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Background: Thyroid cancer is the most common malignancy in the endocrine system, with its early 
manifestation being the presence of thyroid nodules. With the advantages of convenience, noninvasiveness, 
and a lack of radiation, ultrasound is currently the first-line screening tool for the clinical diagnosis of thyroid 
nodules. The use of artificial intelligence to assist diagnosis is an emerging technology. This paper proposes 
the use optical neural networks for potential application in the auxiliary diagnosis of thyroid nodules.
Methods: Ultrasound images obtained from January 2013 to December 2018 at the Institute and 
Hospital of Oncology, Tianjin Medical University, were included in a dataset. Patients who consecutively 
underwent thyroid ultrasound diagnosis and follow-up procedures were included. We developed an all-
optical diffraction neural network to assist in the diagnosis of thyroid nodules. The network is composed of 
5 diffraction layers and 1 detection plane. The input image is placed 10 mm away from the first diffraction 
layer. The input of the diffractive neural network is light at a wavelength of 632.8 nm, and the output of this 
network is determined by the amplitude and light intensity obtained from the detection region.
Results: The all-optical neural network was used to assist in the diagnosis of thyroid nodules. In the 
classification task of benign and malignant thyroid nodules, the accuracy of classification on the test set 
was 97.79%, with an area under the curve value of 99.8%. In the task of detecting thyroid nodules, we first 
trained the model to determine whether any nodules were present and achieved an accuracy of 84.92% on 
the test set.
Conclusions: Our study demonstrates the potential of all-optical neural networks in the field of medical 
image processing. The performance of the models based on optical neural networks is comparable to other 
widely used network models in the field of image classification. 
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Introduction

Thyroid cancer is the most common malignancy in the 
endocrine system, accounting for 90% of all endocrine 
tumors. In recent years, the morbidity of thyroid cancer 
has been on the rise worldwide (1). Although inert thyroid 
cancer accounts for the majority of the cases, there has 
been a steady increase in the morbidity and mortality 
of terminal thyroid cancer and aggressive variants of 
papillary thyroid cancer. The early manifestation of 
thyroid cancer consists of the presence of thyroid nodules. 
Early detection and accurate diagnosis of patients’ benign 
and malignant thyroid nodules is a critical component 
of clinicians’ disease management (2,3). Ultrasound is 
currently the first-line screening tool for the clinical 
diagnosis of thyroid nodules by virtue of its convenience, 
noninvasiveness, and nonradiation (4,5). It is not only used 
to assess the risk of malignancy of thyroid nodules but is 
also frequently applied to guiding fine-needle aspiration 
(FNA) and treatment decisions. In 2017, the American 
College of Radiology (ACR) published a white paper on 
the Thyroid Imaging Reporting and Data System (TI-
RADS), which is used to help radiologists standardize lesion  
descriptions (6). Malignant features of thyroid nodules 
ultrasound as described by the ACR TI-RADS are 
as follows: solid, extremely hypoechoic echogenicity, 
microcalcifications, ill-defined borders, and taller-than-
wide ≥1. However, the judgment of these features is highly 
dependent on the clinical experience of physicians. To 
better achieve the accuracy of identification, physicians 
usually use auxiliary methods to aid in diagnosis. Since 
it is time-consuming to analyze the diagnosis of the data 
collected from ultrasound detection, the use of artificial 
neural networks has been proposed by some scholars to 
conduct the initial diagnosis of ultrasound data.

An art i f ic ial  neural  network is  a  mathematical 
processing method that simulates neurons in biological 
neural systems. Since its invention, it has been rapidly 
developed and applied across numerous fields. In 1989, 
Cun et al. introduced a convolutional neural network 
model called LeNet-5 based on the error backpropagation 

algorithm, which demonstrated promising results in 
handwritten digit recognition tasks (7). Since then, various 
models have been proposed, including convolutional 
neural networks (CNNs) (8), deep belief networks (9),  
AlexNet (10), generative adversarial networks (11), and 
neural network models based on self-attention mechanism 
transformer (12), among others. These models have been 
widely applied in image recognition and generation (8,11), 
target detection (7,8), feature extraction, classification, and  
generation (9), natural language processing (12), and more. 
The network can act as an expert system due to its parallel 
processing style, self-learning ability, memory capacity, 
and ability to predict the development of events. There are 
several studies in areas such as medical assisted diagnosis  
(13-16), for example, the use of 2 preoperative medical image 
modalities for multiclassification of thyroid diseases (i.e., 
normal, thyroiditis, cystic, multinodular goiter, adenoma, 
and cancer). Other research has constructed a diagnostic 
model for thyroid diseases using the currently state-of-
the-art deep CNN architecture for differentiating disease  
types (17-19).

Although artificial neural networks have provided 
enhanced results in medical assisted diagnosis, improving 
the network better requires considerable computation 
time. Cheng et al. (20) and Cammarasana et al. (21) 
conducted research on using artificial neural networks for 
the auxiliary diagnosis of thyroid nodule ultrasound data 
with an analysis rate of 10 frames per second and 40 frames 
per second, respectively. With the increasing demand for 
detailed ultrasound data in clinical practice, high frame rate 
ultrasound imaging devices have gained attention and have 
been put into practice. These devices can obtain ultrasound 
data at a speed of over 50 frames per second (22). However, 
the processing speed of traditional electronic artificial 
intelligence networks is slower than the contrast speed of 
high frame rate ultrasound devices. Hence, these networks 
are currently unable to analyze high frame rate ultrasound 
data frame by frame and assist in diagnosis. In-depth 
research on artificial neural networks has revealed that 
achieving breakthroughs in processing units and improving 
the computational speed of the network is challenging 
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due to the limitations of Moore’s law and other related  
factors (23).

With the development of optical and optoelectronic 
technology, researchers are increasingly investigating optical 
neural networks, including on-chip integrated optical neural 
networks based on Mach-Zendel interferometer topological 
cascade architecture (24), multimode optical CNNs based 
on pulse code modulation (25), and diffraction neural 
networks (26). Among them, diffractive neural networks 
have received more attention due to their simple structure, 
low energy consumption, and short processing time. For 
example, studies have been conducted on improving the 
energy efficiency of core computational modules and 
the robustness of diffractive neural networks (27), image 
classification (28), target detection and recognition (29-31), 
etc. However, optical diffractive neural networks have rarely 
been used in medical research.

Therefore, in order to process a large amount of 
ultrasound data medical images in real time while reducing 
the resource consumption and waiting time for patients, 
we aimed to use diffraction neural networks with real-
time processing and low resource consumption for the 
classification and detection tasks of thyroid ultrasound 
image data. The tasks examined in this study were based 
on the ultrasound data obtained from the Institute and 
Hospital of Oncology of Tianjin Medical University. The 
accuracy of benign–malignant thyroid classification reached 
97.69%, and the under the curve (AUC) value reached 
99.8%. The detection of thyroid nodules was achieved 
by the use of sliding detection windows combined with a 
diffraction neural network model, which yielded with an 
accuracy of 84.92% for the classification of the presence 
or absence of nodules in images. The module then framed 
out the part of the image containing nodules. The study 
confirms the feasibility of the application of diffraction 
neural networks in medical image processing. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-98/rc).

Methods

Datasets

All the ultrasound images included in the dataset employed 
in this study were obtained from the Institute and Hospital 
of Oncology, Tianjin Medical University, from January 2013 
to December 2018. Patients who consecutively underwent 

thyroid ultrasound diagnosis and follow-up procedures are 
included in the study. Two experienced radiologists (Dr. 
Wei and Dr. Zhang with 15 and 30 years of experience 
in thyroid cancer ultrasound diagnosis, respectively) 
examined the ultrasound images of thyroid nodules. The 
study inclusion criteria were as follows: (I) pathological 
findings obtained with FNA or surgical resection, (II) 
ultrasound examination performed within 1 month before 
surgery or FNA, and (III) complete clinical and ultrasound 
data. The exclusion criteria were as follows: (I) biopsy or 
resection prior to ultrasound examination, (II) patients 
who received preoperative treatment (radiofrequency or 
microwave ablation, radiotherapy and chemotherapy), and 
(III) unknown pathological information. This study was 
approved by the Ethics Committee of Tianjin Medical 
University Cancer Institute and Hospital (No. bc2020033) 
and conformed to the provisions of the Declaration 
of Helsinki (as revised in 2013). The requirements for 
informed consent were waived due to the retrospective 
nature of the study.

Research design

The diffraction neural network described in this paper 
is trained based on the Python 3.10 and PyTorch 1.21.1 
environment, and the training procedure is shown in  
Figure 1. First, data are divided into 10 groups evenly and 
are processed in advance. Nine of the ten data groups are 
taken as the training set, and the other one as the validation 
set. Then, the data are input into the diffraction neural 
network and traditional artificial intelligence (AI) network. 
The traditional AI neural network used in this study was the 
fast region-based CNN (fast-RCNN), featuring a simple 
network module, and Detection Transformer, featuring a 
complex network module (32). After 1 round of training, 
the data in the validation set are used for validation. After 
each round of training, a group of data in the validation set 
is swapped with one in the training set that has not been 
used for validation, and then the next round is conducted. 
The above-described process is repeated 10 times; that 
is, the 10-fold validation method widely used in machine 
learning is used. The training is then finished.

All-optical diffraction neural network

The diffraction neural network is composed of 5 diffraction 
layers and 1 detection plane as shown in Figure 2A, where 
the number indicates the i-th diffraction layer. The input 

https://qims.amegroups.com/article/view/10.21037/qims-23-98/rc
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Figure 2 Diffraction neural network structure and training scheme. (A) Composition of the all-optical diffraction neural network. Numbers 
1 to 5 represent the layers of diffractive neural networks. (B) Training flow diagram. Y, yes; N, no; n, number of cycles.
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image is placed 10 mm away from the first diffraction layer. 
The diffraction unit size is 400 µm × 400 µm, and each 
diffraction layer is composed of 400×400 diffraction units. 
The distance between adjacent diffraction layers and the 
distance between the last diffraction layer and the detection 
plane are 10 mm. Two detection areas in the size of 50×50 
are on the detection plane, which are symmetrically 
distributed on the detection plane. In this paper, a wave 
with a frequency of 0.4 THz is used as the input of the 
diffraction neural network to modulate the amplitude of the 
input image, and the output of the network is determined 
by the amplitude and light intensity obtained from the 
detection area. If the light intensity of the left detection area 
reaches the threshold while the area on the right does not, 
the network model determines the result to be malignant. 
On the contrary if the light intensity of the right detection 
area reaches the threshold while the area on the left does 
not, the network model determines the result to be benign. 
The input image size is cropped to 400×400. After the 
diffraction neural network model is built, the data are input 
for training and testing. The training process is shown in 
Figure 2B; the batch size is set to 64 with a learning rate 
of 0.0002. After the training is completed, 120 cycles are 
trained, and a 10-fold validation is performed, with the best 
model being selected for testing based on the results of 
the validation. Finally, the amplitude of the images in each 
diffraction layer is analyzed using the data in the test set, 
and the inference ability of the model is evaluated.

Diffraction neural networks are physically formed by 
multiple layers of diffractive surfaces that work in concert 
to optically perform any function that the network can 
statistically learn. Analyzed physically, the deduction and 
prediction mechanisms of the network are all optical while its 
learning component is performed by a computer. According 
to the Huygens-Fresnel principle, any point on the wavefront 
at a given moment in the light propagation process can be 
viewed as a secondary point source, and the subsequent 
propagation process can be viewed as advancing with the 
envelope of these secondary sources while the propagation 
process can be approximated analytically using scalar 
diffraction theory. According to the Rayleigh-Sommerfield 
diffraction equation, each individual neuron of a given 
diffraction layer can be considered to be a secondary source 
of a wave consisting of the following optical modes (33):

( ) 2

1 1 2, , exp
2

l i
i

z z j rw x y z
r r j

π
π λ λ

 −  = +   
  

 [1]

where l represents the l-th layer of the network, and i 
is the i-th neuron in the l-th layer. The coordinate of 
the neuron is (xi, yi, zi), and λ is the working wavelength. 

( ) ( ) ( )2 2 2
i i ir x x y y z z= − + − + −  r e p r e s e n t s  t h e  d i s t a n c e 

between the current neuron and the i-th neuron in the l-th 
layer and 1j = − . The amplitude of the secondary wave and 
relative phase are confirmed by the multiplication of the 
input motion of the neuron and its transfer coefficient. The 
input motion and transfer coefficient are both complex-
valued functions. Based on the above theory, the output 
function of the i-th neuron is as follows:

( ) ( ) ( ) ( )1, , , , , , , ,l l l l
i i i i i i k i i ik

n x y z w x y z t x y z n x y z−= ⋅ ⋅∑  [2]

where ( )1 , ,l
k i i ik

n x y z−∑  is the input wave of the i-th neuron 
on the l-th layer. The transfer coefficient contains the 
amplitude and phase as follows:

( ) ( ) ( )( ), , , , exp , ,l l l
i i i i i i i i i i i it x y z a x y z j x y zφ=  [3]

For the diffraction neural network modulated only by 
phase, amplitude ( ), ,l

i i ii x y za  (alis the unit constant, so its 
output light field l

in  can be expressed as follows:

( ) ( ) 1 1, , , ,l l l l
i i i i i k kk

n x y z t x y z n w− −= ⋅∑  [4]

A plane wave is an analytic solution of Maxwell’s set of 
equations, which are linear differential equations, so that 
any light wave can be represented as an infinite number of 
plane waves superimposed on the transmission. The angular 
spectrum theory starts from the plane wave solution and 
finally obtains the analytic solution. It is applicable to a 
situation in which the transmission distance is much larger 
than the wavelength, only 1 polarization state is considered, 
the medium is isotropic and linear medium, and most of the 
substances in life are included. Therefore, in the simulation 
of diffraction neural network, the angular spectrum method 
is used to calculate the light propagation process, which 
can speed up the network training; thus, Eq. [4] can be 
rewritten as the following equation:

( ) ( ) ( ) ( ) ( )( )11, , , , , exp 2ll l
i i i i i zn x y z t x y z F U u v j πγ−−= ⋅ ∆⋅  [5]

where Δz is the distance between the l-th layer and the (l-1)-

th layer, and ( )2 2 2 11 ,lu v U u vγ λ −= − +  is the Fourier transform 
of the output light field of the (l-1)-th layer; that is
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Classification of the malignant or benign thyroid nodules

The datasets contain the annotation of the location of 
thyroid nodule lesions performed by professional physicians 
while the thyroid nodule data are classified as benign 
and malignant and placed in different folders. Next, the 
diffraction neural network previously described is used 
for the classification task. Before the classification task, 
some further data processing is required. In order to fit 
the network size, we crop the images to size and place 
them in different folders, with the folder name set to 0 for 
malignant nodules and 1 for benign nodules, forming a 
binary classification dataset. The folder name is then used 
as the label value of the images during training.

During the training process, the light amplitude sum 
of the diffraction neural network in the 2 detection 
regions needs to be normalized according to the following 
normalization setting:

'

0

i
i

i
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A A

=
+  [7]

The training process for diffraction neural networks uses 

the cross-entropy loss function (nn.CrossEntropyLoss) set 
by default in PyTorch for measurement, evaluation, and 
network optimization. The cross-entropy loss function is 
shown below:
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The  p roce s s  o f  de t ec t ing  thyro id  nodu le s  i s 
approximately the same as the process of classifying thyroid 
nodules. First, the images are cropped to a size of 200×200, 
from which data containing nodules and data without 
nodules are selected and placed in separate folders to form a 
dichotomous dataset. After that, this dataset is trained with 
the same network used for thyroid nodule classification to 
obtain a model for determining the presence or absence 
of nodules. Next, we use this model to determine whether 
the images contain nodules. We place the detector at the 
edge of the image and gradually move the detector to scan 
the whole image, determining whether there is a thyroid 
nodule in the region as we move (the method is shown in  
Figure 3). The detection frame size is set to 75×75, and the 
sliding step is 5. The numbers in the figure correspond to 
the i-th diffraction plane, and the last plane is the detection 
plane.

The analysis of medical images through diffraction 
neural networks has not been extensively researched, and 
studies on optical network–assisted diagnosis of thyroid 
nodules are completely lacking. Therefore, it is necessary 
to compare our study with traditional AI networks. In 
this paper, 2 widely used AI networks were selected for 
comparison: faster-RCNN featuring a simple network 
model and Detection Transformer featuring a more 
complex network model. Both networks perform the benign 
and malignant classification task on thyroid nodule datasets.

The basic structure of fast-RCNN is shown in Figure 4. The 
4 main components and their functions can be summarized 
as follows:

(I) Conv layers: the series of convolutional + rectified 
linear unit (ReLU) + pooling layer is used to extract 
the feature map of images. The feature map is 
shared and used for the region proposal network 
(RPN) layer and fully connected layer.

(II) RPN: the RPN network is used to produce region 
proposals. In this process, the network identifies 
whether anchors are positive or negative through 

Diffraction 
layer

Detection 
layer

(1)
(3) (4) (5)

(2)

Figure 3 Schematic drawing of thyroid nodules detection. 
Numbers 1 to 5 represent the layers of diffractive neural networks.
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softmax and correct anchors to obtain precise 
and accurate proposals through bounding box 
regression.

(III) Region of interest (ROI) pooling: this layer 
collects the input feature map and proposals. 
After integrating the input information, it extracts 
proposal feature maps which are input into the fully 
connected layer for the identification of types.

(IV) Classification: the type of proposal is determined 
by a regional feature map, and bounding box 
regression is used to obtain the exact final position 
of the detection frame.

The structure of Detection Transformer is shown in 
Figure 5 below. It consists of four 4 components: backbone, 
encoder, decoder and prediction head; their functions 
described as follows:

(I) CNN backbone: this part of extraction is used to 
accelerate network computing.

(II) Encoder: every encoder layer has a standard 
framework which comprises a multi-head self-
attention module and a feedforward network (FFN). 
It is used for encoding the input feature map.

(III) Decoder: all-zero feature vectors are encoded 
through self-attention, multi-head attention, and a 
related basic option.

(IV) Prediction head: the prediction part consists of 
a ReLU activation function and perceptron with 
a hidden layer and a linear layer. The center 
coordinate of FFN prediction frame, height, 
width, and the input images predict the class labels 
through softmax, and then the linear layer predicts 
the class labels through softmax.

Indexes for evaluation

A confusion matrix is a situation analysis table used for 
summarizing the prediction results of a classification model 
in machine learning (Table 1). It summarizes the records in 
the datasets in the form of matrix according to 2 criteria: 
the real category and the category judgment predicted by 
the classification model. The rows of the matrix represent 
the real values, and the columns of the matrix represent the 
predicted values. True positive (TP) indicates positive or 
benign and the real number of benign cases, false negative 

Data

Classifier

Feature 
map

Region 
proposal 
network

ROI 
pooling

CNN

Figure 4 The basic structure of Fast-RCNN. Fast-RCNN, fast region-based convolutional neural network; CNN, convolutional neural 
network; ROI, region of interest.

Input Positional 
encoding

CNN

FFN

Feature 
Map

Encoder

Prediction 
heads
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Object 
queries

Figure 5 The basic structure of Detection Transformer. FFN, feedforward network; CNN, convolutional neural network.
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(FN) indicates negative or malignant but the real number of 
benign cases, false positive (FP) indicates positive or benign 
but the real number of malignant cases, and true negative 
(TN) indicates negative or malignant and the real number 
of malignant cases.

The AUC is defined as the area formed by receiver 
operating characteristic curve (ROC) curve and coordinate 
axes. Therefore, it is necessary to make analysis of ROC 
curve before calculating the AUC.

The abscissa of ROC curve is the FP rate (FPR), and 
its ordinate is the TP rate (TPR). There are also the TN 
rate (TNR), the FN rate (FNR), and the quantity average 
precision (AP), which is commonly used in the field of 
target detection and also calculated via the confusion 
matrix. The formulae for calculating these 4 indices are as 
following:

(I) FPR=FP/(FP + TN): the probability of positive 
but not TP (i.e., the probability of positive in true 
negative);

(II) TPR = TP/(TP+FN): the probability of positive 
and also TP [i.e., the probability of positive in TP 
(positive recall)];

(III) FNR = FN/(TP + FN): the probability of negative 
but not true negative (i.e., the probability of 
negative in TP);

(IV) TNR = TN/(FP + TN): the probability of negative 
and also true negative (i.e., the probability of 
negative in TN);

(V) AP = TP/(TP + FP).
The ROC curve does not change with the change of the 

positive and negative samples, so it is of great significance 
with regard to the reference use of ROC curve as the 
evaluation standard.

Since the ROC curve requires the calculation of the 
probability of the output results, we discuss how the 
network models in this study calculate the probability of 
the output results. The diffraction neural network identifies 

benignancy or malignancy based on the light intensity in 
the detection area: if the left/right light intensity reaches the 
threshold, the test thyroid nodule is judged to be malignant/
benign. In the network, the light intensity of the detection 
area of a picture is treated as a tensor with 2 elements (A 
and B): A indicates the light intensity obtained in the left 
detection area, and B indicates the light intensity obtained 
in the right detection area. The threshold value of both A 
and B is 10. Therefore, we use the equation to calculate the 
probability value of the output result, with P indicating the 
probability value: if P<0.5, the result is malignant, and if 
P>0.5, the result is benign.

At present, clinical data of thyroid nodules are basically 
obtained from ultrasound. Considering that the volume 
of ultrasound data is large and the real-time problem of 
AI-aided diagnosis, we needed us to calculate the time of 
processing each image by the AI network. The calculation 
method was devised as follows: single image processing time 
= total time of processing test set images/the number of test 
set images. After obtaining the time value, we can determine 
whether the network meets the real-time requirements 
needed to analyze ultrasound data.

Results

First, the classification performance of the optical neural 
network was evaluated. The method described in the 
previous section was used to train the benign and malignant 
thyroid nodule data. The change of “loss” during training is 
shown in Figure 6A. As the training process continues, the 
“loss” decreases rapidly, and the model converges rapidly. 
The performance of the trained model was evaluated on 
the test set, and the results of the classification on the test 
set are shown in Figure 6B. The confusion matrix indicated 
that the diffraction neural network achieved an accuracy of 
97.69% in the classification of benign and malignant thyroid 
nodules. In the confusion matrix, 0 indicates malignant 
nodules, and 1 indicates benign nodules. The ROC curve is 
presented in Figure 6C, and the AUC value is 99.8%. Next, 
the data images of the test set were input into the neural 
network to check the amplitude distribution and the light 
intensity distribution in the detection region, as shown in 
Figure 6D. The light intensity in the detection region on the 
left side is stronger, so it is a malignant nodule; meanwhile, 
the right detection area is stronger, which means it is a 
benign nodule.

The classification results of thyroid nodules obtained 
with fast region-based CNN (fast-RCN), Detection 

Table 1 Example of binary classification through a confusion matrix 

Confusion matrix
Predicted label

0 1

True labels

0 TN FN

1 FP TP

TN, true negative; FN, false negative; FP, false positive; TP, true 
positive.
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Transformer, and the proposed model were compared. 
As shown in Figure 7A, the classification accuracy of fast-
RCNN is as high as 96%, Detection Transformer has a 
classification accuracy of up to 94.6%, and the diffractive 
deep neural network has a classification accuracy of up to 
97.69%. To maintain uniformity in the data format, the 
figure displays the classification accuracy of up to 3 decimal 
places. We also present the training time consumption for 
each model in Figure 7B. The training time for Detection 
Transformer is 38 hours, while the training time for our 
model is only 8 hours.

Figure 7C presents a comparison of the image data 
processing time for all 3 models. The processing time of 
fast-RCNN for each image is 0.048 seconds, allowing 
for approximately 21 images to be processed per 
second. Similarly, Detection Transformer can process 
about 26 images per second with a processing time of  
0.039 seconds per image. Neither of these models have 
sufficient throughput to analyze and diagnose the current 
mainstream ultrasound data of 50 frames per second. On 
the other hand, our model takes only 0.017 seconds to 

process a single image, which implies that it can process 
approximately 58 images per second. Therefore, the 
proposed model has the required processing throughput to 
meet the real-time diagnostic needs of ultrasound data.

We analyzed the results of thyroid nodule detection. The 
model was trained to determine whether the ultrasound 
picture contained a nodule had an accuracy of 84.92% 
on the test set and an AP of 0.831; its confusion matrix 
is shown in Figure 8A. The trained model was then used 
for the detection task of thyroid nodules using the sliding 
window method, and its detection results are shown in 
Figure 8B. It can be seen from the figure that the model can 
better distinguish the regions containing nodules and frame 
them out.

Discussion

In the classification task of thyroid nodules implemented by 
diffraction neural network algorithm, in order to evaluate 
whether diffraction neural networks can be used in the 
analytical processing work of medical images, this study also 

Figure 6 The evaluation of classification performance of the optical neural network. (A) Change of “loss” during the training process. (B) 
Confusion matrix. (C) ROC curve. (D) The deduction result of the image in the network and the light intensity distribution in the detection 
area. ROC, receiver operating characteristic.
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Figure 8 The detection results of optical neural networks. (A) Accuracy of the detection model. (B) Results of detection.
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used traditional AI networks for the classification task of the 
same datasets for comparison. The classification results show 
that the optical neural network, as an emerging algorithm, 
has already surpassed the performance of the simpler network 
fast-RCNN and also reached a relatively higher level than 
the complex Detection Transformer algorithm. Additionally, 
our proposed model obtained using the optical diffraction 
neural network exhibited significant advantages in both 
training time and image processing speed.

Table 2 shows a comparison of AUC values for several 
neural networks, and our all-optical neural network model 
achieved the highest AUC value of 99.8%, demonstrating 
its excellent performance in classifying thyroid nodules.

As for employing the diffraction neural network to 
assist in the diagnosis of thyroid ultrasound image data, 
the traditional CNN network requires considerable time 
resources due to the large volume of ultrasound data. Chen 
and Shi et al. reported that a diffraction neural network 
obtained via 3D printing can be used to classify Modified 
National Institute of Standards and Technology (MNIST) 
data images after it modulates the terahertz light source 
(31,37). In the whole process, the 0.4-Hz terahertz light 
source is the only part that consumes energy, and the whole 
classification process is performed at the speed of light. In 
contrast, CNN neural networks consume energy in training 
models and classifying images. Some researchers have 
optimized the algorithm of CNN neural network to narrow 
the gap between CNN design and energy consumption 
optimization (38), but the energy consumption for large-
scale data operations is still much larger than that of 
diffraction neural networks.

Our proposed model has shown promising results for the 
classification and diagnosis of thyroid nodules in medical 
images such as ultrasound data. Moreover, with the help 
of 3D printing technology, we can physically construct the 

diffractive deep neural network (D2NN) model structure to 
achieve even faster analysis times. Theoretically, the speed 
of determining benign and malignant thyroid nodules using 
this model can reach the speed of light, and the analysis 
time of each image can be reduced to almost 0 seconds. 
This approach enables us to diagnose ultrasound data at 
any frame number in real time, making it an efficient and 
reliable tool for medical professionals.

The comparison between diffraction neural networks 
and traditional AI networks confirms that diffraction neural 
networks provide better results in the classification task 
of thyroid nodules, but detection is not yet possible. To 
address these problems, we propose using classification 
to complete detection, but this detection would not yet 
provide equivalent performance to that of traditional 
electronic networks.

Conclusions

We propose using diffraction neural networks to classify 
and detect thyroid nodules. In the task of classifying benign 
and malignant thyroid nodules, this approach yielded an 
accuracy of 97.69% and an AUC of 99.8%. In the task of 
detecting the presence and absence of thyroid nodules, the 
classification method was used to determine the presence 
and absence of thyroid nodules through the images, which 
yielded an accuracy of 84.92%. The model for classifying 
the presence and absence of nodules is able to frame the 
areas containing nodules in the images, which confirms the 
feasibility of using all-optical diffraction neural networks in 
the field of medical image processing. Compared with fast-
RCNN networks and Detection Transformer algorithms, 
the proposed model has a shorter training time of only  
8 hours and a faster image processing speed of 58 frames per 
second, demonstrating its superior performance compared 
to traditional neural networks. Even when handling a large 
number of medical images, the model still maintains a fast 
image processing speed, proving the efficiency and accuracy 
of diffraction neural networks in image classification and 
processing with almost no power consumption.

On the other hand, we acknowledge that the current 
computational power of the network is limited due to the 
lack of nonlinear calculations. To address this, we plan 
to optimize the structure of the network and explore the 
use of materials with nonlinear optical properties, such 
as graphene and zinc selenide (39) and photorefractive  
crystals  (40)  or  by using atomic propert ies  (41) . 
Additionally, we intend to apply the all-optical diffraction 

Table 2 The AUC of different network models 

Method Model AUC

Koundal et al. (34) SVM 94.42%

Liu et al. (35) Fast-RCNN 97.42%

Tao et al. (36) CNN 90%

Proposed model D2NN 99.8%

AUC, area under the curve; SVM, support vector machine; Fast-
RCNN, fast region-based convolutional neural network; CNN, 
convolutional neural networks; D2NN, diffractive deep neural 
network.
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neural network to medical image diagnosis of different 
parts of the human body and explore the generalization 
performance of the networks (42). These future directions 
will deepen our understanding of the potential applications 
of all-optical neural networks in medicine and improve their 
computational power, ultimately leading to more accurate 
and efficient medical diagnoses.
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