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Abstract

This paper addresses the problem of identifying the parameters involved in the formation of spatial patterns in nonlinear
two dimensional systems. To this aim, we perform numerical experiments on a prototypical model generating
morphogenetic Turing patterns, by changing both the spatial frequency and shape of the patterns. The features of the
patterns and their relationship with the model parameters are characterized by means of the Generalized Recurrence
Quantification measures. We show that the recurrence measures Determinism and Recurrence Entropy, as well as the
distribution of the line lengths, allow for a full characterization of the patterns in terms of power law decay with respect to
the parameters involved in the determination of their spatial frequency and shape. A comparison with the standard two
dimensional Fourier transform is performed and the results show a better performance of the recurrence indicators in
identifying a reliable connection with the spatial frequency of the patterns. Finally, in order to evaluate the robustness of
the estimation of the power low decay, extensive simulations have been performed by adding different levels of noise to
the patterns.
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Introduction

Morphogenesis is the mechanism for which spatial structures

and patterns form spontaneously in biological and biochemical

systems. This phenomenon can be explained by assuming that at

least two species, an activator and an inhibitor, are interacting in a

spatial domain subject to reaction and diffusion processes of

different intensities [1]. The striking theory developed by Alan

Turing provided a reliable framework for the physical and

mathematical understanding and modeling of such complex

systems. Although this mechanism is well known and measurable

in biology and medicine at different scales, such as molecular and

cellular, few studies handle the problem of matching mathematical

and numerical models with real measurements. The analysis of

these kind of complex spatio-temporal data is complicated by the

presence of small disturbancies in the measurements [2],

preventing successful application of segmentation techniques for

identifying the typical elements in the structures. The presence of

noise and quasi periodicities in the measurements introduces

further elements of uncertainty and compromises the application

of satisfactory analysis in the frequency domain.

In order to find innovative methodologies for identifying and

modelling patterned data arising from biological and biochemical

reaction-diffusion processes, we observe that the main feature of

such data is the presence of regular structures involving typical

patterns (see, for example, spots and stripes of Figure 1. It is

straightforward recognizing in these images the quasi periodicity in

space, for which a typical element is almost regularly recurrent.

The idea of using methods based on repetitions and recurrences

for studying experimental patterns can be related to the concept of

recurrence for complex systems, initially developed by Poincaré

[3]. Indeed, this concept was used by Poincaré in the field of

dynamical systems to solve the three body problem, and by Kac

[4] for discrete stochastic systems. For time series, the concept of

recurrence was carried out by Eckmann, who introduced the

Recurrence Plot (RP) as a visual tool designed to display recurring

patterns and to investigate nonstationary patterns [5]. In the field

of time series analysis, RPs found a wide range of applications to

the analysis of nonstationary phenomena, such as biological

systems, speech analysis, financial time series, and earth sciences

(see [6] and literature cited therein). The popularity of RPs lies in

the fact that their structure is visually appealing and allows for the

investigation of high dimensional dynamics by looking at a simple

two-dimensional plot. Furthermore, by means of the Recurrence

Quantification Analysis (RQA) [7], the RP has been used as a tool

for the exploration of bifurcation phenomena and changes in the

dynamics when dealing with nonstationary and short time series

[8].

The extension of the concept of recurrence for higher

dimensional data, namely the Generalized Recurrence Plot

(GRP) [9], provided interesting tools for the analysis of complex

dynamics in spatially distributed systems, such as chlorophyll

bloom in oceans, bacterial growth and chemical waves [10,11].

Furthermore, GRPs and Generalized Recurrence Quantification

Analysis (GRQA) have been successfully exploited in the

identification of structural changes in complex spatially distributed

systems, such as the Complex Ginzburg-Landau equation [12]

and in the detection of different Turing bifurcations mechanism in

the Belousov-Zabotinsky reaction performed in a oil-water
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microemulsion [13]. Because of the nonlinear features of the

models leading to pattern formation, the problem of state space

reconstruction and parameter identification is a hard task. State

space reconstruction of a spatio-temporal dynamical system has

been investigated in lattice dynamical systems [14], while a

method for spatial forecasting from single snapshots has been

proposed in [15]. Furthermore, in several cases, one has to cope

with the problem of understanding the dynamics of a system by

using only a limited number of observations.

This work addresses the problem of identifying a correlation

between the structure of patterns and model parameters in a

prototypical model showing Turing pattern formation. Two

numerical experiments are performed by varying the parameters

controlling the shape and spatial frequency of the patterns,

respectively. Our aim is to establish a functional relationship

between the recurrence indicators and the model parameters by

means of GRPs and GRQA. We will show that the functional

form of the GRQA measures strictly depends on one of the model

parameters. The relationship can be used to identify suitable

values of the parameters responsible for the generation of patterns,

which can be a hard task in experiment design and practical

applications. Moreover, this relationship is shown to be robust

with respect to noise levels lower than 15%.

Results and Discussion

Two numerical experiments have been performed by varying

the parameters S and d of the model described in the Materials

and Methods section. The parameter S controls the frequency of

the patterns generated, while by varying the diffusion coefficient,

d , the patterns are formed or change from spot to labyrinthine.

Therefore, by continuously varying these parameters we are able

to obtain a set of stationary solutions showing the trajectories from

higher to lower pattern frequencies and from spot to labyrinthine

structures.

In the first experiment, we set d~0:2, while the spatial

frequency of the spot patterns is increased by varying the

parameter S in the range ½0:1,0:55�. The critical wavenumber

k2, which accounts for the spatial frequency of patterns, with

respect to parameter S and for fixed d is shown in Figure 2.

In the second experiment, the diffusion coefficient d is varied in

the range ½0:02,0:25�, while S is kept constant (S~0:3). In this

case the spatial frequency of the structures should not change

significantly, while the appearance of the patterns ranges from

labyrinthine structures (d~0:02) to spots (d~0:25).
In the following we report the evolution of the recurrence

indicators D and RE, described in the Materials and Methods

section, with respect to S and d. Furthermore, we will show how

the distribution of the diagonal lines P(l) of the RP changes

according to the characteristics of the pattern analyzed.

Experiment 1
Figure 3 shows the results of the analysis based on recurrences:

panels (a) and (c) report the variable X showing spot patterns for

S~0:15 and S~0:47, respectively. Panels (b) and (d) report the

corresponding line lengths distributions P(l). A first inspection of

P(l) suggests that the line length decays exponentially (P(l)~e{bl )

with different exponents: b~0:71 in the case of smaller spatial

frequency (panel (b)) and b~1:02 in the case of higher spatial

frequency (panel (d)). In fact, as the frequency increases, the size

and distance of the spots decreases, resulting in a smaller number

of long diagonal lines. Notice that Lmax~70 for S~0:15 and

Lmax~45 for S~0:47, where Lmax is the maximum line length of

the RP.

The comparison of D and RE offers a further validation: D
dramatically decreases from 53.34 to 18.87, while RE shows only

small variations according to the findings (see [10]) that this

indicator is more sensitive to changes in the small scale structure of

patterns, such as the shape of single patterns, which does not

change when increasing the spatial frequency. Furthermore, the

strong decrease of D with S suggests a deeper investigation of the

relationship of the recurrence indicators from S.
We then performed an additional experiment by continuously

varying S in the interval ½0:1,0:55�. The results are reported in

Movie S1, which is organized as follows: for each S, panel (a)
shows the spot patterns; panel (b) reports the values of D(S) with
respect to S; panel (c) reports the computation of the power

spectral density of each image showed in panel (a), and, finally,

panel (d) reports the values of the main frequency f0 of the patterns
(the main frequency has been computed by smoothing the power

spectrum in the kx direction and by extracting its maximum

value).

Figure 4 shows with greater detail that as S is increased, D

decays according the power law D(S)*S{1=2. This result clearly

indicates the existence of a functional relationship between the

determinism D and the parameter S, which controls the spatial

frequency of the patterns in the model. The same relationship is

Figure 1. Different types of stationary Turing Structures: a) Hexagons b) Stripes c) Labyrinthine.
doi:10.1371/journal.pone.0073686.g001
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hardly obtained by computing the power spectral density of the

image. Indeed, as one can see in panels (c) and (d) of Figure 5 the

power spectrum is noisy, and an accurate estimation of f0 is

difficult. Furthermore, f0(S) does not seem to evolve according to

Figure 2. Critical wavenumbers k2c for increasing values of parameter S. All the other parameters are fixed: a~16, b~12, d~0:2.
doi:10.1371/journal.pone.0073686.g002

Figure 3. Spot patterns for different values of parameter S (panels (a), (c)) and corresponding histograms of line lengths P(l)
(panels (b), (d)). As S increases, the values of the exponential decay of P(l) raise from 0.71 (S~0:15) to 1.02 (S~0:47).
doi:10.1371/journal.pone.0073686.g003
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a quadratic function. In conclusion, the determinism represents a

good measure for characterizing, both qualitatively and quantita-

tively, patterns arising from (potentially unknown) reaction-

diffusion models.

Experiment 2
In the second experiment we fix the spatial frequency of the

patterns by maintaining S constant and by varying d in the range

d~½0:02,0:25�. This produces patterns with the same spatial

frequency, but of different typology. Panels (a) and (c) of Figure 6

show the patterns for d~0:056 and d~0:196, respectively, while
panels (b) and (d) report the distribution of the line lengths P(l).
Analogously to the first experiment, we look at the distributions of

the diagonal lines P(l). Under the new experimental conditions

P(l) decays exponentially until the value l~40 is reached, with

similar decay exponents (b~0:41 vs b~0:43). This is not

surprising because the spatial frequency of the patterns is very

similar, and the line lengths, at least for the first part of the

distributions, are not affected by the global shape of the patterns.

The same considerations hold for RE. On the contrary, the value

of D is strongly different: D~27:70 for the spots (panel (a)) and

D~15:00 for the labyrinthine structures (panel (c)), reflecting the

fact that, under the point of view of the global appearance of the

pattern, the figure reported in panel (c) presents more complex

structures, as demonstrated by the fat tail of P(l) in panel (d). This

experiment confirms that D is a powerful measure for the

characterization of spatial patterns generated by reaction diffusion

models.

Effect of Noise
The methods based on time recurrences have been shown to be

robust with respect to noise and measurement errors [6,16],

providing suitable tools for analyzing data collected through real

experiments.

In order to test and eventually find a similar robustness for

methods based on spatial recurrences, the spot patterns analyzed

in experiment 1 have been corrupted by noise with increasing

intensity. Figure 7 reports the evolution of Determinism with

respect to the parameter S for increasing noise levels of 5%, 10%,

15% and 20%, while the power law decays of D, obtained by a

fitting procedure, are reported in Table 1. The corresponding

fitting curves are depicted in the figure by red lines. As the reader

can see, the exponent b is consistent with the values obtained

without noise and for noise levels of 5% and 10%. For noise levels

Figure 4. Decreasing evolution of the recurrence indicator D for increasing S, which is the parameter correlated to the spatial
frequency of the patterns. D decreases with the power law *S{0:47.
doi:10.1371/journal.pone.0073686.g004
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of 15% and 20%, the fitting parameter changes significantly,

showing that even if Determinism is still behaving according to a

power law, the estimation of the decay exponent b is less

reasonable.

Moreover, it is worth noticing that between noise levels of 10%
and 15%, there exists a threshold separating reasonable and

unsatisfactory estimations of the power law relationship. Indeed,

the first part of the curve (green circles in Figure 7), corresponding

to large size patterns, shows a satisfactory value for b

(b~{0:4441), while intermediate-sized patterns, obtained with

S~½0:2,0:32�, show an interesting intermittency between two

different behaviors. Finally, for values of S greater than S~0:32
(small-sized patterns), the decay falls very close to the one

corresponding to 15% noise (b~{0:1908). As a possible

explanation for this behavior we could consider that as the

patterns become smaller and smaller (S increasing), the artifacts

introduced by noise can deeply modify the structure of the spots or

even disrupt them. This fact is also confirmed by the results

reported in [10], where it has been shown that Determinism of

spatio-temporal systems decreases in a nonlinear and accelerating

way with respect to the increase of noise.

Conclusions
This paper addressed the problem of analyzing morphogenetic

patterns emerging from nonlinear systems through physical

mechanisms leading to Turing instabilities. The analysis is

performed by using a set of recurrence indicators and, in

particular, by means of the Generalized Recurrence Plots and

Generalized Recurrence Quantification Analysis.

The results clearly show that the method carries out important

insights about the structure of patterns and the evolution of such

structures under different parametric conditions. Specifically, the

main result concerns with the clear identification of the

mathematical relationship between the parameter S, related to

the spatial frequency of the patterns, and the recurrence indicator

D, which accounts for the global appearance of the patterns.

Furthermore, our results will help the experimental scientist in

identifying unknown parameters by using the information

Figure 5. Snapshot of the last frame of Movie S1. Panel (a): spot distribution for S~0:54. Panel (b): evolution of D for increasing S according
the power law decay discussed in the Results and Discussion section. Panel (c): 2D-FFT showing the power spectral density of the pattern. Panel (d):
evolution of the peak f0 .
doi:10.1371/journal.pone.0073686.g005
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provided by the recurrence measures. Furthermore, when dealing

with experiments where a strong sensitivity to the spatial frequency

is present, the proposed method exploits the spatial recurrence

properties for retrieving reliable information about the patterns.

The obtained results have also been validated by adding noise to

the patterns. In this case we found that the power low relationship

between the Determinism and the parameter S can be appropri-

ately estimated even for noise levels lower than 15%.

Future developments will be devoted to the application of the

proposed methodology for the parametric identification of

experimental systems, such as bacterial growth and reaction

diffusion systems performed in micro-emulsions.

Figure 6. Spot patterns for d = 0.056 (panel (a)) and labyrinthine structures for d = 0.196 (panel (c)). Corresponding histograms of line
lengths P(l) (panels (b) and (d)). By comparing panels (b) and (d) we notice that the values of the exponential decay and RE are similar, while the
values of D are considerably different.
doi:10.1371/journal.pone.0073686.g006

Figure 7. Determinism of the patterns for increasing values of
parameter S (see also Figure 4) and different noise levels.
Specifically, Determinism is reported in the cases of no noise (stars), 5%
noise (triangles), 10% noise (filled green circles), 15% noise (diamonds)
and 20% noise (squares).
doi:10.1371/journal.pone.0073686.g007

Table 1. Fitting parameters of the power low D~aSBzc
between Determinism and S for different values of noise: 5%,
10%, 15% and 20%.

a b c R2 RMSE

no noise 29.79 20.4508 223.24 0.995 0.78

5% noise level 20.08 20.4891 214.48 0.993 0.72

10% noise level 16.69 20.4441 29.336 0.982 0.66

15% noise level 28.47 20.1908 224.68 0.972 0.51

20% noise level 18.03 20.1666 215.38 0.968 0.29

The last two columns report the R2 and the Residuals Mean Square Error
(RMSE), respectively.
doi:10.1371/journal.pone.0073686.t001
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Materials and Methods

The Turing Instability
In 1952 Turing [1] developed the original idea that coupling

between reactions and diffusion of chemical species might play a

role in morphogenesis, i.e. in the creation of differentiated

structures in living organisms out of initially identical elementary

cells. Turing showed that a uniform state may, in some

circumstances, evolve because of a diffusive instability towards a

new state in which the concentrations originate stationary

structures organized in space. This spontaneous pattern-forming

instability can occur only in systems maintained out of the spatial

equilibrium and in which auto-activation processes are present.

Therefore, a spatial pattern settles down because of a balance

between the local activation processes and the long-range

inhibition provided by molecular diffusion. This mechanism is

quite general and hence the principle of a Turing instability can be

recovered in other fields, such as heterogeneous catalysis,

nonlinear optics, gas discharges, semiconductor devices, and

materials irradiated by energetic particles or light. The common

denominator of these phenomena is that they can be modeled by

reaction-diffusion equations, such as those that naturally describe

chemical systems. In all cases, the wavelength of the Turing-type

spatial patterns accounts for the balance between the reaction-type

mechanisms and the diffusion-like transport processes and is,

therefore, intrinsic to the system. Figure 1 shows some of the

stationary patterns (also known as Turing Structures, TS)

generated by a reaction diffusion system; the type and the shape

of TS depend on the values of the model parameters and on the

boundary conditions.

Recurrence Based Methods
In this section we provide only basic notions on recurrence

methods for spatial data (for a deeper treatment on time series

analysis the reader is referred to [6]).

In the case of a d-dimensional data-set, the Recurrence Plot is

defined, according to [9], by:

R~ii,~jj~H(e{DD~xx~ii{~xx~jj DD), ð1Þ

where~ii~i1,i2, . . . ,id is the d-dimensional coordinate vector and~xx~ii
is the associated phase-space vector. This RP, called Generalized

Recurrence Plot (GRP), accounts for recurrences between the d-

dimensional state vectors and presents a linear manifold of

dimension d for which R~ii,~jj~1, V~ii~~jj, called the hypersurface of

Identity (HOI).

We now consider spatially distributed systems at a certain (fixed)

time of their evolution. In the particular case of d~2, the single

variable discretized solution of a two dimensional system can be

visualized as an image, i.e. a two-dimensional object composed of

scalar values, for which the GRP reads:

Ri1,i2,j1,j2
~H(e{DDxi1,i2{xj1,j2 DD) ik,jkeN x(:,:)eR: ð2Þ

Each black dot in the GRP represents a spatial recurrence

between two pixels, and every pixel is identified by its coordinates

(i1,i2), being i1 and i2 the row and the column index, respectively.

In this case, the recurrence plot is four-dimensional and the HOI is

generalized by a two-dimensional identity plane, defined by setting

i1~j1 and i2~j2.

A visual inspection of the four dimensional RP is possible only

by projections in three or two dimensions. Although this is possible

(see e.g [9], page 548), relevant information is hard to extract, and

one must cope with the fact that GRPs lose their visual appeal.

Despite this drawback, RQA can be easily generalized to GRQA

by considering that the quantification is performed on the basis of

the diagonal line lengths distribution P(l). Then, providing a new

definition of diagonal line, the quantification indicators are the

same for both temporal and spatial case.

In the GRP the diagonal lines find an equivalent in diagonal

patches of length l, defined as follows (details are given in [9]):

(1{Ri1{1,i2{1,j1{1,j2{1)(1{Ri1zl,i2zl,j1zl,j2zl)

P
l{1

k1,k2~0
Ri1zk1,i2zk2,j1zk1,j2zk2

:1:
ð3Þ

In [10] a different definition of structure of length l was given:

instead of looking for two-dimensional patches, we look for the

distribution of line segments in the four dimensional GRP. This is

done by sampling the patch structures with lines. This can be

obtained by looking for the recurrences only in the diagonal

direction (k1~k2). With this assumption, the formulation of

diagonal line reads:

(1{Ri1{1,i2{1,j1{1,j2{1)(1{Ri1zl,i2zl,j1zl,j2zl)

P
l{1

k~0
Ri1zk,i2zk,j1zk,j2zk:1:

ð4Þ

Focusing on isolated points and lines parallel to the HOI, the

recurrence indicators can be generalized and the most important

of which are Recurrence Rate RR, Determinism D, and Recurrence

Entropy RE.

The RR is defined as:

RR~
1

N4

XN

i1,i2,j1,j2

Ri1,i2,j1,j2
~

1

N4

XN

l~1

lP(l), ð5Þ

and represents the fraction of recurrent points with respect to the

total number of possible recurrences. It is a density measure of the

RP.

The Determinism, defined as:

D~

PN
l~lmin

lP(l)
PN

l~1 lP(l)
, ð6Þ

is the fraction of recurrent points forming diagonal structures with

a minimum length lmin with respect to all recurrences. For

choosing lmin no theoretical guideline is provided and this choice is

usually made by means of empirical considerations, such as by

taking into account the average size of the patterns or the role of

noise in the image. D provides a measure of the global appearance

of the patterns. For example, highly regular patterns, such as, e.g.,

periodic structures, will produce high values of D (more than 50%)

since the recurrence points are mainly organized in diagonal lines.

On the other side, random or poorly structured patterns are

characterized by small values of D (0.5–1%).

The Recurrence Entropy, defined as:

RE~{
XN

l~lmin

p(l) log p(l), p(l)~
P(l)

PN
l~lmin

P(l)
, ð7Þ
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is a complexity measure of the distribution of the diagonal lines in

the RP.

It refers to the Shannon entropy with respect to the probability

of finding a diagonal line of exactly length l. For periodic

structures or uncorrelated noise the value is small (0.5–0.8), while

for chaotic systems is higher (1.5–2.5). Under the point of view of

the pattern, RE is related to the small scale structure of the image.

The computation of the measures based on the diagonal lines

and their distribution provides valuable information about the

structure of the RP. For the application of RQA to spatial systems

the reader is referred to [9,10].

A Prototypical Model Generating Morphogenetic
Patterns
In this paper we considered the model developed by Bard [17],

designed to model and reproduce mammalian coat patterns. This

model, although simple, describes a nonlinear reaction-diffusion

kinetics for simulating Turing patterns. The model generates spots

of different complexity, such as rings, and both vertical and

horizontal stripes, as well as a variety of labyrinthine structures.

The model equations are the following:

LX
Lt ~ S

a
(a{XY )z+2X

LY
Lt ~ S

a
(XY{Y{b)zd+2Y ,

ð8Þ

where S is a constant controlling the spacing of the patterns, d is

the ration between the diffusion coefficients of the two species X
and Y , b is the concentration of the enzyme in the domain, and a
is a normalization constant. The presence of b acts as a pattern-

formation switch; if b~0, there is a normal stable equilibrium

(X �,Y �)~(1,a); if bw0 the equilibrium (X �,Y �)~( a
a{b

, a{b) is

unstable for awbz
ffiffi
(

p
b).

In the last conditions, we observe the formation of spatial

patterns whose spatial frequency and shape depend on the

diffusion coefficient d and on parameter S.
The formation of the patterns is the result of the propagation of

spatial unstable waves, whose wave number range k2 [ (k21, k
2
2)

can be computed as a direct consequence of the instability

conditions of the equilibrium point. The verification of the Turing

instability conditions is straightforward, as described by Murray

[18] (see section 2.3 of volume II).

To the purposes of this work, the model described in equation

(8) has been simulated by taking a~16 and b~12 and varying S
and d . The numerical solutions X and Y are then analyzed by

means of the recurrence indicators Determinism and Recurrence

Entropy.

Supporting Information

Movie S1 Spot distribution for S~0:56 (panel (a));
Evolution of D for increasing S according the power
law decay discussed in the Results and Discussion
section (panel (b)); 2D-FFT showing the power spectral
density of the pattern (panel (c)); Evolution of the peak f0
(panel (d)).
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