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Inefficient co-feeding transmission 
of Borrelia afzelii in two common 
European songbirds
Dieter J. A. Heylen1, Hein Sprong2, Aleksandra Krawczyk2, Natalie Van Houtte1, 
Dolores Genné3, Andrea Gomez-Chamorro3, Kees van Oers4 & Maarten J. Voordouw3

The spirochete bacterium Borrelia afzelii is the most common cause of Lyme borreliosis in Europe. 
This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, 
several field studies have recovered larval Ixodes ricinus ticks infected with B. afzelii from songbirds 
suggesting successful transmission of B. afzelii. We reviewed the literature to determine which songbird 
species were the most frequent carriers of B. afzelii-infected I. ricinus larvae and nymphs. We tested 
experimentally whether B. afzelii is capable of co-feeding transmission on two common European bird 
species, the blackbird (Turdus merula) and the great tit (Parus major). For each bird species, four naïve 
individuals were infested with B. afzelii-infected I. ricinus nymphal ticks and pathogen-free larval ticks. 
None of the co-feeding larvae tested positive for B. afzelii in blackbirds, but a low percentage of infected 
larvae (3.33%) was observed in great tits. Transstadial transmission of B. afzelii DNA from the engorged 
nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these 
spirochetes were not viable. Our study suggests that co-feeding transmission of B. afzelii is not efficient 
in these two songbird species.

The tick-borne spirochete bacterium Borrelia afzelii is the most common etiological agent of Lyme borreliosis 
(LB) in Europe1–3. This pathogen is transmitted by Ixodes ricinus ticks and is adapted to infect rodent reser-
voir hosts3–7. In these hosts, B. afzelii establishes a long-term, systemic infection that facilitates high rates of 
host-to-tick transmission6,8–11. In contrast to bird-adapted Borrelia species such as B. garinii and B. valaisiana, 
experimental infection studies with blackbirds, pheasants, and great tits have shown that B. afzelii is not able to 
establish a systemic infection in these bird species12–14. The ability of B. afzelii to infect rodent but not avian hosts 
(and vice versa for the bird-adapted Borrelia species) appears to be mediated by the vertebrate complement sys-
tem15,16. Thus, the general consensus is that B. afzelii is unable to use avian hosts to infect new ticks1–3,17.

Recent field studies on birds have questioned this consensus of whether B. afzelii is strictly incompatible 
with avian hosts. Many species of birds are frequently exposed to B. afzelii-infected I. ricinus nymphs18–24. More 
importantly, B. afzelii-infected larval ticks have been recovered from a number of bird species including Fringilla 
coelebs L., Troglodytes troglodytes L., Parus major L., Turdus merula L., and Turdus iliacus L. (see Table 1). Given 
that vertical transmission of LB pathogens is thought to be rare in Ixodes ticks25–27, these observations suggest that 
these larval ticks acquired B. afzelii spirochetes from avian hosts.

Co-feeding transmission is one strategy by which B. afzelii might infect larval ticks feeding on avian hosts. 
This mode of transmission occurs when infected and uninfected ticks feed in close spatial and temporal proximity 
on the same host28–30. A number of studies have documented co-feeding transmission of B. afzelii on competent 
rodent reservoir hosts28,31–34. The observation that this mode of transmission can occur in the absence of a sys-
temic infection raised the hypothesis that co-feeding transmission could allow Borrelia pathogens to evade the 
hostile immune system of otherwise incompetent hosts29,30,35. For example, co-feeding transmission of B. afzelii 
and B. garinii has been documented on ungulates, which are believed to be refractory to systemic infection36,37. 
An experimental infection study using a Japanese strain of B. garinii demonstrated co-feeding transmission on 
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laboratory mice38. However, an alternative explanation for this study is that this strain actually belonged to the 
closely related but rodent-adapted B. bavariensis, as this species was recently shown to be widespread in Asia, 
including Japan39.

The purpose of the present study was to test whether B. afzelii can use co-feeding transmission to infect  
I. ricinus larval ticks on two different species of songbird: the blackbird (Turdus merula) and the great tit (Parus 
major). We chose these two songbird species because they are common in Europe, are often exposed to immature 
I. ricinus ticks in nature, and they are highly competent reservoir hosts for bird-adapted Borrelia genospecies. 
The blackbird can amplify B. garinii, B. valaisiana and B. turdi24,40,41 and the great tit can amplify B. garinii12. In 
addition, we performed a literature review to determine how often songbirds carry B. afzelii-infected immature 
I. ricinus ticks in nature.

Results
Blackbird experiment.  In the blackbird experiment, each of the four birds was infested with 11–12 nymphs 
before being infested with 40–50 co-feeding larvae 24 hours later. The challenge nymphs had been randomly 
selected from a population where the percentage of infected nymphs was 68.1% (47 infected/69 total). For the 
blackbirds, the nymphal and larval attachment rates (mean ±​ standard deviation) were 93.7 ±​ 12.5% per bird and 
96.5 ±​ 4.7% per bird, respectively. A total of 20 engorged challenge nymphs and 128 engorged co-feeding larvae 
were recovered (mean ±​ standard deviation: 5.0 ±​ 0.8 nymphs per bird and 32 ±​ 12 larvae per bird). The engorged 
challenge nymphs were allowed to moult into adult ticks, which were tested using qPCR to determine whether 
the birds had been exposed to B. afzelii. A total of 17 challenge nymphs and 90 co-feeding larvae were tested for 
the four blackbirds (Table 2).

Two of the four blackbirds produced 2 and 4 infected adult ticks (Table 2) indicating that they were properly 
challenged. The presence of B. afzelii in 6 adult ticks suggests that there was nymph-to-adult transtadial trans-
mission but we do not know whether these spirochetes were dead or alive. The other two birds produced 2 and 4 
uninfected adult ticks (Table 2). Given that the estimated proportion of infected challenge nymphs was 0.681, the 
probability that these two birds would produce 6 uninfected adult ticks is (1–0.681)6 =​ 0.001. Our method of esti-
mating nymphal attachment suggests that 9 and 11 challenge nymphs attached to these two birds. The probability 
that these two birds were infested with at least one B. afzelii-infected nymph is therefore very high (0.9999659 
and 0.9999965, respectively). Thus we are confident that all four birds encountered at least one B. afzelii-infected 
nymph. However, none of the 90 xenodiagnostic larval ticks (tested as engorged larvae or as flat nymphs) that had 
co-fed with the challenge nymphs tested positive for B. afzelii (Table 2).

All ticks that had fed on the blackbirds and that had tested positive for B. afzelii on the qPCR were sequenced 
with respect to the ospC gene and the 5S-23S (rrfA-rrlB) intergenic spacer (IGS) region gene. We obtained 3 ospC 

Bird Species

Ixodes ricinus larvae Ixodes ricinus nymphs

# studies reporting 
B. afzelii infections

# birds 
tested

# ticks 
tested

# infected 
ticks

# studies reporting 
B. afzelii infections

# birds 
tested

# ticks 
tested

# infected 
ticks

Anthus trivialis 1 (53) 120 85 4

Carduelis cabaret 1 (22) ** 5 1

Carduelis chloris 1 (19) 1 3 1

Coccothraustes coccothraustes 1 (53) 2 2 1

Erithacus rubecula 2 (52,61) 124 38* 8 5 (19,22,61,73,83) 316 366 11

Fringilla coelebs 1 (53) 37 42 1 2 (19,53) 52 50 6

Locustella naevia 1 (73) 2 5 1

Motacilla cinerea 1 (73) 3 1 1 1 (73) 3 9 2

Parus major 2 (73,75) 187 266 3 4 (19,20,73,75) 220 403 15

Phoenicurus phoenicurus 1 (22) ** 38 1

Phylloscopus trochilus 1 (22) ** 37 2

Prunella modularis 5 (19,22,24,73,83) 87 430 27

Saxicola rubetra 1 (22) ** 2 1

Sylvia atricapilla 1 (24) 16 18 1

Sylvia communis 2 (53,73) 12 13 4

Sylvia curruca 1 (22) ** 22 2

Troglodytes troglodytes 1 (83) 4 5 1

Turdus iliacus 1 (61) 19 4 1 2 (53,61) 28 60 5

Turdus merula 1 (61) 11 2 1 7 (19,22–24,53,61,73) 141 1009 35

Turdus philomelos 6 (19,22,24,52,53,73) 131 436 11

Turdus viscivorus 1 (53) 2 2 1

Table 1.   Borrelia afzelii infections have been found in Ixodes ricinus larvae and nymphs feeding on many 
different species of birds. Data are from a literature search that included 19 publications that report on Borrelia 
genospecies in bird-derived ticks. *One study did not report on the total number of larvae that were screened, 
therefore this number is an under-estimation. **Study did not report on the total number of captured birds.
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sequences and 5 IGS sequences and all of them belonged to B. afzelii. This sequencing work confirms that the 
nymphs used to challenge the blackbirds were infected with B. afzelii.

Great tit experiment.  In the great tit experiment, each of the four birds was infested with 11–12 nymphs 
before being infested with 40–50 co-feeding larvae 24 hours later. The challenge nymphs had been randomly 
selected from a population where the percentage of infected nymphs was 91.5% (130 infected/142 total). For 
the great tits, the nymphal and larval attachment rates (mean ±​ standard deviation) were 58.3 ±​ 21.5% per bird 
and 85.6 ±​ 9.8% per bird, respectively. A total of 16 engorged challenge nymphs and 115 engorged co-feeding 
larvae were recovered (mean ±​ standard deviation: 4.0 ±​ 2.7 nymphs per bird and 28.8 ±​ 6.8 larvae per bird). The 
engorged challenge nymphs were either tested directly or were allowed to moult into adult ticks. A total of 16 
challenge nymphs and 90 co-feeding larvae were tested for the four great tits (Table 2).

Analysis of the challenge ticks showed that all four great tits had been exposed to B. afzelii (2, 3, 8, and 2 
infected ticks per bird; Table 2). Three of the 76 xenodiagnostic larval ticks (tested as engorged larvae) that had 
co-fed with the challenge nymphs tested positive for B. afzelii, but the pathogen was not detected in any of the 
14 nymphs (moulted from the engorged larvae) (Table 2). Four of the five adult ticks obtained from three birds 
tested positive for B. afzelii based on the qPCR (Table 2), but the culture of these ticks in BSK-II medium did not 
yield any viable spirochetes.

Summary of the infection experiments.  Overall, the B. afzelii-infection rates in co-feeding larvae were 
low in both blackbirds (0.00% =​ 0/90) and great tits (3.33% =​ 3/90). In summary, we found limited co-feeding 
transmission of B. afzelii for the two bird species used in this study. We emphasize that our sample size was limited 
with only 4 individuals for each bird species.

Literature review.  Our review of the literature found 13 of 19 studies in which B. afzelii has been reported 
in songbird-derived I. ricinus ticks. Seven species of songbird could play a role in the transmission of B. afzelii 
to larval I. ricinus ticks (Table 1). The hosts that were most often reported to have B. afzelii-infected larvae were 
the European robin (Erithacus rubecula) and the great tit (2 studies). When considering birds that carried  
B. afzelii-infected nymphal ticks, we found 20 different bird species, of which the blackbird (7 studies), songthrush 
(Turdus philomenos) (6 studies), dunnock (Prunella modularis) (5 studies), European robin (5 studies), and great 
tit (4 studies) were most often reported.

Discussion
Our study suggests that the rodent-adapted Lyme disease pathogen, B. afzelii, cannot use co-feeding transmission 
as an efficient strategy to infect naive ticks on two species of songbird. There was no co-feeding transmission of  
B. afzelii on the four blackbirds and only three larval ticks acquired B. afzelii via co-feeding transmission on 
the four great tits. The efficiency of co-feeding transmission of B. afzelii on the great tit was therefore low 
(3/90 =​ 3.33%). In contrast, the isolate of B. afzelii used in the great tit experiment (isolate NE4049; also referred 
to as ospC strain A10) has high co-feeding transmission (>​ 50.00%) on competent rodent reservoir hosts, and 
in these hosts there is successful trans-stadial transmission32,34. We acknowledge that one limitation of the cur-
rent study is the small sample size (n =​ 8 birds). However, we point out that studies with similar sample sizes 
have detected co-feeding transmission of B. afzelii on rodents28,32,33. Recent theoretical studies have shown 
that co-feeding transmission makes a modest contribution to the reproductive number (R0) of B. burgdorferi 

Species Bird N°

Nymphs Larvae

Engorged Moulted

Attached**

Engorged Moulted

infect./total infect./total infect./total infect./total

T. merula 1 - ♂​ N.A. 0/2 9 0/10 0/7

T. merula 2 - ♀​ N.A. 4/5 12 0/10 0/15

T. merula 3 - ♀​ N.A. 0/4 11 0/9 0/6

T. merula 4 - ♂​ N.A. 2/6 12 0/10 0/23

P. major 1 - ♀​ 2/2 0/1* 4 0/14 N.A.

P. major 2 - ♀​ 2/2 1/1* 8 0/24 0/9

P. major 3 - ♂​ 5/5 3/3* 10 2/22 0/2

P. major 4 - ♂​ 2/2 N.A. 6 1/16 0/3

Table 2.   Borrelia afzelii infection status is shown for the Ixodes ricinus ticks that had co-fed on two 
species of songbird, the blackbird (Turdus merula) and the great tit (Parus major). The blood-engorged 
nymphs and larvae were either placed in ethanol following drop-off or allowed to moult into the next stage 
(adult and nymph, respectively). All engorged and moulted ticks were screened for B. afzelii infection using 
qPCR. Adult ticks were also cultured in BSKII-medium to test for nymph-to-adult transtadial transmission 
of viable B. afzelii spirochetes. *Engorged nymphs were allowed to moult into adult ticks and were cut in half. 
One half was screened for B. afzelii using qPCR and the other half was cultured in BSK II-medium to test for 
viable spirochetes. None of them yielded spirochete cultures; therefore B. afzelii is not capable of transstadial 
transmission in the presence of bird blood. **Attached =​ total number of nymphs placed on the bird minus the 
number of nymphs left in the bag.
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pathogens42–44. Specifically, a co-feeding transmission efficiency of 50.0% increases the R0 value by 2.07–6.68% 
depending on a variety of ecological factors42. These analyses suggest that a co-feeding transmission efficiency 
of 3.33% would have a negligible effect on the R0 of B. afzelii. In summary, B. afzelii is transmitted efficiently 
via co-feeding transmission on rodent hosts but not on the two bird species investigated. Studies on B. afzelii 
in laboratory rodents have shown that strains differ in the efficacy of co-feeding transmission32,34. Studies on B. 
burgdorferi in North American passerines have shown that reservoir competence can vary widely between bird 
species45–47. We therefore emphasize that we cannot generalize these results to other strains of B. afzelii and other 
songbird species.

Our study also found evidence that avian blood is borreliacidal for B. afzelii. For the blackbirds, the probability 
that two birds would produce six uninfected adult ticks was highly unlikely (p =​ 0.001), given that an independent 
sample suggested that 68.1% (47 infected/69 total) of the challenge nymphs were infected with B. afzelii before 
feeding on these birds. Our results are similar to a previous study where B. afzelii was cleared from I. ricinus 
challenge nymphs after they had fed on pheasants, whereas bird-adapted Borrelia species were not cleared from 
the challenge nymphs13. Additional evidence for the borreliacidal effects of avian blood on B. afzelii was our 
demonstration using BSK-II cultures that none of the qPCR-positive adult ticks that had fed as nymphal ticks on 
the great tits contained viable spirochetes. Previous work has shown that the ability to detect Borrelia infections 
by culturing ticks in BSK media is similar to PCR-based methods48. This result suggests that our qPCR assay is 
detecting dead spirochetes in the adult ticks and shows the limitations of using DNA-based methods to infer the 
reservoir competence of a particular host species. Further studies using other combinations of pathogen strains 
and songbird species should investigate the generality of whether avian blood kills B. afzelii in I. ricinus during 
tick blood feeding.

Numerous field studies have shown the association of B. afzelii with rodent reservoir hosts4–6,49,50 and of  
B. garinii and B. valaisiana with avian reservoir hosts7,12,13,21,24,40,41,51–53. The cycling of B. afzelii and B. garinii in 
different classes of vertebrate hosts is also supported by studies on wild I. ricinus nymphs, which have shown 
that these two sympatric Borrelia species rarely co-occur in the same nymphal tick54–56. The host-specificity of  
B. afzelii for rodents and B. garinii for birds is believed to be mediated by the complement system of the vertebrate 
host15,16,55,56. In vitro assays have shown that B. afzelii is tolerant to rodent complement but is lysed by bird comple-
ment, and vice versa for bird-adapted Borrelia species like B. garinii and B. valaisiana15,16. However, as mentioned 
previously, there are very few in vivo studies showing that B. afzelii spirochetes are killed in nymphs that feed on 
avian hosts13. Two recent studies that quantified the abundance of rodent- and bird-adapted Borrelia species in 
wild questing I. ricinus nymphs provided indirect evidence for the complement hypothesis54,57. In the first study, 
the spirochete load of nymphs co-infected with rodent- and bird-adapted Borrelia species was significantly lower 
than the additive expectation of when the species occurred alone54. In the second study, co-infections between 
B. afzelii and B. garinii were surprisingly common in wild nymphs, however, the spirochete load of the dominant 
Borrelia species was always an order of magnitude higher than the sub-dominant species57. Taken together, these 
two studies provide indirect evidence that some component of the vertebrate blood meal (e.g. complement) was 
reducing the spirochete load of the mal-adapted Borrelia species54,57. Thus co-infections between rodent- and 
bird-adapted Borrelia species in I. ricinus nymphs may be much more common than previously thought but the 
spirochete population of one of the two species is probably dead.

Migratory songbirds have a great capacity to disperse ticks and tick-borne pathogens to new geographic loca-
tions58. Interestingly, phylogenetic studies have shown that B. afzelii has much more spatial genetic structure than 
B. garinii, which may reflect the migratory potential of their rodent and bird hosts59,60. Our literature review found 
that ground-dwelling birds such as the blackbird, song thrush, European robin and dunnock were common carri-
ers of B. afzelii-infected immature I. ricinus ticks. These studies have led to speculation that B. afzelii can use bird 
hosts to achieve transmission and is not as restricted to rodent hosts as previously thought61. However, all of these 
studies used PCR-based methods to determine Borrelia infection and none of these studies used culture-based 
methods to show that the spirochetes are actually alive. The present study shows that nymph-to-adult transtadial 
transmission of B. afzelii DNA can occur on birds but that the spirochetes are not necessarily viable. We suggest 
that PCR-based studies demonstrating that birds can amplify B. afzelii or that rodents can amplify B. garinii 
should be interpreted with great caution.

We propose three alternative explanations for the observation that B. afzelii-positive larval ticks are regu-
larly collected from wild birds (Table 1). First, the larval ticks could have acquired B. afzelii via vertical trans-
mission. There is a general consensus that vertical transmission in Ixodes ticks is rare for B. burgdorferi s. l. 
pathogens but common for the relapsing fever spirochete B. miyamotoi25,26. A second explanation is partial 
blood feeding where larval ticks take multiple meals from different vertebrate hosts. Host blood meal analysis 
of wild I. ricinus ticks in Switzerland suggests that 9.5–19.5% of larval ticks feed on multiple hosts62,63. An early 
study on B. burgdorferi s. s. in I. scapularis showed that partially fed larval ticks could acquire spirochetes64. 
Thus larval ticks could acquire B. afzelii from a partial blood meal on a rodent and then attach to a bird to 
feed to repletion. A recent study in the Netherlands reported that wild I. ricinus larvae carried B. afzelii (preva-
lence was 0.62%), and these larvae were able to infect pathogen-free rodents27. The authors suggested that their 
data were consistent with both vertical transmission and partial blood meals27. A third explanation involves 
variation in the efficiency of co-feeding transmission between strains of B. afzelii. Like many vector-borne 
pathogens, populations of B. afzelii consist of multiple strains57,65–68. Two recent studies found that some  
B. afzelii strains are much more efficient at co-feeding transmission than other strains32,34. The B. afzelii strains 
in the blackbird experiment were derived from naturally infected Apodemus mice, and their genetic iden-
tity and co-feeding transmission efficiency on rodent hosts are currently unknown. For this reason, we used 
B. afzelii isolate NE4049 in the great tit experiment because it has a high efficiency of co-feeding transmission  
(>​50%) on lab mice32,34.
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We conclude that blackbirds and great tits do not allow efficient co-feeding transmission of viable B. afzelii spi-
rochetes. The present study supports the hypothesis that the bird complement system inhibits the rodent-adapted 
B. afzelii from exploiting avian hosts for spirochete transmission. The generality of our results for other combina-
tions of B. afzelii strains and bird species remains to be investigated.

Methods
Birds.  Eurasian blackbirds and great tits are two abundant bird species in Europe. The Eurasian blackbird 
is frequently infested with tens of immature I. ricinus ticks24,69,70. The great tits in our Belgian study population 
frequently carry high burdens of immature I. ricinus ticks (maximum number of larvae =​ 40; nymphs =​ 17)71,72. 
Both bird species are competent reservoir hosts for bird-adapted B. burgdorferi s. l. pathogens. Blackbirds trans-
mit B. garinii, B. valaisiana, and B. turdi24,40,41, whereas great tits transmit B. garinii12,73–75.

Four pathogen-free blackbirds and four pathogen-free great tits were obtained, respectively, from a certified 
Belgian breeder and a laboratory colony at the Netherlands Institute of Ecology (NIOO-KNAW)76. Environmental 
conditions consisted of a 12 h light: 12 h dark cycle (7:00 to 19:00) and ambient temperature varied with outdoor 
conditions. Birds were given food and water ad libitum, and had access to a fresh water bath. Birds were kept in 
individual cages and were allowed to habituate to the lab environment for at least four days before the start of the 
experiment.

Ixodes ricinus ticks.  Pathogen-free I. ricinus larval ticks from the laboratory colony at the University of 
Neuchâtel were fed on B. afzelii-infected rodents and were allowed to moult into B. afzelii-infected nymphs (here-
after referred to as the challenge nymphs). The creation of the challenge nymphs was different for the blackbirds 
and great tits (see below). The pathogen-free I. ricinus larvae that were used for co-feeding with the infected chal-
lenge nymphs were obtained from a German laboratory colony (IS Insect Services GmbH, Berlin).

For the blackbirds, the challenge nymphs had been fed as larval ticks on 7 field-captured and naturally infected 
wood mice (Apodemus sylvaticus L.). Infection with B. burgdorferi s. l. of each wood mouse was confirmed with 
a commercial Lyme borreliosis ELISA assay and qPCR on an ear tissue sample, using protocols described else-
where77. All challenge nymphs were kept in individual Eppendorf tubes to facilitate random sampling. We ran-
domly selected 9–10 nymphs from each of the 7 Apodemus mice and tested them for B. afzelii infection using 
qPCR. The infection prevalence of the challenge nymphs used in the black bird experiment was 68.1% (47 
infected/69 total).

For the great tits, the challenge nymphs had been fed as larval ticks on 15 Mus musculus BALB/c mice that 
had been experimentally co-infected via tick bite with B. afzelii isolates NE4049 and Fin-Jyv-A3. Infection with B. 
afzelii of each mouse was confirmed with a commercial Lyme borreliosis ELISA assay and qPCR on an ear tissue 
sample, using protocols described elsewhere77. Isolates Fin-Jyv-A3 and NE4049 were obtained from a bank vole 
(Myodes glareolus) in Finland and an I. ricinus nymph in Switzerland. Isolate Fin-Jyv-A3 carries ospC major group 
(oMG) A3. Isolate NE4049 has multi-locus sequence type 679, oMG A10, and strain ID number 1887 in the 
Borrelia MLST database11,32,34,77. We used isolate NE4049 (also referred to as ospC strain A10) because it has very 
efficient co-feeding transmission in lab mice11,32,34. All challenge nymphs were kept in individual Eppendorf tubes 
to facilitate random sampling. We randomly selected 7–10 nymphs from each of the 15 mice and tested them 
for B. afzelii infection using a previously described qPCR protocol77. The infection prevalence of the challenge 
nymphs used in the great tit experiment was 91.5% (130 infected/142 total), of which 75.4% (107/142) and 59.9% 
(85/142) were infected with isolates NE4049 and Fin-Jyv-A3, respectively.

Ethics statement and animal experimentation permits.  Experiments on the birds were carried out 
at the University of Antwerp, Belgium in accordance with national environmental legislation and university reg-
ulations. The Ethics Committee for Animal Experiments of the University of Antwerp approved the tick infes-
tation procedure (Dossier 2009-32) and the transmission experiment (Dossier 2014-49). Experiments to create 
the I. ricinus nymphs infected with B. afzelii were carried out at the University of Neuchâtel, Switzerland. The 
commission that is part of the ‘Service de la Consommation et des Affaires Vétérinaires (SCAV)’ of Canton Vaud, 
Switzerland evaluated and approved the ethics of this part of the study. The Veterinary Service of the Canton of 
Neuchâtel, Switzerland issued the animal experimentation permits (NE1/2014 and NE4/2016).

Study design.  The infestation experiments for the blackbirds and great tits were conducted in November 
2015 and February 2016, respectively. For each bird species, four individuals were infested with 11–12  
B. afzelii-infected I. ricinus nymphs that had been randomly selected from the pool of available nymphs. These 
tick loads are within the range observed in field-captured birds24,69–72. Nymphs were placed underneath the crown 
feathers on the right side of the head above the eye using moistened tweezers, as described in ref. 72 (Fig. 1). 
After each infestation, birds were kept for 1 h in an air-permeable cotton bag (size: 25 cm × 20 cm for blackbirds; 
20 cm × 15 cm for great tits) inside a darkened cage to keep them inactive and to facilitate tick attachment72. 
Twenty-four hours after nymphal exposure, the blackbirds and great tits were additionally infested with 40–50 
xenodiagnostic larvae, following the same protocol as for the challenge nymphs. The larvae were placed near the 
nymphs to facilitate co-feeding transmission32–34. After each infestation, the cotton bags were checked for ticks 
to determine the number of nymphs and larvae that had attached to each bird. Birds were not checked for the 
number of attached nymphs to avoid disturbing these ticks. Following infestation, birds were returned to their 
individual cages (40 cm × 80 cm) that had a wire mesh floor to facilitate the daily collection of engorged ticks. 
Most of the engorged ticks were placed in 80% ethanol and stored at −20 °C. The remaining engorged ticks were 
allowed to moult to the next stage to study transstadial transmission of B. afzelii DNA. These ticks were kept in 
individual tubes under summer conditions (16 h light at 25 °C, 8 h at dark at 16 °C) and with a relative humidity 
>​90%. For the great tit experiment, we further tested whether the B. afzelii spirochetes in the adult ticks were 
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actually viable. Each of five adult ticks that had fed as challenge nymph on three great tits, were cut into two 
halves using sterile scissors. One tick half was screened for B. afzelii infection using qPCR, the other tick half was 
cultured in tubes containing BSK-II medium78, incubated at 34 °C, and examined by dark-field microscopy every 
10 days for 40 days.

Probability that each bird was challenged by at least one B. afzelii-infected nymph.  If avian 
blood clears spirochetes from feeding nymphs, the post-hoc analysis of such ticks is not a reliable indicator as 
to whether the bird was challenged or not. For example, after feeding B. afzelii-infected I. ricinus nymphs on 
pheasants, 0 of the 56 engorged nymphs tested positive for B. afzelii13. In this case, it is critical to know the 
prevalence of B. afzelii infection in the flat nymphs (q) before they are placed on the birds, and the number of 
nymphs that attached to the bird (n). With this information one can calculate the probability (P) that each bird 
was bitten by at least one B. afzelii-infected challenge nymph as follows: P =​ 1 − (1 − q)n. The exact value of n is 
often unknown: the maximum is the number of nymphs that attached to the bird (nmax) and the minimum is the 
number of blood-engorged nymphs that were recovered (nmin). For example, for a bird that was infested with 12 
challenge nymphs with an expected prevalence of infection of 0.681 and for which 4 engorged challenge nymphs 
were recovered, the probability that at least one of the challenge nymphs was infected with B. afzelii ranges from 
Pmax =​ 0.9999989 to Pmin =​ 0.9896447.

PCR-based detection of B. afzelii.  Total tick DNA was purified using the DNeasy Blood & Tissue Kit 
following the protocol for the purification of total DNA from ticks. All ticks were screened for the presence of  
B. burgdorferi s. l. using a duplex qPCR that was designed based on existing qPCR protocols that target fragments 
of the ospA gene79 and the flagellin gene80. A detailed description of primers, probes and the qPCR protocol is given 
in an earlier study75. For the subsample of qPCR-positive ticks that had fed on the blackbirds, the B. burgdorferi  
s. l. genospecies was determined by PCR amplification and sequencing of the ospC gene81 and the variable 5S-23S 
(rrfA-rrlB) intergenic spacer (IGS) region gene75. For each PCR and multiplex qPCR, positive controls, negative 
controls, and blank samples were included. To minimize contamination, the three steps of the PCR protocol were 
performed in separate rooms. The DNA extraction room was kept at negative pressure, whereas the reagent setup 
and sample addition rooms were kept at positive pressure. All rooms had airlocks.

Literature review.  We used an extensive systematic literature search that is described in Hofmeester et al. 
(2016)82. The search strings and selection procedure as well as the dataset are provided in the supplementary 
material of that study (URL: http://iopscience.iop.org/article/10.1088/1748-9326/11/4/043001/meta). The search 
was done using PubMed, Web of Science and Scopus to review the occurrence of B. burgdorferi s. l. pathogens in 
Europe, in songbird hosts and their I. ricinus ticks. The last literature search was carried out in January 2015 and 
used the years 1945–2014. We added one more study to that dataset22. Only studies that identified the Borrelia 
genospecies in infected larvae and nymphs derived from songbirds were included, which resulted in 19 usable 
studies.
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