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Abstract

The network architecture of the human brain has become a feature of increasing interest to the 

neuroscientific community, largely because of its potential to illuminate human cognition, its 

variation over development and aging, and its alteration in disease or injury. Traditional tools 

and approaches to study this architecture have largely focused on single scales—of topology, 

time, and space. Expanding beyond this narrow view, we focus this review on pertinent questions 

and novel methodological advances for the multi-scale brain. We separate our exposition into 

content related to multi-scale topological structure, multi-scale temporal structure, and multi-scale 

spatial structure. In each case, we recount empirical evidence for such structures, survey network­

based methodological approaches to reveal these structures, and outline current frontiers and 

open questions. Although predominantly peppered with examples from human neuroimaging, we 

hope that this account will offer an accessible guide to any neuroscientist aiming to measure, 

characterize, and understand the full richness of the brain’s multiscale network structure—

irrespective of species, imaging modality, or spatial resolution.
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1. Introduction

Over the past decade, the neuroimaging community has witnessed a paradigm shift. The 

view that localized populations of neurons and individual brain regions support cognition 

and behavior has gradually given way to the realization that connectivity matters (Bassett 

and Bullmore, 2006; Sporns, 2011; Bullmore and Bassett, 2011; Bressler and Menon, 

2010; Park and Friston, 2013). The complex spatiotemporal activity patterns that have been 

associated with cognition are underpinned by expansive networks of anatomical connections 

(Hagmann et al., 2008; Hermundstad et al., 2013; Goñi et al., 2014). This shift has occurred 

in parallel with the maturation of another field, network science, which has made available 
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a large set of analytic tools and frameworks for characterizing the organization of complex 

networks (Newman, 2003; Borgatti et al., 2009; Barabási, 2016).

As with any new field, the best practices for constructing and analyzing brain networks 

are still evolving. Among recent developments is the understanding that brain networks 

are fundamentally multi-scale entities (Bassett and Siebenhuhner, 2013). The meaning of 

“scale” can vary depending on context; here we focus on three possible definitions relevant 

to the study of brain networks. First, a network’s spatial scale refers to the granularity 

at which its nodes and edges are defined and can range from that of individual cells 

and synapses (Jarrell et al., 2012; Shimono and Beggs, 2015; Schroeter et al., 2015; Lee 

et al., 2016) to brain regions and large-scale fiber tracts (Bullmore and Bassett, 2011). 

Second, networks can be characterized over temporal scales with precision ranging from 

sub-millisecond (Khambhati et al., 2015; Burns et al., 2014) to that of the entire lifespan 

(Zuo et al., 2010; Betzel et al., 2014; Gu et al., 2015b), to evolutionary changes across 

different species (van den Heuvel et al., 2016). Finally, networks can be analyzed at different 

topological scales ranging from individual nodes to the network as a whole (Stam and 

Reijneveld, 2007; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Collectively, 

these scales define the axes of a three-dimensional space in which any analysis of brain 

network data lives (Fig. 1). Most brain network analyses exist as points in this space—i.e. 

they focus on networks defined singularly at one spatial, temporal, and topological scale. 

We argue that, while such studies have proven illuminating, in order to better understand the 

brain’s true multi-scale, multi-modal nature, it is essential that our network analyses begin to 

form bridges that link different scales to one another.

In this review, we focus on two specific aspects of the multi-scale brain. First, we present 

and discuss variations of network algorithms (particularly, community detection) that 

make it possible to describe a network at multiple topological scales (Porter et al., 2009; 

Fortunato, 2010). We choose to focus on community detection—which we define carefully 

in the next section—because it encompasses one of the most frequently used set of tools 

capable of extracting and characterizing network organization across a continuous range of 

scales. We do, of course, make mention of other alternatives. Next, we discuss the topic 

of multi-scale temporal networks and a set of multi-layer techniques for exploring brain 

networks at different temporal resolutions. In this section, we draw particular focus to the 

topic of multi-slice/layer community detection and its role in characterizing time-varying 

connectivity. Throughout both sections, we also comment on methodological limitations of 

these methods, the best practices for their application, and possible future directions. This 

review is written for the neuroimaging community, and so the literature we cover and the 

examples that we present are selected to be especially relevant for researchers working with 

MRI data (whether functional, diffusion, or structural). Nonetheless, our frank discussion of 

multi-scale methods and views are broadly relevant and applicable to researchers working 

with other data modalities (including EEG, MEG, ECOG, and fNIRS) and at other spatial 

scales in humans or other species.
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2. Functional and structural brain networks

With MRI data, network nodes are almost always parcels of gray-matter voxels (sometimes 

the voxels, themselves, are used as nodes, van den Heuvel et al., 2008). Brain networks 

come in two basic flavors that differ from one another based on how connections are 

defined among nodes. Structural or anatomical connectivity (SC) networks refer to nodes 

linked by physical connections. With MRI data, these connections usually reflect white­

matter fiber tracts reconstructed from the application of tractography algorithms to diffusion 

images. Functional connectivity (FC) networks, on the other hand, refer to the strength 

of the statistical relationship between nodes’ activity over time (Friston, 2011). Usually 

this statistical relationship is operationalized as a Fisher-transformed correlation coefficient 

(Zalesky et al., 2012) or a coherence measure (Zhang et al., 2016). Both SC and FC 

networks are represented with a connectivity matrix, A, whose element Aij is equal to the 

connection weight between regions i and j.

3. Multi-scale network analysis

Network analysis is the process of interrogating an SC or FC network using tools derived 

from graph theory in order to better understand its character. It is important to note that 

this type of analysis takes explicit account of the network architecture of SC and FC—i.e. 

that the collective organization and configuration of connections gives rise to system-level 

behavior. It is therefore distinct from other techniques that examine SC and FC connection 

weights in isolation (Simpson and Laurienti, 2016). Network science, which has existed as 

a field long before the advent of network neuroscience, has contributed a large number of 

measurements of a network that can help reveal its function, highlight influential nodes, and 

identify features that contribute to its robustness and vulnerability. The topological scale at 

which a network is described depends upon what features of the network these measures 

highlight. Some measures are simple; a node’s degree (or the weighted analog, strength) 

simply counts the number of connections incident on any node and can be interpreted as 

a measure of a node’s influence, with high-degree nodes exhibiting the greatest influence 

(Takeuchi et al., 2015). Degree is an example of a strictly local measure—it characterizes 

only a single node. At the opposite end of the spectrum are measures that describe the 

organization of the network as a whole. A network’s characteristic path length, for example, 

is the average number of steps it takes to go from one node to another. Short path 

lengths imply, at least in theory, that information can be quickly shared across the network 

(Santarnecchi et al., 2014; Li et al., 2009).

Degree and path length, along with other local and global network measures, are useful 

for characterizing networks at their most extreme topological scales: at the level of a 

network’s most commonly studied fundamental units (its nodes; although see Giusti et 

al., 2016 and Bassett et al., 2014 for alternatives) and the level of the network as a 

collective. Between these two scales lies a mesoscale, an intermediate scale at which a 

network can be characterized not in terms of local and global properties, but also in terms 

of differently sized clusters of nodes that adopt different types of configurations. It is 

at this mesoscale that we can observe community structure (Fortunato, 2010), cores and 

peripheries (Borgatti and Everett, 2000), and rich clubs (Colizza et al., 2006). It is essential 

Betzel and Bassett Page 3

Neuroimage. Author manuscript; available in PMC 2017 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to note that the mesoscale, unlike local and global scales, is defined as a range of scales 

situated between two extremes. Therefore, mesoscale structures have the capacity to emerge, 

persist, and dissolve over multiple topological scales. In general, the detection of such 

structures is performed algorithmically, usually through the application of tools designed 

to detect specific types of mesoscale structure. As a simple illustration, consider a network 

with community structure. In the context of networks, communities refer to sub-networks 

(clusters of nodes and their edges) that are internally dense (many within-community 

edges) and externally sparse (few between-community edges) (Porter et al., 2009; Newman, 

2012). One intuitive (and quite palatable) hypothesis is that brain networks are organized 

into hierarchical communities, meaning that communities at any particular scale can be 

sub-divided into smaller communities, which in turn can be further sub-divided, and so 

on (Meunier et al., 2010b; Bassett et al., 2010; Hilgetag and Hutt, 2014). This hierarchy 

can be “cut” at any particular level to obtain a single-scale description of the network’s 

communities, but doing so ignores the richness engendered by the hierarchical nature of the 

communities. Similar arguments can be applied to other types of meso-scale organization, 

such as core–periphery (Bassett et al., 2013b) and rich clubs (van den Heuvel and Sporns, 

2011).

In the following subsections, we review analysis techniques for the detection of mesoscale 

structure in brain networks, focusing on communities due to their inherent multi-scale 

nature. We pay particular attention to techniques that make it possible to detect community 

structure over a range of topological scales, thereby uncovering a richer, more detailed 

multi-scale description of brain networks.

3.1. Multi-scale community structure

Local and global properties of networks are straightforward to compute because the units 

of analysis—individual nodes and the whole network—are immediately evident and require 

no additional search. Mesoscale structure, however, is not always evident. Its presence or 

absence in a network depends on the configuration of edges among the network’s nodes—

that is, the network’s topology. Real-world networks are composed of many nodes and 

edges arranged in complex patterns that can obscure structural regularities. Due to this 

complexity, if one wishes to observe mesoscale structure in networks, one must search for 

it algorithmically. In the case of community structure (Meunier et al., 2010b; Sporns and 

Betzel, 2016), there is no shortage of algorithms for doing so. They range both in terms of 

how they define communities and also their computational complexity (Palla et al., 2005; 

Ahn et al., 2010; Rosvall and Bergstrom, 2008; Delvenne et al., 2010; Karrer and Newman, 

2011). Whether the plurality of methods is viewed as a shortcoming or an advantage, the 

enterprise of community detection is one of the better-developed and continually growing 

sub-fields of network analysis (Fortunato, 2010; Fortunato and Hric, 2016).

While each community detection technique offers its own unique perspective on how to 

identify communities in networks, the method that is most widely used and arguably 

the most versatile is modularity maximization (Newman and Girvan, 2004). Modularity 

maximization partitions a network’s nodes into communities so as to maximize an objective 

function known as the modularity (or just “Q”). The modularity function compares the 
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observed pattern of connections in a network against the pattern that would be expected 

under a specified null model of network connectivity. That is, the weight of each existing 

edge is directly compared against the weight of the same edge if connections were formed 

under the null model. Some of the observed connections will be unlikely to exist under the 

null model or will be stronger than the null model would predict. Modularity maximization 

tries to place as many of the stronger-than-expected connections within communities as 

possible.

More formally, if the weight of the observed and expected connection between nodes i and j 
are given by Aij and Pij, respectively, and σi ∈ [1,…,K] indicates to which of K communities 

node i is assigned, then the modularity can be calculated as:

Q = ∑
ij

[Aij − Pij]δ(σiσj), (1)

where δ (··) is the Kronecker delta function and is equal to 1 if its arguments are the same 

and 0 otherwise. Multiple methods exist to actually maximize Q, but in the end they all 

result in an estimate of a network’s community structure: a partition of the network nodes 

into communities.

The number and size of communities in the partition with the biggest Q represent the 

communities present in the network, right? Unfortunately, the answer to this question is 

“not always.” Modularity and other similar quality functions exhibit a “resolution limit” that 

limits the size of detectable communities (Fortunato and Barthelemy, 2007); communities 

smaller than some size, even if they otherwise adhere to our intuition of a community, are 

mathematically undetectable. In order to detect communities of all sizes, modularity has 

been extended in recent years to include a resolution parameter, γ, that can be tuned to 

uncover communities of different size (Reichardt and Bornholdt, 2006). The augmented 

modularity equation then reads:

Q(γ) = ∑
ij

[Aij − γPij]δ(σiσj) . (2)

The resolution parameter was initially introduced as a technique for circumventing the 

resolution limit. Inadvertently, it has contributed to the versatility of the modularity measure. 

The resolution parameter effectively acts as a tuning knob, making it possible to obtain 

estimates of small communities when it is at one setting and larger communities when it is at 

another setting: when γ is big or small maximizing modularity will return correspondingly 

small or large communities. If we smoothly tune the resolution parameter from one extreme 

to the other, we can effectively obtain estimates of a network’s community structure, all 

the way from the coarsest scale at which all network nodes fall into the same community 

up through the finest scale where network nodes form singleton communities. Varying the 

resolution parameter to highlight communities of different sizes is known as multi-scale 
community detection (Fenn et al., 2009). It should be noted that there exist possible 

definitions of modularity functions that do not suffer from resolution limits in the first place 

(Traag et al., 2011). A full discussion of these functions is beyond the scope of this review.
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3.1.1. Multi-scale community structure in the neuroimaging literature—Multi­

scale analyses of real-world networks have revealed known structural motifs in proteins 

(Delmotte et al., 2011; Delvenne et al., 2010), dynamic patterns in financial systems (Fenn 

et al., 2009, 2012), and “force chains” in physical systems of particles (Bassett et al., 

2015a). Most studies of community structure in brain networks, however, have focused on 

communities at a single scale (Hagmann et al., 2008; Power et al., 2011; Gu et al., 2015b) 

or, in the event that investigators wish to examine multiple scales, have resorted to heuristics 

such as recursive partitioning (He et al., 2009; Bassett et al., 2010), edge thresholding 

(Power et al., 2011), or by accepting sub-optimal solutions through the modification 

of existing algorithms (Meunier et al., 2010a). The multi-scale modularity maximization 

approach and related techniques (Delvenne et al., 2010; Schaub et al., 2012; Kheirkhahzadeh 

et al., 2016) can seamlessly scan all topological scales by tuning the resolution parameter, 

which entails no additional assumptions. While single-scale approaches to community 

detection are not fundamentally wrong, they miss out on the richness that may be present 

at other scales. For example, a single-scale estimate of the community structure for a 

hierarchically modular network would detect only one of the hierarchical scales present in 

the system.

Nonetheless, there is a growing number of studies that have employed multi-scale 

community detection techniques (Rubinov et al., 2015) (Fig. 2). Some of these studies used 

the multi-scale approach to identify single-scale modules, but at a resolution parameter that 

differs from the default (γ = 1) (Gu et al., 2015a; Betzel et al., 2016d; Nicolini and Bifone, 

2016). In other words, they obtained estimates of community structure over multiple scales 

and defined a secondary objective function that, when optimized, identified from among that 

set of partitions a scale at which to focus on. Other approaches have explicitly set out to 

compare community structure detected at different resolutions. In the aging literature, for 

example, a number of studies have reported that communities become less segregated across 

the human lifespan (Chan et al., 2014, Betzel et al., 2014). In a recent study, however, the 

authors analyzed the community structure of resting-state FC networks across the lifespan 

and at different values of γ (Betzel et al., 2015). They showed that community structure, 

and specifically the extent to which communities are segregated from one another, exhibits 

an interaction between age and scale; smaller communities become less segregated with age, 

while larger communities become increasingly segregated. However, had the authors only 

explored community structure at a single topological scale, they would have never observed 

the reported interaction.

Other studies have estimated multi-scale community structure towards more theoretical 

ends. For example, in Lohse et al. (2014), the authors characterize different spatial and 

topological properties of anatomical brain networks as a function of γ, and use a measure 

of community radius (Doron et al., 2012) to show that large communities (as measured 

by the number of nodes) are embedded in large physical spaces. This mapping of a 

large topological entity to a large physical entity is not required of networked systems 

(Barthelemy, 2011), and its existence suggests the presence of non-trivial constraints on 

the embedding of the brain’s network architecture within the confines of the human 

skull (Bullmore and Sporns, 2012). Indeed, the multiscale nature of the brain’s modular 
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architecture is strikingly similar to the hierarchical modularity observed in large-scale 

integrated circuits, whose abstract (and rather complex) topology has been mapped cost­

efficiently (meaning with a predominance of short wires) into the two-dimensional space of 

a computer chip (Bassett et al., 2010; Klimm et al., 2014). This efficient mapping can be 

uncovered by testing for the presence of Rentian scaling (Sperry et al., 2016), a property 

by which the number of edges crossing the boundary of a spatial parcel of the network 

scales logarithmically with the number of nodes inside the parcel. Hierarchically modular 

networks—including the human brain, the C. elegans neuronal network, and even the 

London underground—that have been efficiently embedded into physical space commonly 

display Rentian scaling, while those that have not been efficiently embedded do not show 

this property.

3.1.2. Implementation and practical considerations—Community detection, 

generally, is easy to do but difficult to do well (Fortunato and Hric, 2016). Modularity 

maximization for community detection begins with the assumption that the network 

is modular (Lancichinetti et al., 2011), and as a technique is prone to false positives 

(Guimera et al., 2004). Moreover, detecting the globally optimal partition is computationally 

intractable (Good et al., 2010), the most popular algorithm for maximizing modularity 

generates variable output (Blondel et al., 2008), and the composition of detected 

communities can be biased by the overall density of the network (Fortunato and Barthelemy, 

2007). These are issues associated with modularity maximization before sweeping γ. 

Adding the resolution parameter can further amplify these complications; these issues are 

manifest at every level of γ. How can the prospect of multi-scale modularity maximization 

be performed in a principled, careful, and thoughtful way?

3.1.3. Selecting the resolution parameter—One of the most important issues is to 

select the topological scale(s) of interest, which is tantamount to focusing on a subset 

of γ values. Without prior knowledge of the number and size of communities, there is 

no good rationale for preferring one value of γ over another (including γ = 1). There 

are, however, a few approaches described in the existing literature for selecting a scale 

of interest from among the communities detected over a range of γ values. Intuitively, 

if a network’s organization at a particular scale is truly well-described by communities, 

then we might also believe that our algorithms will easily detect this organization. In this 

case, the known variability in the output of some modularity maximization techniques 

(Blondel et al., 2008) can actually work in our favor. When variability is low—i.e. the 

algorithm converges to similar community structure estimates over multiple runs—it might 

be indicative of especially well-defined communities. Under this assumption, we repeatedly 

maximize modularity at different values of γ and calculate the pairwise similarity of the 

detected communities (Doron et al., 2012). We can then focus on community structure 

detected at γ values where the similarity is great (and variability low) (see Betzel et al., 

2016d; Gu et al., 2015a; Chai et al., 2016; Mattar et al., 2015 for examples where this 

approach has been applied). Similarity of partitions can be estimated using a number of 

measures such as normalized mutual information (Lancichinetti et al., 2009), variation of 

information (Meilă, 2003), or the z-score of the Rand coefficient (Traud et al., 2011).
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Other approaches have also been suggested. One possibility is to use statistical arguments 

to focus on specific scales of γ. For example, we could estimate the probability of 

observing a community of a particular size by chance, and then focus on the scale where 

the detected communities’ sizes deviate most from chance (Traag et al., 2013). Another 

possibility assumes that “good” community structure is not fleeting—i.e. that it should 

persist over some range of γ (Fenn et al., 2009). Under this assumption we can calculate 

the average similarity between partitions detected at every pair of γ values and cluster the 

resulting similarity (or distance) matrix. The clusters correspond to collections of detected 

partitions that are all highly similar to one another—the absence of clusters suggests that 

if community structure exists at different scales, then it is short-lived and possibly of less 

interest (Lambiotte et al., 2014). At the very least, in the event that one does not wish to 

scan multiple topological scales, a good method for demonstrating the robustness of a result 

that depends upon the composition of detected communities is to vary γ slightly from the 

selected value to verify that community structure is consistent (see, for example: Betzel et 

al., 2016e).

3.1.4. Consensus community structure and communities of interest—Choosing 

the γ value(s) at which to analyze a network’s community structure is the first hurdle. 

There remain the unresolved questions of how to define consensus communities that are 

representative over a group of partitions and how to determine whether all (or just some) 

of the detected consensus communities are of interest (the group of partitions could come 

from multiple optimizations of a modularity maximization algorithm or a collection of 

partitions obtained from many individuals). There are now multiple approaches for choosing 

a consensus partition, including “similarity maximization” (choosing the consensus partition 

as the one with greatest average similarity to the other partitions) Doron et al. (2012) 

and variants of the “association-recluster” framework (using a clustering algorithm to find 

consensus communities in a co-occurrence or association matrix that stores the frequency 

with which nodes co-occur in a community over an ensemble of partitions) (Lancichinetti 

and Fortunato, 2012; Bassett et al., 2013a; Betzel et al., 2016d). Because these approaches 

are now well-known and widely used, we will not discuss them further here.

We do, however, find it prudent to discuss the final question: “should we analyze all the 

communities in the partition?” The notion of defining a partition in which all nodes get 

assigned to one community or another presupposes that this type of structure exists in the 

first place. Is this a reasonable assumption? The presence of hubs (Hagmann et al., 2008) 

and rich-clubs (van den Heuvel and Sporns, 2011) suggests that at least some brain network 

nodes fail to strictly adhere to the community template—hub nodes, by definition, are highly 

connected and span multiple modules. In short, maximizing modularity always partitions 

the network into clusters, but are all the clusters really communities? There are multiple 

ways to address this question. One possibility is, again, to invoke a statistical argument 

and ignore communities with properties consistent with what you might expect by chance. 

For instance, you could calculate the modularity contribution made by each community 

(defined in Bassett et al., 2012 and applied in Betzel et al., 2014, 2016d) and compare 

the observed values against a random null model (e.g., permute the community labels and 

recalculate modularity contributions, optimize modularity for rewired networks and compare 
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the observed modularity to that of the randomized networks). The gold standard technique, 

however, would be a tool that does not force all nodes to be in a community and only detects 

communities that are inconsistent with a random null model. Such a tool exists in the form 

of the OSLOM algorithm (Lancichinetti et al., 2011), which works by first identifying the 

worst node in a community (i.e. the one with the fewest within-community connections). 

Next, the community is assigned a “C-score” defined as the probability of observing a node 

in the same community that makes more within-community connections than expected in a 

random network. To the best of author’s knowledge and at the time of writing this review, 

OSLOM has not yet been applied to brain network data.

In this section, we highlighted the fact that networks can exhibit non-random organization 

across a range of topological scales, from that of individual nodes up to the entire network. 

To develop a more complete understanding of the network’s organization and develop 

deeper insight into its function, we argue that it is essential to focus not only on one single 

scale, but to embrace the multi-scale topological nature of brain networks and characterize 

brain networks using appropriately multi-scale tools. The result is a richer picture of a brain 

network. That added richness may be necessary to form a deeper understanding of how brain 

network structure is associated with human behavior and cognition, and ultimately how it is 

altered in disease.

3.2. Multi-scale rich club and core–periphery organization

In addition to community structure, networks can exhibit a range of mesoscale 

organizations. These include rich club and core–periphery structure, both of which have 

been investigated in the context of brain networks. While not the explicit focus of this 

review, we felt that we would be remiss not to briefly mention the available tools to study 

multi-scale rich club and core–periphery organization.

We recall that a rich club is a group of hubs (high degree, high strength nodes) that are 

also densely interconnected to one another (Colizza et al., 2006; Opsahl et al., 2008). 

Rich clubs are hypothesized to act as integrative structures in SC networks by linking 

modules to one another and facilitating rapid transmission of information (van den Heuvel 

and Sporns, 2011). Core–periphery structure is a related concept, which assumes that the 

network consists of one (or a few) dense cores, with which peripheral nodes interact, though 

the peripheral nodes rarely interact with one another (Borgatti and Everett, 2000; Holme, 

2005; Rombach et al., 2014). Similar to rich clubs, cores play an integrative role, serving as 

a locus for different brain regions to link up and exchange information.

Similar to communities, there is a tendency in the network science literature to concoct 

binary assignments of nodes as either belonging to or not belonging to a network’s cores 

and rich clubs. This dichotomy aids in the interpretation of results, but ultimately belies the 

complexity and richness of core–periphery and rich club organization in a network, both of 

which can persist over multiple topological scales. Whereas communities can be identified 

by maximizing a modularity function, rich clubs are detected by calculating a rich-club 

coefficient, ϕ(k), which measures the density of connections among nodes with degree k or 

greater (Fig. 3A). If this coefficient is greater than what would be expected under a random 

network model, there is evidence that the rich club is statistically significant. In practice, 
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there is nearly always a plurality of statistically significant rich clubs, and hence a plurality 

of rich club nodes. The absence of a singular rich club gives rise to multiple complementary 

views of how hub nodes interact with one another and how they contribute to brain function 

(Fig. 3B,C). A similar argument applies for core–periphery structure, where nodes can be 

more or less core- or periphery-like in a graded sense, defying the dichotomy of being one or 

the other (Fig. 3D–F).

Is there a practical way to assess these types of multi-scale rich clubs and core–periphery 

structures? In the case of rich clubs, one natural solution is to report the range of statistically 

significant rich clubs and characterize the composition of rich clubs across that range. In 

the case of core-periphery organization, one can study a parameterized landscape of core–

periphery architecture, offering a continuous description of cores of different sizes, and with 

differing softness of the boundary between the core-like nodes and the periphery-like nodes 

(Rombach et al., 2014; Bassett et al., 2013b) (Fig. 3D–F). These and other approaches that 

are similar in spirit may offer additional insights into the multi-scale architecture of the brain 

in a manner that complements the assessment of hierarchical community structure described 

in detail in earlier sections (Fig. 4).

3.3. Multi-scale temporal networks

At this point, we take a step back and note that brain networks, both functional and 

structural, are not static but instead fluctuate over timescales ranging from the sub-second 

(Kopell et al., 2014; Calhoun et al., 2014) to the lifespan (Di Martino et al., 2014). These 

fluctuations in network organization, especially over short timescales (< that of a single scan 

session), have become frequent topics of investigation (Bassett et al., 2011b; Allen et al., 

2012; Bassett et al., 2015b; Zalesky et al., 2014; Betzel et al., 2016b).

How do we study a network that changes over multiple timescales? One promising approach 

is to use multi-layer network models of temporal networks (Kivelä et al., 2014; De 

Domenico et al., 2013). The multi-layer network model is flexible enough to deal with 

networks that vary along dimensions other than time (Muldoon and Bassett, 2016), but when 

applied to temporal networks it treats estimates of the network’s topology at different time 

points as “layers”. For example, a layer could represent a functional network estimated from 

a few minutes of observational data acquired during an fMRI BOLD scan (Telesford et 

al., 2016) or it could represent the structural connectivity of an individual participant at a 

particular age in a developmental or lifespan study (Betzel et al., 2015). Whereas traditional 

network analysis would characterize each layer independently of one another, multi-layer 

network analysis treats the collection of layers as a single object, characterizing its structure 

as a whole to explicitly bridge multiple temporal scales. Equally important, the multi-layer 

network model is agnostic (from a mathematical perspective) to the timescales represented 

by the layers, and can therefore accommodate virtually any timescale made accessible using 

neuroimaging technologies.

3.3.1. Multi-scale, multi-layer network analysis—Most of the familiar network 

measurements have been generalized so that they can be computed on a multi-layer network. 

For example, path length, clustering, and some centrality measures are all easily calculated 
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(Kivelä et al., 2014). While a few recent studies have begun to investigate these measures in 

multi-frequency brain networks (De Domenico et al., 2016; Brookes et al., 2010; Battiston 

et al., 2016), the most widely used multi-layer measure in network neuroscience is that 

of multi-layer, multi-scale community detection (Mucha et al., 2010) (Fig. 4). Though 

there are several different approaches for detecting communities in temporal networks, 

including non-negative matrix factorization (Gauvin et al., 2014; Ponce-Alvarez et al., 

2015), and hidden Markov models (Robinson et al., 2015), the most popular is multi-layer 

modularity maximization, which represents a powerful extension of the standard modularity 

maximization framework that makes it possible to uncover communities across layers (i.e., 

time, in the case of temporal networks). The multi-layer analog resolves several important 

issues. First, it confers further flexibility to the multi-layer network model by making 

accessible familiar methods. Communities can, of course, be calculated for each layer 

independently. This unfortunately gives rise to ambiguities regarding the continuation of 

communities from one layer to the next. The second advantage of the multi-layer model is 

that by estimating the community structure of all layers simultaneously such ambiguities 

are effectively resolved. Third, it opens the possibility of defining new measures for 

characterizing the flow of communities across layers (Bassett et al., 2013a; Mattar et 

al., 2015; Papadopoulos et al., 2016). For example, the measure “flexibility” quantifies 

how frequently a brain region changes its community assignment from one layer to 

the next (Bassett et al., 2011b). Increased flexibility has been associated with learning 

(Bassett et al., 2011b), increased executive function (Braun et al., 2015), aging (Betzel et 

al., 2015), and positive mood, novelty of experience, and fatigue (Betzel et al., 2016e). 

Additionally, it can also be used to reveal a temporally stable core of primary sensory 

systems along with a flexible periphery of higher-order cognitive systems (Bassett et al., 

2013b) offering an architecture thought to be particularly conducive to flexible cognitive 

control (Fedorenko and Thompson-Schill, 2014). Other statistics including “promiscuity” 

offer distinct quantifications of meso-scale network reconfiguration (Papadopoulos et al., 

2016).

Importantly, multi-layer modularity maximization includes a resolution parameter, γ, that 

functions in an analogous manner to the resolution parameter in single-layer community 

detection. In conjunction with the multi-layer framework, which facilitates the investigation 

of temporal networks, the resolution parameter gives a researcher the option of incorporating 

multiple topological scales into a temporal analysis of networks.

3.3.2. Practical considerations—The multi-layer model can accommodate many 

different types of data collected over multiple timescales. This freedom comes at a cost, 

however. In order to consider all layers as forming a single multi-layer network object, it 

is currently a necessity to, either manually or in some data-driven way, add artificial links 

between layers. Broadly, there are two strategies for this approach. The first assumes that 

layers are not ordinally related to one another—i.e. layers have no temporal precedence with 

respect to one another; a permutation of the order of layers results in effectively the same 

network. If these assumptions hold (e.g., if layers represent connectivity matrices obtained 

from different task states), then it makes sense to categorically link layers to one another 

(Cole et al., 2014; Mattar et al., 2015). If the layers exhibit an ordinal relationship, then it 
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makes more sense to link node i in layer s to its temporally adjacent layers, s − 1 and s + 

1 (Chai et al., 2016). The decision to choose one approach over the other can, of course, 

influence whatever measurement is being made on the network. Currently, it is standard 

practice (at least in network neuroscience) to add ordinal links when dealing with temporal 

networks.

Even with sound rationale for selecting one linking procedure over the other, there still 

remains the difficult decision of how to assign the inter-layer links a weight. Again, how 

these weights are selected can have an effect on whatever measure is being computed. 

Without strong evidence to select one weighting scheme over another, interlayer links are 

usually assigned the same value, ω, that is sometimes varied over a narrow range. Ideally, 

there would be a principled, data-driven approach for selecting this value.

3.4. Multi-scale spatial networks

The explosion of network science into different scientific communities can be attributed, in 

part, to the fact that it provides a set of tools that can be applied to network data of all types. 

In this review, we focused on brain networks derived from functional and diffusion MRI, the 

modalities most often used in the neuroimaging community. The networks constructed from 

these data span spatial scales ranging from that of individual voxels up to that of the whole 

brain. The nature of MRI, however, makes it virtually impossible to construct brain networks 

at finer scales, such as the level of individual cells or that of neuronal populations. Other 

spatial scales are, of course, accessible using alternative imaging modalities. For example, 

optical imaging has delineated cellular-level networks of mouse retina (Helmstaedter et al., 

2013; Lee et al., 2016) as well as of model organisms like the nematode, C. elegans (Jarrell 

et al., 2012), or drosophila (Takemura et al., 2013). Large-scale tract-tracing and fluorescent 

labeling techniques have proven useful in uncovering networks at an intermediate scale—

detecting axonal projections between local processing units in drosophila (Shih et al., 2015), 

and brain areas in mouse (Oh et al., 2014) and macaque (Markov et al., 2012). Additionally, 

meta-analytic studies that aggregate and summarize the results of individual tract-tracing 

experiments have produced convergent maps of macaque (Stephan et al., 2001) and rat (Bota 

et al., 2015) network architecture. At these scales, the details of what each node and edge 

represent differ from that of whole-brain human networks. Nonetheless, the same network 

analysis tools can be brought to bear on these networks to reveal their organization and gain 

insight into their function. As microscale imaging tools become more common, and existing 

tools more refined, capable of handling higher throughput, and imaging greater volumes, 

they will be able to offer novel insights into how the multi-scale spatial network structure 

of the brain relates to cognition and behavior. An important step in advancing the field of 

network neuroscience is understanding, specifically, how network properties at one spatial 

scale are related to properties at another (van den Heuvel et al., 2015).

Presently, of course, the analysis of human brain networks is limited by the spatial 

granularity of the individual voxel. Even with this lower bound on the size of brain network 

nodes, it is possible to probe multiple spatial scales using MRI data. The most obvious 

manner in which spatial scale can be examined is in the choice of brain parcellation. MRI 

acquisitions return observations at the level of individual voxels. Voxels may be noisy, suffer 
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from signal dropout, and due to their large number may present computational challenges to 

conduct analyses at that scale. For these reasons, it has become common to aggregate voxels 

into parcels or regions of interest; rather than focus on any particular voxel, this allows us to 

focus on the average properties of parcels (de Reus and Van den Heuvel, 2013).

The number of alternative parcellations is ever-growing, with each new parcellation 

presenting a new criteria—e.g., spatial variation in functional connectivity, myelination, 

cytoarchitectonics, etc—for grouping voxels together into regions (Destrieux et al., 2010; 

Yeo et al., 2011; Gordon et al., 2014; Glasser et al., 2015; Hermundstad et al., 2013). The 

number of parcels ranges from ≈1000 (Cammoun et al., 2012; Diez et al., 2015) to around 

60 for the whole brain, representing a massive reduction from the tens of thousands of 

voxels typically imaged. Looking at parcellations of the brain from the voxel-level down 

to the coarsest set of parcels, we can examine different spatial scales of the brain. One 

of the findings that has come from a detailed comparison of spatial scales is that the 

choice of parcellation will tend to have implications for the network’s topology (Wang et 

al., 2009; Zalesky et al., 2010). For this reason, it is advised to verify that any particular 

result is not driven by the particular choice of parcellation; it should be reproducible (at 

least qualitatively) using a different set of parcels (Bassett et al., 2011a). A potentially 

interesting avenue for future work in this area is to apply multi-scale community detection 

to voxel-level networks to generate parcellations of the brain at different resolutions (Bellec 

et al., 2010). The parcellation-based approach for studying different spatial scales can be 

used to investigate and sub-divide specific brain areas, rather than the entire brain (Rosenthal 

et al., 2016). For example, in one recent study, owed to the retinotopic organization of the 

visual cortices, the authors were able to identify distinct parcels based on their connectivity 

patterns (Dawson et al., 2016).

4. Conclusion and future directions

This review deals with the topic of multi-scale brain networks. We discuss tools for 

performing multi-scale network analysis, their application to time-resolved networks that 

highlight network-level fluctuations across multiple temporal resolutions, and finally touch 

briefly on how different spatial scales of analysis are making an impact on the field of 

network neuroscience. The results of network analyses at different scales can be seen as both 

redundant and complementary. In some sense, we expect to find similar network properties 

across scales (van den Heuvel et al., 2016)—the same energetic and spatial constraints that 

shape network structure at the scale of brain regions and areas are at play at the cellular-level 

(Betzel et al., 2016a; Henriksen et al., 2016; Vértes et al., 2012). On the other hand, the 

function of network nodes and circuits as well as their biophysical attributes likely depend 

critically upon the scale at which a network is constructed and analyzed. Accordingly, we 

might also expect networks to be optimized to perform scale-specific functions (Marblestone 

et al., 2016), and studying a particular scale gives us a unique insight into the network 

architecture underpinning those functions. Ultimately, network neuroscience will need both 

approaches—an understanding of network function and organization at specific scales, as 

well as a map that bridges multiple different spatial, temporal, and topological scales.
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Fig. 1. 
The multi-scale brain. Brain networks are organized across multiple spatiotemporal scales 

and also can be analyzed at topological (network) scales ranging from individual nodes 

to the network as a whole. Images of neuronal ensemble recordings, segmented axons, 

brain evolution, and gray-matter development adapted with permission from Buzsáki (2004), 

Beyer et al. (2013), Krubitzer (2009) and Gogtay et al. (2004).
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Fig. 2. 
Schematic figure illustrating multi-scale community detection. Networks exhibit community 

structure over a range of different topological scales. In panels (A) and (B) we show 

communities detected in a structural connectivity network at two different topological scales 

(the colors in the surface plots indicate the community to which each region is assigned). 

We investigate these scales by tuning the resolution parameter in modularity maximization 

(a common community detection approach) to γ = 1 and γ = 2.5. In panel (C) we illustrate 

the multi-resolution approach for “sweeping” through a range of resolution parameters 

to detect communities at different scales, this time using a synthetic network constructed 

to have hierarchical community structure (hierarchical levels that divide the network into 

2, 4, and 8 communities). To identify topological scales of interest (ranges of γ), we 

calculated the mean pairwise variation of information (VI) of all partitions detected at each 

value of γ. Low values of VI indicate that on average the detected partitions were similar 

to one another. The metric VI achieves local minima at scales that uncover the planted 

hierarchical communities; at values of γ where none of the planted hierarchical communities 

are detected, VI takes on non-zero values, indicating lack of consensus across detected 

partitions and highlighting values of γ at which community structure is not present.
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Fig. 3. 
Multi-scale rich club and core-periphery analysis. (A) The rich club coefficient, ϕbin, for the 

observed network (black) and the mean over an ensemble of random networks (gray) as a 

function of node degree, k. The ratio of these two measures defines the normalized rich club 

coefficient, ϕnorm. Values of k for which the observed rich club coefficient is statistically 

greater than that of a random network define the rich club regime. (B) Most studies focus 

on a rich club defined at a single k value and use it to classify edges as “rich club” (rich 

node to rich node), “feeder” (rich node to non-rich node), or “non-rich club” (non-rich node 

to non-rich node). The number of edges assigned to each class is highly dependent upon 

the k at which the rich club is defined. (C) We show edge classifications at three different 

values of k, in order to highlight that classifications (and the subsequent interpretation) 

can vary dramatically, even across statistically significant rich clubs. (D) Core–periphery 

classification can be performed using a parameterized model (Rombach et al., 2014). The 

parameters (α, β) determine the size of the core relative to the periphery and how sharply the 

two are divided from one another (Bassett et al., 2013b). At different parameter values the 

model identifies different cores and different peripheries, and assigns each node a “coreness” 

score. (E) As an example, we show two sets of coreness scores ordered from smallest to 

largest. The two sets vary in terms of the core size and constitution. (F) For the same two 

sets, we show the topographic distribution of coreness scores. Note: In both the rich club and 
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core–periphery examples, the network studied was a structural network used in a previous 

study (Betzel et al., 2016c).
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Fig. 4. 
Schematic figure illustrating multi-layer network construction and community detection. 

Individual networks can be combined in a meaningful way to form a multi-layer 

network. In panel (A) we show four example networks, each of which contains the same 

25 nodes but arranged in different configurations. The links in these networks could 

represent fluctuating functional connections over time (e.g., within a single scan or over 

development), connections estimated during different tasks, different frequency bands, or 

different connection modalities (e.g., structural connections weighted by streamline count or 

fractional anisotropy or functional connections measured as correlations or coherence). (B) 

To combine individual layers, links are added from node i to itself across layers. These links 

can be added ordinally, linking a node to itself in adjacent layers, or categorically, linking a 

node to itself across all layers. The result is a multi-layer network. (C) Multi-layer networks 

can be analyzed using many now-standard measures in network science, including—but not 

limited to—community detection algorithms. The resulting estimate of communities allows 

us to track the formation and dissolution of communities across layers and report properties 

of individual nodes—e.g., their flexiblity, which measures how frequently a node changes its 

community assignment.
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