dolscheid et al.,
2013 for thickness/pitch association in languages such as Farsi
and Turkish). In a speeded pitch discrimination task, Rusconi
et al. (2006) revealed faster and more accurate responses to
decide that tones where higher or lower in frequency than a
reference tone when participants pressed an upper or lower
key, respectively. Morett et al. (2022) furthermore reported
that when English speakers learned pitch contours of Mandarin
lexical tones with pitch gestures and dot motion congruent
with the conceptual metaphor of pitch, performance was better
than when learning involved incongruent pitch gestures or
motionless dots (see also Morett and Chang, 2015). Pitch-
varying stimuli have also been shown to influence visual motion
perception (Maeda et al., 2004): ambiguous motion stimuli were
perceived as moving upward when presented together with
ascending pitch pure tones, but downward when combined
with descending pitch sounds (see also Connell et al., 2013 for
effects of observing upward or downward manual gestures).
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Metaphors anchoring concepts along the vertical dimension are
also frequently used for emotional valence: words associated
with positive experiences are quasi-universally mapped onto
the upper space whereas the lower space is more dedicated
to negative experiences (Meier and Robinson, 2004; Kövecses,
2008; Sasaki et al., 2016; Cian, 2017; but see Wnuk and Ito,
2021 for metaphors mapping up to undesirable and down to
desirable events in Mlabri, an Austroasiatic language of Thailand
and Laos). Generating words associated with disappointment
has for instance been shown to decrease the posture height
of participants more than generating words related to pride
(Oosterwijk et al., 2009). Similarly, power has been shown to be
represented along a vertical plane with powerfulness at the top
(Jiang and Henley, 2012). Participants were faster to judge if a
social group was more powerful (e.g., “masters” vs. “servants”)
when the powerful group was located in the upper part of the
screen (Schubert, 2005). In line with the grounding of language
in action hypothesis and since effort is socially valued, the
association “positive is up” could be rooted in the cost of upward
movements.

Crucially for our purpose, analysis of the temporal dynamic
of arm pointing movements highlighted a remarkably consistent
pattern across our two experiments and across the visual and
verbal blocks. When participants reached targets located at +45◦

from their starting position, irrespective of whether instructions
were visual or canonical, kinematic parameters extracted from
the horizontal X-axis were systematically delayed from those
on the tangential profile. On the contrary, parameters on the
vertical Z-axis either aligned with or occurred earlier than those
measured on the tangential component. Most notably, direct
comparison between the temporal dynamic of the vertical and
horizontal axes for the two conditions under scrutiny (+45◦

visual and +45◦ congruent verbal) revealed that displacement
on the vertical plane was always anticipated with respect to
displacement on the horizontal plane. This finding strikingly
parallels observations from semantic typology that languages
from different families express elements encoding vertical
Path before those elements encoding horizontal displacement
(Imbert, 2013). Studies in various languages also revealed
asymmetries between verbs that express motion along the
vertical and the horizontal axes. In Polish and Russian
for instance, verbs for vertical spatial relations are more
frequently coded in verbal descriptions than verbs for horizontal
motion. This may stem from the perceptual difference between
horizontal and vertical biological movements, the latter not
being canonical among most animate entities, which may in turn
affect linguistic structures (Łozińska, 2018, 2021). The strategies
for expressing vertical relations also diverge from those used
for horizontal relations, both in verb- and satellite-framed
languages. Verb-framed languages (e.g., Spanish and French)
typically encode Path in the main verb, whereas satellite-
framed languages (e.g., English and Polish) do it in grammatical
elements (i.e., preverbs or particles) with Manner of motion

being expressed in the main verb (Talmy, 2000). However,
studies have revealed that when it comes to vertical motion,
the pattern diverges from what would be expected from the
languages’ typology. Speakers indeed tend to encode vertical
motion in Manner verbs in verb-framed languages and in Path
verbs in satellite-framed languages (Naigles et al., 1998; Łozińska
and Pietrewicz, 2018).

Our kinematic results provide novel evidence for shared
processes between biological movements and language by
revealing that both functions organize trajectories following
the same rule, namely by giving priority to verticality. As
already outlined, this primacy of the vertical axis may pertain
to the fundamental importance of gravity in our everyday life
(White et al., 2020). Senot et al. (2005) for instance reported
that participants adjusted their motor response to catch a ball
depending on motion direction with respect to the vertical
plane: movement started earlier when the ball came from
above rather than from below. Gravity also strongly affects the
perception of biological motion so that inverting the stimuli
upside down alters accurate motion recognition (Troje and
Westhoff, 2006; Wang et al., 2022). The present study suggests
that verticality is so deeply anchored in our brain that it shapes
action and language similarly. In agreement with previous
typological reports on the verbal description of motion events,
we show that when performing upward pointing movements
that imply both horizontal and vertical vectors, priority is given
to displacement along the vertical axis. It is noteworthy that
this pattern was only observed for movements fighting against
gravity, the temporal dynamic being markedly different for
−45◦ movements. In this condition, parameters extracted from
the horizontal and vertical profiles were indeed aligned with
those from the tangential one. These results are reminiscent
of previous studies showing differential effects for up and
down movements. Crevecoeur et al. (2009) found stronger
effects of hypergravity when participants moved upward than
downward. In the field of psycholinguistics, Meteyard et al.
(2007) reported contrasting results depending on the direction
of motion: whereas listening to incongruent motion-related
words increased response times to detect upward motion in
visual stimuli, response times were decreased for downward
motion.

To assess the potential imprint of language on action, we
finally examined how non-canonical verbal instructions that
do not obey the primacy of verticality affected movement
kinematics. No effect was found on the tangential profile in
Experiment 1 when the pointing movement was triggered
after the offset of the incongruent verbal condition. However,
in the second experiment, namely when participants could
start their movement while the verbal instruction was still
ongoing, our findings revealed a significant effect of verbal
congruency on this same tangential profile: movements
performed in response to incongruent instructions displayed
delayed kinematic parameters. The differential effects on
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tangential profiles may result from the difference in the
timing of lexico-semantic access between the two experiments:
participants had fully accessed the verbal instruction at
movement onset in Experiment 1 while lexico-semantic
processing was still ongoing in Experiment 2, thus interfering
with concurrent movement execution. This agrees with previous
work showing that word and sentence processing can influence
simultaneous motor responses (as observed on the tangential
profile) and underlines the crucial importance of the relative
timing between linguistic and motor tasks for the cross-talk
between the two to occur (Gentilucci and Gangitano, 1998;
Gentilucci et al., 2000; Borreggine and Kaschak, 2006; Boulenger
et al., 2006, 2008; Zwaan and Taylor, 2006; Meteyard et al.,
2007; Kaschak and Borreggine, 2008; Nazir et al., 2008). As
an alternative, the influence of verbal instructions on the
movement tangential profile might be restricted to a limited
time-window. The potential effect of incongruency would
therefore have been canceled out when participants had to wait
for the offset of the verbal stimuli to start their movement.
However, this interpretation is unlikely for two reasons. First,
the incongruency effect on the global structure of the movement
(i.e., tangential profile) in Experiment 2 was still observed on
the deceleration peak (at a mean latency of ∼500 ms from
movement onset), arguing against a short-lived phenomenon.
Second, non-canonical verbal instructions affected, although
in a different form, the movement temporal dynamic along
the horizontal and vertical axes in both Experiments 1 and 2.
Overall our findings therefore suggest that non-canonical verbal
instructions may affect two levels of movement execution: while
the tangential profile could resist non-canonical instructions
provided they were not concurrent with movement execution,
the fine-grained temporal dynamics linking the different axes
revealed to be most sensible to verbal instructions.

Convincing evidence exists regarding congruency effects
between words referring to verticality (e.g., climb) and either
their position in space (e.g., upper space) or vertical movements
of the body (e.g., upward movement; Zwaan and Yaxley,
2003; Brookshire et al., 2010; Casasanto and Dijkstra, 2010;
Dudschig et al., 2015; Lachmair et al., 2016; Globig et al., 2019).
These effects also hold for metaphorical meaning. Evaluation
of the positive (e.g., hero) or negative (e.g., liar) valence
of words is faster if words are displayed at the top or the
bottom of the screen, respectively (Meier and Robinson, 2004).
In the so-called action compatibility effect, Santana and de
Vega (2011) furthermore showed faster responses to judge
sentences such as “The pressure gas made the balloon rise”
(literal) and “His talent for politics made him rise to victory”
(metaphorical) when the direction of the motor response
matched the direction in the motion verbs. Finally, in a study
using electroencephalography (EEG), words referring to upper
or lower spatial positions either literally (e.g., ceiling/ascend
or floor/descend) or metaphorically (e.g., power/inspire, or
defeat/poverty) elicited more positive evoked brain responses

when accompanied by incongruent manual movements than
by congruent ones (Bardolph and Coulson, 2014). For literal
words, this effect occurred early after word onset (∼200–
300 ms), suggesting stronger motor activity to access word
meaning in the incompatible condition. This is in line with
the time-course of action word lexico-semantic processing
and of motor/language interference found in previous work
(Pulvermüller et al., 1999; Hauk and Pulvermüller, 2004;
Boulenger et al., 2006). Effects for metaphorical words occurred
later, after initial access to meaning (from 500 to 700 ms
after word onset), which the authors interpreted as reflecting
additional cognitive cost to integrate words associated with
incongruent vertical motion (see Brouwer et al., 2012).

The second major finding regarding our congruency effect
pertains to the temporal dynamic of the movement. As a
reminder, in both experiments, upon visual and canonical verbal
cues, kinematic parameters from the vertical Z-axis always
occurred before those from the horizontal X-axis. Remarkably,
when participants heard a non-canonical verbal instruction, this
pattern was no longer observed. For movements toward +45◦

targets (up right), parameters of the vertical and horizontal
profiles became aligned with those of the tangential upon
hearing of “à droite en haut” (right up). But the most striking
effects were obtained when participants pointed to targets
located bottom right, at −45◦. In this condition, and only
in this condition, hearing a verbal instruction that was not
canonical with the primacy of verticality in motion description
(“en bas à droite” right bottom) completely inverted the
temporal dynamic of the movement. Acceleration, velocity and
deceleration peaks along the vertical axis occurred later than
those along the horizontal axis. In other words, when priority
was no longer given to verticality in language, the vertical
axis stepped aside in favor of the horizontal axis to follow
the temporality of the verbal instruction. This finding first
substantiates the flexibility of the motor system that has been
reported in studies varying the effects of gravity (see White
et al., 2020 for a review) as well as in the previously described
studies examining interactions with language (Gentilucci and
Gangitano, 1998; Gentilucci et al., 2000; Boulenger et al.,
2006). Most notably, our data suggest that the motor system
may be more permeable to incongruency in linguistic Path
expression when movements are performed downward than
upward. As previously stated, upward movements require more
energy and effort to counteract gravitational forces for optimal
motor performance (Gentili et al., 2007; Gaveau et al., 2016).
The predominance of the vertical axis with respect to the
horizontal one in the temporal dynamic of +45◦ movements
is deeply grounded, as highlighted in our two experiments.
Accordingly, a non-canonical verbal instruction can only affect
this dynamic to a limited extent, not to the point of totally
reversing it: differences between the three axes of the kinematic
profile are erased. In other words, when hearing “à droite
en haut” (right up), parameters along the vertical axis do no
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longer precede those along the horizontal axis but they are
not sufficiently delayed so as to peak later. On the contrary,
downward movements, going in the direction of gravity, require
less effort and do not show the same temporal asymmetries as
upward movements in the case of visual and canonical verbal
cues (i.e., alignment of the vertical and horizontal axes with
the tangential profile). This condition may therefore appear
more permeable to changes in the verbal expression of Path:
hearing “à droite en bas” (right bottom) leads to anticipated
kinematic parameters along the horizontal profile with respect
to the vertical one. To put it differently, only movements that
do not fight against gravity allow for verticality to come after
horizontality in case of non-canonical verbal instructions. Such
findings raise the intriguing question of whether some of the
world’s languages show flexibility in the order of horizontal and
vertical morphemes when encoding a downward Path.

Conclusion

In conclusion, the present study reaffirms the constraints
gravity impose on biological movements, thus echoing the
typological differences in vertical and horizontal motion
descriptions. Most importantly, we provide first evidence to our
knowledge for the primacy of vertical encoding in the execution
of hand pointing movements, as reported in linguistic typology
on Path expression. Finally, we demonstrate that following non-
canonical verbal instructions prioritizing the horizontal axis, the
movement temporal organization may reverse as long as fighting
gravity is no longer the priority. Overall our findings shed new
light on the embodiment of language by revealing that linguistic
Path may reflect the organization of biological movements.
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SUPPLEMENTARY FIGURE 1

Temporal dynamic of the movements toward −45◦ and +45◦ targets
upon (A) visual and (B) congruent verbal instructions, for the
acceleration (left panel) and velocity (right panel) peaks in Experiment 1.
Latencies (in milliseconds) of the peaks along the horizontal (X),
tangential (T), and vertical (Z) axes are reported. The bold lines represent
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peak latencies averaged across participants for each axis, rectangles
illustrate the standard errors. Each dot stands for the mean peak latency
for one participant in the corresponding condition. Asterisk indicates a
significant difference between the conditions. (A) Upon visual cues,
when participants pointed toward −45◦ targets, acceleration peaked
later on Z than on X (t = 3.10; p = 0.011) and T (t = 2.98; p = 0.014). For
+45◦ targets, later acceleration and velocity peaks were found on X than
on T (t = 2.11; p = 0.030 and t = 3.78; p = 0.0024, respectively). The
velocity peak furthermore occurred earlier on Z than on X (t = −3.69;
p = 0.004). (B) For congruent verbal instructions, effects were only seen
for +45◦ targets: acceleration peaked later on X than on T (t = 2.15;
p = 0.045) and Z (t = −2.69; p = 0.020). The velocity peak was found to
occur earlier on Z than on both X (t = −3.12; p = 0.009) and T
(t = −3.46; p = 0.004).

SUPPLEMENTARY FIGURE 2

Temporal dynamic of the movements toward −45◦ and +45◦ targets
upon (A) visual and (B) congruent verbal instructions, for the
acceleration (left panel) and velocity (right panel) peaks in Experiment 2.
Latencies (in milliseconds) of the peaks along the horizontal (X),
tangential (T) and vertical (Z) axes are reported (see Supplementary
Figure 1 for conventions; ∗ indicates a significant difference between
conditions). (A) In the visual block, for −45◦ targets, the acceleration
peak occurred later on Z than on X (t = 5.03; p = 0.0008) and T (t = 3.63;
p = 0.0004). For +45◦ targets, acceleration and velocity peaked later on

X than on T (acceleration: t = 2.72; p = 0.01; velocity: t = 3.19;
p = 0.0004, respectively) and Z (acceleration: t = −2.65; p = 0.015;
velocity: t = −2.75; p = 0.005). (B) For congruent verbal instructions,
differences between conditions were only found for +45◦ targets:
acceleration and velocity peaked later on X than on T (acceleration:
t = 3.58; p = 0.0032; velocity: t = 3.88; p = 0.0004) and Z (acceleration:
t = −3.84; p = 0.0016; velocity: t = −4.58; p = 0.0008). In addition, the
velocity peak occurred earlier on Z than on T (t = −3.10; p = 0.003).

SUPPLEMENTARY FIGURE 3

Effect of verbal incongruency on the temporal dynamic of movements
toward −45◦ (left panel) and +45◦ (right panel) targets in Experiment 2.
Latencies (in milliseconds) of the acceleration (top panel) and velocity
(bottom panel) peaks extracted from the horizontal (X), tangential (T)
and vertical (Z) axes are reported (see Supplementary Figure 2 for
conventions; ∗ indicates a significant difference between conditions).
Left panel: for movements toward −45◦ targets following incongruent
verbal instructions, both acceleration and velocity peaked earlier on Z
than on T and X (for T: acceleration: t = 3.85; p = 0.0008; velocity:
t = 3.30; p = 0.0016; for X: acceleration: t = 3.70; p = 0.002; velocity:
t = 2.87; p = 0.0036). On the other hand, the acceleration peak
occurred earlier on X than on T (t = −2.54; p = 0.023). Right panel: for
movements toward +45◦ targets, the acceleration peak showed longer
latency on Z with respect to T (t = 3.85; p = 0.0008) but the Fischer
combination test did not reach significance (T vs. Z: K = 5.7; p = 0.1).
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