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∙ A verify-to-classify framework was de-

signed for achieving in generalization 
and overall performance.

∙ An implemented verify-to-classify frame-

work can work well in both verifica-

tion (in-domain) and recognition (out-

domain).

∙ Our softmax with Lo5 can work well 
with emotion vectors and help improve 
classification performance.
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Speech emotion recognition (SER) plays an important role in global business today to improve service efficiency. 
In the literature of SER, many techniques have been using deep learning to extract and learn features. Recently, 
we have proposed end-to-end learning for a deep residual local feature learning block (DeepResLFLB). The 
advantages of end-to-end learning are low engineering effort and less hyperparameter tuning. Nevertheless, 
this learning method is easily to fall into an overfitting problem. Therefore, this paper described the concept 
of the “verify-to-classify” framework to apply for learning vectors, extracted from feature spaces of emotional 
information. This framework consists of two important portions: speech emotion learning and recognition. In 
speech emotion learning, consisting of two steps: speech emotion verification enrolled training and prediction, 
the residual learning (ResNet) with squeeze-excitation (SE) block was used as a core component of both steps 
to extract emotional state vectors and build an emotion model by the speech emotion verification enrolled 
training. Then the in-domain pre-trained weights of the emotion trained model are transferred to the prediction 
step. As a result of the speech emotion learning, the accepted model—validated by EER—is transferred to the 
speech emotion recognition in terms of out-domain pre-trained weights, which are ready for classification using 
a classical ML method. In this manner, a suitable loss function is important to work with emotional vectors. Here, 
two loss functions were proposed: angular prototypical and softmax with angular prototypical losses. Based on 
two publicly available datasets: Emo-DB and RAVDESS, both with high- and low-quality environments. The 
experimental results show that our proposed method can significantly improve generalized performance and 
explainable emotion results, when evaluated by standard metrics: EER, accuracy, precision, recall, and F1-score.
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1. Introduction

Emotional recognition has evolved from being a niche to an impor-

tant component of Human-Computer Interaction (HCI), especially in 
recognition domains of image, text, and speech emotions. Recent tech-

niques involved in image emotion recognition have been published in 
[1, 2]. The other two emotions, text and speech, are active areas to im-

prove service efficiency in global business today. Even though text and 
speech emotions are closely relevant, both kinds of emotions have dif-

ferent challenges. One of the challenges in text emotion recognition is 
ambiguous words owing to omitted words [3, 4]. On the other hand, 
a challenge in speech emotion recognition (SER) is creating an effi-

cient model which understands its context related to the emotional 
states. However, this study focuses only on the recognition of speech 
emotions. Recently, end-to-end learning has been attended in various 
domains since it has the advantage of low engineering effort and less 
hyperparameter tuning [5, 6]. As our previous works [7, 8], a deep 
residual local feature learning block (DeepResLFLB) can be viewed as 
the end-to-end learning. It was inspired by the concept of human brain 
learning; that is, ‘repeated reading makes learning more effective,’ in 
the same way that Sari [9] and Shanahan [10] were used.

Nevertheless, the end-to-end learning framework can be viewed as a 
double-edged sword; it provides the advantage of low engineering effort 
and less hyperparameter tuning, while it cannot provide suitable hy-

perparameter tuning, thus making a learned model unable to reach the 
higher performance and meet generalization. Furthermore, the model 
generated from the end-to-end learning works well with merely high-

quality environments; that is, signals are acquired from a high-quality 
device and a high sampling rate. In practice, the signals can be acquired 
from various devices, different sampling rates, and uncontrolled envi-

ronments, even cultural variations. This is a reason why the learned 
model of end-to-end learning was not well successful. Therefore, this 
paper proposed a verify-to-classify framework to overcome the limi-

tations of DeepResLFLB, which was formed from end-to-end learning. 
The concept of verify-to-classify is applying the deep learning to extract 
features from the space of emotional information prior to fine-tuning 
on classification tasks. Here, the residual learning (ResNet) [11] with 
squeeze-excitation (SE) blocks [12] was selected for extracting emo-

tional state vector to measure the proper performance with explainable 
results, and then, a classical machine learning was used to fine-tune the 
classification tasks. One more thing, the loss function is important when 
signal features have a high dimension [13, 14]. Responding to suitable 
loss functions, here, we reviewed three traditional softmax losses: AM-

Softmax [15], AAM-Softmax [16], and Vanilla Softmax [17]. Further, 
we proposed two loss functions, inspired by the prototypical concept, 
including angular prototypical loss and softmax with angular prototyp-

ical loss functions. For performance assessment, all experiments ran on 
two publicly available datasets: Berlin emotional database (Emo-DB) 
[18] and Ryerson audio-visual database (RAVDESS) [19]. Both datasets 
are speaker-independent SER, provide cultural variations, and include 
high- and low-quality environments (see Subsection 4.2). These char-

acteristics of both datasets are sufficient to test the performance of the 
verify-to-classify framework, especially in the cases of cultural varia-

tions and different sampling rates. In a word, the implemented verify-

to-classify framework can work well in cross environments [20] (see 
Subsection 4.2).

The main contributions of this paper are as follows:

• A verify-to-classify framework was designed for solving the limita-

tions of the end-to-end learning framework in issues of generaliza-

tion and performance improvement. (The proof of this contribution 
can be found in Tables 2 and 3.)

• An implemented verify-to-classify framework can work well in both 
verification (in-domain) and recognition (out-domain). (The proof 
of this contribution can be found in Tables 2 and 3.)
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• Our softmax with angular prototypical loss function (Lo5) can work 
well with emotion vectors and help improve classification perfor-

mance. (The proof of this contribution can be found in Tables 2

and 3 and Figs. 8, 9, 10, and 11.)

• A verify-to-classify framework was designed based on a compro-

mise of performance and resource consuming to achieve higher 
accuracy, faster processing time, and better overall performance. 
(The proof of this contribution can be found in Table 1.)

The remainder of this paper is structured as follows. In Section 2, 
various existing methods introduced to SER are reviewed. Section 3

provides details of the proposed method. Section 4 describes parameter 
settings and characteristics of benchmark datasets for SER. In Section 5, 
we report experimental results with discussion. In Section 6, the con-

clusion and future work are given.

2. Literature review

On the influence factors of SER performance, three main factors are 
considered on the training of deep learning: size of training sets, feature 
extractions, and model learning methods. We briefly describe the data 
augmentation, involved in increasing the size of training sets, feature 
selections, and speech emotion models associated with the evolution of 
SER. Lastly, we close this section with the learning with loss criterion.

2.1. Data augmentation

The effectiveness of deep learning relies upon the amount of data 
used for training [21, 22]. Google brain research [23] was recently pro-

posed as one of the efficient techniques for increasing the amount of 
data by adding spectrogram characteristics, referred to as “Spectrogram 
Augmentation”. The approach comprises of time warping to observe 
more time-shifting patterns; time masking to weaken the model’s over-

fitting rate and enhance the sound tolerance that has silence character-

istics; and frequency masking to reduce the overfitting rate and enhance 
sound resistance, when a particular wavelength has concealing charac-

teristics. In order to explore more aspects of speech information, using 
spectrogram augmentation as a basic feature could be led to various 
specific features, allowing the model to learn more perspectives.

2.2. Feature selection

The different features lead to the different performances in SER. 
Typically, speech signals [24] contain linguistic and paralinguistic in-

formation. The linguistic information refers to the language and context 
of the speech, whereas the paralinguistic information [25, 26, 27, 28] 
refers to emotional information of the speech. However, the most im-

portant thing to remember is that the sounds produced by a human are 
filtered by the shape of the vocal tract, which includes tongue, teeth, 
and others [29]. If the sound that emerges from this shape is deter-

mined precisely, we should be able to accurately represent the phoneme 
being produced. The shape of the vocal tract manifests itself in the en-

velope of the short-time power spectrum, thus Mel-frequency cepstral 
coefficient (MFCC) [29, 30] is accurately represented this envelope. The 
MFCC feature can be characterized by frequency filters in the range of 
20 Hz to 20 kHz, which is relevant to human hearing, is widely used to 
obtain coefficients from the filtered sound. Recent research papers [30, 
31] used the difference of MFCC to get more specific details, but, in the 
aspect of MFCC, it has no time relationship and no full frequency com-

ponent details. This is a reason why many papers [8, 30, 32, 33] used 
Mel spectrogram instead. The Mel spectrogram can respond to the time 
relationship with fewer loss frequency component details, thus provid-

ing better results than the MFCC alone.
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2.3. Speech emotion model

In modern SER, model efficiency can be increased by improving 
learning methods of machine learning or deep learning. Demircan [31] 
attempted to improve the model efficiency by applying fuzzy C-mean 
as a preprocessing step before using classical machine learning to add 
characteristics to a group. Venkataramanan [30] investigated the model 
efficiency of deep learning and machine learning, according to the 
study’s findings, the deep learning by means of CNN outperformed the 
traditional machine learning. Also, Zhao [32] introduced the use of 
CNN in conjunction with LSTM to extract and learn features. Zhao’s 
method used a local feature learning block (LFLB) [32], consisting 
of CNN, batch normalization (BN), activation function, and pooling, 
for local feature learning, and then applied LSTM in extracting con-

textual dependencies in a time-related relationship for global feature 
learning. In this way, the model can learn both local and global fea-

tures.

However, the LFLB, used for local feature learning introduced in 
Zhao’s method, still has a room for efficiency improvement. Recently, 
the improved version of LFLB, called a deep residual local feature 
learning block (DeepResLFLB) [7, 8], was proposed. One of the Deep-

ResLFLB’s achievements is that reducing the feature and updated losses 
was caused by the CNN model in the conventional LFLB, especially in 
deeper layers. This showed that the DeepResLFLB, based on the ResNet 
concept [11, 34] as repeated learning style [10], can extract local fea-

tures from complex speech patterns and learn more effectively using a 
residual deep learning approach.

Here, a brief concept of ResNet is described. ResNet presented stack-

ing additional layers in the deep neural networks, which result in im-

proving performance. The intuition behind adding more layers is that 
these layers progressively learn complex features. A ResNet concept 
provides a direct connection between layers and skips some layers in 
between. This connection, called “skip connection,” is the core of resid-

ual blocks. Due to this skip connection, the output layer is not the same 
as without a skip connection. Thus, the input data is multiplied by the 
layer’s weights, and then a bias term is added. In addition, ResNet deter-

mines a suitable pattern from the identity mapping by using re-sequency 
technique [34] and uses compression/decompression strategy of bottle-

neck design [8, 35] for its performance improvement.

To increasingly improve the model efficiency, many research works 
have been investigated the squeeze-excitation (SE) network [12]. SE 
can learn by considering channel-wise as each feature detail to gener-

ate weights to represent the important features. In encoding feature 
learning level, the attentive pooling [36] is used for converting the 
frame-level to utterance-level; that is, in the same way on local to 
global level features. The attentive statistical pooling (ASP) [37] and 
self-attentive pooling (SAP) [38] are very well-known on speaker veri-

fication tasks [36, 39].

Furthermore, Kumar [40] presented an end-to-end triplet loss-based 
emotion embedding system for speech emotion recognition (TL-EESER), 
which was based on the ResNet concept as described above. The learned 
embedding layer was used to recognize the emotions by providing 
speech samples in various lengths. Then, the model was trained us-

ing softmax pre-train and triplet loss function. The weights between 
the fully connected and embedding layers of the trained network were 
used to calculate the embedding values. These embedding values, being 
viewed as angles of the cosine function, were utilized to classify a new 
speech sample into an appropriate emotion class.

2.4. Learning with loss criterion

One of the critical problems in an end-to-end approach is to explore 
the suitable criteria (loss functions) for driving a network to learn dis-

criminative features. Typically, softmax loss was used for this purpose. 
However, it was more suitable for classification tasks [41] but not suit-

able for verification tasks. Therefore, to solve this problem [42, 43, 44], 
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several different loss functions have been proposed for verification. In 
contrast to classification, verification is an open-set task, that classes 
observed in the training set will generally not appear in the test set. To 
achieve this circumstance, a good verification loss should make inter-

class variances larger and intra-class variances smaller. The followings 
are loss functions that were proposed for solving inter-class and intra-

class problems. AM-Softmax [15] solved the inter-class and intra-class 
problems by using a decision boundary technique with added margin. 
The decision boundary was created to separate the inter-classes and 
then a margin was added to that decision boundary. This technique can 
increase the separability of classes while also making the distance be-

tween the same classes closer. In addition, the additive angular margin 
softmax (AAM-Softmax) method [16] was used to switch from a dis-

tance to an angular objective to learn highly discriminative features for 
improving the efficiency of high dimensional features in face recogni-

tion robustness task.

Angular softmax loss [41] has recently been proposed to improve 
the softmax loss in face verification using normal angular objective. It 
enables end-to-end training of neural networks to learn angularly dis-

criminative features. Angular softmax loss introduced a margin between 
the target class and the non-target class as the softmax loss. Compared 
with the triplet loss [45], angular softmax is much easier in tuning and 
monitoring hyperparameters [41].

Also, a learning method is an important process for both classifica-

tion and verification. Here is an example of the learning method chal-

lenge. In the case of learning slightly different characteristics of speech, 
the traditional learning method could not make it discriminative, es-

pecially in the case of class imbalance. In this case, the prototypical 
network based on few-shot learning [46] could work better than the 
traditional ones. To be more specific, the few-shot learning is a process 
of feeding a learning model with a relatively small quantity of train-

ing data, as opposed to the common methods of using a large amount 
of data. This capability of few-shot learning enables prototypical net-

works to learn a metric space in which classification can be performed 
by calculating a distance between prototype representations of each 
class. This learning method makes a model more generalization for new 
classes that have never been seen in the training set, especially a small 
number of samples in each new class like a support set. The prototypi-

cal networks represent a simpler inductive bias from an increased bias 
by a query of support set; this is useful and produces outstanding results 
for the limited data. This kind of learning methods is commonly used 
in computer vision. One reason is that using an object categorization 
model, without using multiple training samples, still produces satisfac-

tion results.

Our work is different from the previously mentioned works in that 
the verify-to-classify framework was designed to improve DeepResLFLB. 
Our method supports ResNet in conjunction with SE to produce more 
information, which is changed from frame-level to utterance-level in 
feature encoding. Moreover, the implemented verify-to-classify frame-

work used many criteria to explore critical problems. For instance, one 
of them is the angular prototypical criterion that is used instead of 
the normal angular objective criteria, when considering the slightly 
different characteristics of enrolled feature vectors before applying to 
classification tasks.

3. Methodology

To enable SER as efficiently as possible, a verify-to-classify frame-

work was proposed to overcome limitations, generalization, and ex-

plainable results, of an end-to-end learning framework. The proposed 
framework consists of four parts: (i) raw data preparation, (ii) feature 
extraction, (iii) speech emotion verification, and (iv) fine-tuning probe 
with classical machine learning, as shown in Fig. 1.
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Fig. 1. A verify-to-classify framework with transfer learning for SER. Note that the gray line represents a sample of validation set by randomly selecting one emotion 
speech per speaker for enrolled speech.
3.1. Raw data preparation

Cultural variations and different speaking rates [47] are influence 
factors that can prove the efficiency of the proposed framework; there-

fore, selecting challenging datasets is essential. Fortunately, two pub-

licly available datasets, Emo-DB and RAVDESS, match our require-

ments. An Emo-DB in Berlin German is fast vocalization, while a 
RAVDESS in English is normal vocalization. These datasets are also 
challenging in different sampling rates, which typically are the causes 
of difficulties in recognizing the emotional states of a speaker. Further-

more, increasing the variety of data to discover more new dimensions 
or characteristics for training a model based on deep learning is es-

sential [21]. Responding to this, various data augmentation techniques 
using spectrogram [23] were used in this work to make the model more 
robust to noise and unseen voice patterns.

3.2. Feature extraction

It is undeniable that the effectiveness of deep learning mainly de-

pends on feature factors before learning steps. Also, different features 
lead to different performances in speech emotion recognition. Among 
the features of speech, Mel-frequency cepstral coefficient (MFCC) [30], 
which can be characterized by the frequency filter in the range of 20 
Hz to 20 kHz, similar to human hearing, is widely used to obtain coef-

ficients from the filtered sound. Recent research papers [30, 31] used 
the difference of MFCC to get more specific details, but, in the aspect 
of MFCC, it has no time relationship and no full frequency component 
details. Therefore, many papers [30, 32, 33] used Mel-spectrogram in-

stead. The Mel-spectrogram can respond to the time relationship with 
less loss frequency component details, thus providing better results than 
just using MFCC. Besides, the logarithm transformation was used to nor-

malize the Mel-frequency component to represent the little differential 
details clearly, that is the log Mel-spectrogram (LMS).

In the real-world, speech has different speaking durations that are 
difficult to define a padding size for LMS. To avoid this issue, the LMS is 
chopped into smaller chunks based on a maximum length. If the chunk 
size is less than the maximum length, the repeated spectrogram padding 
is used. Each chunk (𝛾) is normalized by z-score [48, 49] as expressed 
in (1).

𝛾𝑛𝑜𝑟𝑚 =
𝛾 − 𝜇𝑐ℎ𝑢𝑛𝑘

(1)

𝜎𝑐ℎ𝑢𝑛𝑘
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where 𝜇𝑐ℎ𝑢𝑛𝑘 and 𝜎𝑐ℎ𝑢𝑛𝑘 are the chunk mean and standard deviation, re-

spectively. LMS chunks that are normalized are called normalized log 
Mel-spectrogram (N-LMS). In this paper, we use N-LMS as features for 
learning the emotional state of the frequency component for vector ex-

traction.

3.3. Speech emotion verification

Speech emotion verification is the main contribution of this study. 
We designed a method for extracting an emotion vector as an emo-

tional voiceprint in the same way as biometric voiceprint, all of which 
were inspired by speaker verification methods [36, 39, 43, 50, 51]. 
Recently, speaker vector extraction, called “Speaker Verification,” was 
widely used. Speaker verification is a method that first verifies a speaker 
from the embedded speaker information, and then measures similarity 
between two vectors to verify the true speaker. Here, a speaker verifica-

tion concept was implemented and embedded into the learning model 
of SER, so that it can create the emotional voiceprint of a vector ver-

ification term. As a result, emotional information was embedded into 
features before the step of fine-tuning in the classification task. In addi-

tion, our proposed speech emotion verification method requires transfer 
learning [52, 53] to adapt embedded features in low-quality environ-

ments to predict in cross environments as shown in Fig. 1.

In contrast, Fig. 2(b) shows two principal steps of how speech emo-

tion verification works. The emotional training/enrollment step mainly 
trains the incoming audio of speakers to create an emotion model that 
contains emotional voiceprints. This step is different from the tradi-

tional speaker verification as shown in Fig. 2(a); that is, both enrolled 
speech (a gray line in Fig. 2(b)) and trained speech are used in the 
training process concurrently as shown in Fig. 2(b), so that the model 
can enroll information from the validation set. Then, the emotional 
trained model is transferred to the emotional verification step in terms 
of in-domain pre-train weights. The results of enrolled and verified em-

beddings obtained between the training set and the validation set were 
compared with equal error rate (EER). At this stage, the lowest EER 
value from the decision block indicates that we meet the best model 
in voiceprint. In this way, we can achieve more efficient in emotional 
tasks.

In general, end-to-end learning is difficult to find suitable tuning pa-

rameters, making it easy to reach overfitting. A simple way to solve this 
problem is to divide the speech emotion learning into three parts: ResSE 
model, encoding frame-level to utterance-level features, and emotional 
prototypical loss, as shown in Fig. 1.
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Fig. 2. A development of emotion speech verification: (a) traditional speaker verification. (b) speech emotion verification in verify-to-classify framework. Note that 
the gray line in (b) is a sample of validation set by randomly selecting one emotion speech signal per speaker for the enrolled speech.

Fig. 3. A residual network with squeeze-excitation (ResSE) block structure.
3.3.1. ResSE model

Speech emotion vector extracted from N-LMS provides to ResNet 
with squeeze-excitation (SE) blocks [12] to learn the emotion infor-

mation. As described in [8, 11, 34], ResNet can learn and reconstruct 
speech emotion information on deeper layers by adding a function with 
skipping-connection. The ResNet also can reduce unnecessary parame-

ters and time-consuming by skipping unnecessary learning layers when 
the gradient is nearly at zero. Fig. 3 shows how to apply ResNet as LFLB 
and ResLFLB concept as DeepResLFLB [7, 8]. Here, SE blocks were ap-

plied to consider the weight of each learning step, which can describe 
important information within features.

3.3.2. Encoding frame-level to utterance-level features

Typically, ResNet with SE blocks focuses on the learning of the local 
feature level, not including the global feature level. This causes informa-

tion loss in the relationship between features. To avoid this information 
loss, the attentive pooling concept is applied to convert the local feature 
level to the global feature level. Here, the attentive statistics pooling 
(ASP) [37] and the self-attentive pooling (SAP) [38] were used for this 
purpose.
5

Self-Attentive Pooling (SAP). We implemented an encoding layer 
with SAP, similar to [38, 54, 55]; that is, we first feed utterance level 
features 𝐱𝐭 =

{
𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑇

}
into a multi-layer perceptron (MLP) to 

get 𝐡𝐭 =
{
ℎ1, ℎ2, ℎ3, ..., ℎ𝑇

}
as a hidden representation on frame-level 

features. In this paper, we simply adopt a one-layer perceptron, as ex-

pressed in (2)

𝐡𝐭 = 𝑡𝑎𝑛ℎ(𝐖𝐱𝐭 + 𝑏) (2)

where 𝐖 and 𝑏 are the weight matrix and bias of the network, respec-

tively. At this point, we can calculate the normalized weighted mean, 
𝜔𝑡, as expressed in (3), of each frame, so that the frame with the highest 
value is selected as the important frame.

𝜔𝑡 =
𝑒𝑥𝑝(𝐡𝐓𝐭 𝑢)∑𝑇

𝑡=1 𝑒𝑥𝑝(𝐡
𝐓
𝐭 𝑢)

(3)

where 𝑢 is the learnable context vector. 𝑢 can be viewed as a high-level 
representation. It is randomly initialized and jointly learned during the 
training process. Lastly, the utterance-level representation, �̃�, as de-

noted in (4), can be determined as a weighted sum of the frame level of 
ResSE feature maps based on the learned weights.
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Fig. 4. An implemented structure of attentive statistical pooling (ASP).

�̃� =
𝑇∑
𝑡=1
𝜔𝑡𝑥𝑡 (4)

Attentive Statistical Pooling (ASP). We applied ASP to an encod-

ing layer to extract frame-level features to weighted mean and weighted 
standard deviation as illustrated in Fig. 4. Here, the weighted mean is 
calculated by (4) and the weighted standard deviation is determined by

(5).

�̃� =

√√√√ 𝑇∑
𝑡=1
𝜔𝑡𝐡𝐭 ⊙ 𝐡𝐭 − �̃� ⊙ �̃� (5)

where ⊙ denotes the Hadamard product. The mean vector �̃�, which 
aggregates frame-level features, can be viewed as the main component 
of utterance-level features. Besides, the weight 𝜔𝑡 calculated by (3) is 
used in both the weighted mean �̃� and weighted standard deviation 
�̃�, as shown in Fig. 4. The weighted standard deviation is thought to 
take the advantage of both statistical pooling and attention, i.e., feature 
representation in terms of long-term variations and frame selection in 
accordance with importance, bringing higher emotion discriminability 
to utterance-level features. As (5) is differentiable, ResSE with ASP can 
be trained on the basis of back-propagation.

3.3.3. Emotional prototypical loss

Here, an emotional prototypical loss in Fig. 1 is used to measure the 
feature vector performance at the final tuning stage of learning. The 
loss can be calculated from various methods, such as Siamese network 
[56, 57, 58]. Typically, for vector loss, Euclidean distance [59] was 
widely used for similarity measure between two vectors [56, 57, 58] in 
a feature space. However, the Euclidean distance has some limitations, 
when the feature space has a high dimension [13, 14, 60]. To avoid 
this problem, angular loss, using cosine function in backend of speaker 
verification concept [60], was used instead of Euclidean. In addition, 
we reviewed three traditional softmax losses: AM-Softmax loss (Lo1) 
[15], AAM-Softmax loss (Lo2) [16], and softmax loss (Lo3). Also, we 
proposed two loss functions by applying a prototypical concept to an 
angular objective, namely, angular prototypical loss (Lo4) and softmax 
with angular prototypical loss (Lo5), to obtain suitable losses in the 
speech emotion domain.

Lo4 and Lo5 were derived from Lo3, formulated as (6).

𝐿𝑜3 = − 1
𝑁

𝑁∑
𝑖=1
𝑙𝑜𝑔

𝑒
𝐖𝑇
𝑦𝑖
𝐱𝑖+𝑏𝑦𝑖

∑𝐶
𝑒
𝐖𝑇
𝑗
𝐱𝑖+𝑏𝑗

(6)
𝑗=1
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where 𝐖 and 𝑏 are the weight and bias of the last layer of the trunk 
architecture, respectively.

Lo3 consists of a softmax function followed by a multi-class cross-

entropy loss. This loss function works well in measuring overall clas-

sification error but does not explicitly enforce intra-class compactness 
and inter-class separation. This becomes our inspiration to extend its 
learning ability for other circumstances. Therefore, this paper proposed 
two losses: Lo4 and Lo5, focusing on the intra-class compactness and 
inter-class separation. The prototypical network concept was applied to 
Lo4 and Lo5 to expand learning abilities on slightly different speech 
characteristics with class imbalance.

Angular prototypical (Lo4). Lo4 is a variant of the prototypical 
networks with an angular objective. For simplicity, we assume that a 
mini-batch, viewed as training samples, contains a support set 𝑆 and a 
query set 𝑄. The query includes 𝑀 -th utterance from every emotion. 
With this assumption, the prototype (or centroid) can be determined by

(7).

𝐜𝐣 =
1

𝑀 − 1

𝑀−1∑
𝑚=1

𝐱𝐣,𝐦 (7)

where 𝐱 is the 𝑗-th utterance level feature of each emotion. To calculate 
similarity, the angular prototypical objective, 𝐒𝐣,𝐤, where 𝑘 is a query 
of emotion, expressed in (8), is used as the distance metric, instead of 
squared Euclidean distance.

𝐒𝐣,𝐤 = 𝜔 ⋅ 𝑐𝑜𝑠(𝐱𝐣,𝐌, 𝐜𝐤) + 𝑏 (8)

In training process, each query sample is classified against 𝑁 emo-

tions based on Lo4 as defined by (9).

𝐿𝑜4 = − 1
𝑁

𝑁∑
𝑗=1
𝑙𝑜𝑔

𝑒𝐒𝐣,𝐣∑𝑁

𝑘=1 𝑒
𝐒𝐣,𝐤

(9)

where, 𝑆𝑗,𝑗 is the cosine backend distance between the query and the 
prototype of the same emotion from the support set. The softmax func-

tion effectively serves the purpose of hard negative mining [61], since 
the hardest negative sample would mostly affect the gradients. The 
value of 𝑀 is typically chosen to match the expected situation at test-

time, e.g. 𝑀 = 6 +1 for 6-shot learning, so the prototype is composed of 
six different utterances. In this way, the task in training exactly matches 
the task in the testing scenario.

Softmax with Angular prototypical loss (Lo5). Lo5, inspired by 
both information criteria of emotion embedding similarity and emotion 
class distribution, is a combination of Lo3 and Lo4. Lo5 is computed 
from embedding and softmax layer results, as shown in Fig. 5.

3.4. Fine-tuning probe with classical machine learning

An emotion vector is an explainable feature, but it has no consis-

tency on classification tasks. Thus, classical machine learning methods 
are used for fine-tuning and learning in the last step, while weights of 
speech emotion verification model are frozen for mapping to different 
tasks. One more thing, since the input data are small and not complex, 
using classical machine learning can perform better than deep learning 
methods [62]. Here, we focus on an applied classification task, thus a 
support vector machine (SVM) [63] and multilayer perceptron (MLP) 
are suitable for selecting to fine-tune in learning features and creating 
a multiclass classification model.

4. Experiments

The proposed verify-to-classify framework was evaluated in terms 
of (i) generalized SER performance and (ii) explainable emotion results. 
The followings describe components of experimental design.
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Fig. 5. A computational step of softmax with angular prototypical loss.

4.1. Evaluation metrics

In evaluating SER performance, two metrics were used, equal-error-

rate (EER) and normal classification measurement. The EER metric [64, 
65, 66] uses a threshold value to predict false acceptance and rejection 
rates. If the false acceptance and rejection rates are equal, it implies that 
the percentage of those two rates is balanced, which is called the equal 
error rate. The lower the equal error rate value means the higher over-

all accuracy. We used this criterion for evaluating balanced false rates 
of speech emotion vector in speech emotion learning. Then, we used 
normal classification measurement for measuring multiclass SER per-

formance in the last step, including macro average accuracy, precision, 
recall, and F1-score as defined by (10), (11), (12), and (13), respec-

tively. Also, both metrics can be used to prove the factor of cultural 
variation and sampling rate that directly affect SER performance, based 
on different quality experiment settings.

For explainable results, the emotion vector was applied principal 
component analysis (PCA) [67] first to reduce the data dimensionality 
to 50 dimensions for visualization [68, 69] and then followed by t-

distributed stochastic neighbor embedding (t-SNE) [70] to reduce PCA 
coefficients again to 2 dimensions. After that, emotion vector centroids 
are calculated from mean of each emotion-vector class in the same way 
of centroid calculation of prototypical loss in (7).

The visualized vector results contain representative point patterns, 
which can be interpreted as the efficient prototype of vectors and clus-

ters. However, our proposed speech emotion verification methods focus 
on transfer learning [52] as well as the adaptive low-quality feature 
spaces for cross-environment prediction. In this case, if the vector dis-

tributions of before and after taking transfer learning still provide cor-

rect classification and clearly separate a centroid of each emotion for 
inter-class separation, we can say that the feature spaces are strongly 
generalized.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎

(10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(11)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(12)

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
(13)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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4.2. Datasets and simulated environments

We used two publicly available datasets: Berlin emotional database 
(Emo-DB) [18] and Ryerson audio-visual database (RAVDESS) [19] to 
evaluate SER performance of ours and baseline methods. An Emo-DB 
speech corpus consists of seven acted emotional states: anger, disgust, 
boredom, joy, sadness, neutral, and fear. It includes 535 emotional ut-

terances in German from ten native German actors. Five of them are 
women while the other five are men. The audio files are a 16-bit reso-

lution and have a sampling frequency of 16 kHz. The average length of 
the audio files is 3 seconds. The emotion distribution is shown in Fig. 6.

Another dataset, RAVDESS, contains eight emotional states: anger, 
disgust, calm, surprise, sadness, neutral, fear, and happiness. The emo-

tional utterances of 24 professional actors, 12 of whom are female and 
12 of whom are male, in North American accents, were recorded. The 
audio files have a sampling rate of 48 kHz and a resolution of 16-bit. 
The emotion distribution is presented in Fig. 7.

To prove the factor of sampling rates, we focused on two contrast 
environments, namely, the high- and low-quality environments. The 
high-quality environment was acquired from high-quality resources, 
such as speech from movies and studios. All of which were recorded by 
high-quality recording equipment. On the other hand, the low-quality 
environment was acquired from low-quality resources, such as speech 
from call center services and smartphones. Here, we resample the orig-

inal speech signals with two different sampling rates, 16 kHz and 48 
kHz, that represent low- and high-quality environments. Note that up-

sampling speech signals are not increased the quality of those signals. 
Based on cross-environment adaption [20], in our study, a model is 
trained by the low-quality environment only, and then it is tested by 
the high-quality environment. If the model can yield successful results, 
we can say that this model provides generalization on the different sam-

pling rates or cross environment.

We set up two experiments, high- and low-quality environments, to 
prove the factor of sampling rates as follows: for the high-quality envi-

ronment, the sampling rate was resampled to 48 kHz with 16-bit PCM 
resolution. For the low-quality environment, the sampling rate was re-

sampled to 16 kHz with 16-bit PCM resolution. Besides, both setup 
datasets were augmented by the spectrogram augmentation method to 
create more perspectives of data for deep learning and were divided into 
three speaker independent subsets for 10-fold cross-validation: 80% for 
the training set, 10% for the validation set, and 10% for the testing set. 
It means that there is no overlapping speaker information in-between 
subsets. As a result, the model focuses on transferred emotion informa-

tion based on different speaker information.

4.3. Parameter settings on resource-consuming concerns

The verify-to-classify framework was proposed for generalized SER 
performance and explainable emotion results. Typically, reaching the 
highest SER performance [8] demands high resource-consuming. In this 
paper, the purpose is to compromise between performance and resource 
consumption. Therefore, we tested our implemented framework in gen-

eralized SER performance with three situations and three models: (i) 
low resource consuming on speed residual with a squeeze-excitation 
network (SpeedResSE), (ii) normal resource consuming on VGG-M-40 
[39, 71], and (iii) high resource-consuming on performed residual with 
a squeeze-excitation network (PerformResSE). The number of parame-

ters is reported in Table 1.

SpeedResSE has been proposed in the same architecture as fast 
ResNet-34 [39] and additionally applied SE concept [12] to channel-

wise features to reduce computing time and keep more feature infor-

mation requirements.

VGG-M-40 [39, 71] has been previously proposed for image classi-

fication [71] and adapted for speaker recognition [72]. This model is 
well-known for its high efficiency and good classification performance. 
VGG-M-40 is a modification of the model proposed by [72] to take 
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Fig. 6. A speech emotion distribution of Emo-DB dataset.

Fig. 7. A speech emotion distribution of RAVDESS dataset.
Table 1. A number of parameters of speech emo-

tion verification.

Method No. of Parameters

SpeedResSE: SAP encoder 1.4M

SpeedResSE: ASP encoder 1.5M

VGG-M-40: SAP encoder 4.0M

VGG-M-40: ASP encoder 4.2M

PerformResSE: SAP encoder 6.4M

PerformResSE: ASP encoder 7.0M

40-dimensional filterbanks as inputs instead of the 513-dimensional 
spectrogram.

PerformResSE has been proposed in the same architecture as ResNet-

34 [39] and additionally applied SE concept [12] to channel-wise fea-

tures to keep better feature information requirements.

Parameter settings of overall speech emotion verification learning 
include max epoch at 500, batch size at 12, learning rate at 0.001 with 
8

step learning rate scheduler, optimizer is Adam, the margin is 0.3 and 
scale is 30 for AM-Softmax and AAM-Softmax, and the number of utter-

ances per emotion per batch is 2 for prototypical loss.

After training on test models of speech emotion verification, we fed 
the emotional vector to SVM with RBF kernel or MLP with 512 neu-

rons for fine-tuning on classification tasks. All experiments ran on the 
desktop computer with CPU Core i7-6700 and graphic card of Nvidia 
GeForce 1050Ti.

5. Results and discussion

Generalized performances and explainable emotion results are our 
main objectives as formerly stated in Section 4. In this section, we will 
explore, analyze, and later discuss the results.

In the first objective, generalized performance, two metrics—EER 
and normal classification measurements, including accuracy and F1-

score—were used to evaluate the model performance. In EER measure-
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Table 2. A comparison of baselines and our imple-

mented verify-to-classify framework in low-quality en-

vironment.

Model Encoder
EER

Emo-DB RAVDESS

1D-LFLB - 51.65 51.20

2D-LFLB - 50.46 51.15

DeepResLFLB - 50.59 50.02

TL-EESER - 33.32 31.24

VGG-M-40 (Lo4) SAP 9.00 3.79

VGG-M-40 (Lo4) ASP 8.84 5.13

SpeedResSE (Lo4) SAP 9.48 6.08

SpeedResSE (Lo4) ASP 11.12 5.46

PerformResSE (Lo4) SAP 8.05 3.63

PerformResSE (Lo4) ASP 6.50 3.48

VGG-M-40 (Lo5) SAP 7.94 3.27

VGG-M-40 (Lo5) ASP 8.84 3.99

SpeedResSE (Lo5) SAP 9.64 3.36

SpeedResSE (Lo5) ASP 6.54 1.93

PerformResSE (Lo5) SAP 8.67 2.46

PerformResSE (Lo5) ASP 3.44 3.80

ment, the results show that the implemented proposed framework, as 
already described in Subsection 4.3, outperforms baselines as shown 
in Table 2. For testing on the Emo-DB dataset, PerformResSE-Lo4 with 
ASP has the lowest EER at 6.50% and 3.44% for PerformResSE-Lo5 
with ASP. On the other hand, for testing on the RAVDESS dataset, the 
lowest EER at 3.48% for PerformResSE-Lo4 with ASP, and 1.93% for 
SpeedResSE-Lo5 with ASP.

In normal classification measurement, accuracy and F1-score were 
taken into consideration as well. In contrast to the EER measurement, 
which evaluates only vectors, the normal classification measurement as-

sesses the whole framework on classification tasks. We compared ours 
with baseline models as shown in Table 3. We discovered that in the 
same environments—low-quality, PerformResSE-Lo5 with ASP signifi-

cantly outperforms the baseline models. PerformResSE-Lo5 with ASP is 
the best performance at 92.76% of accuracy and 90.14% of F1-score on 
Emo-DB, and 88.83% of accuracy and 87.52% of F1-score on RAVDESS. 
In testing in a cross environment, from low quality to high quality, in 
the same as previously mentioned, our proposed framework has the best 
performance than baselines. In the case of cross environment, all test 
models were trained with the low-quality environment, PerformResSE-

Lo5 with ASP is less decrease in accuracy and F1-score around 1%, but 
baselines are much decrease in accuracy and F1-score as reported in 
Table 3.

In the second objective, explainable emotion results, we selected 
sample vectors that have the best EER results for each dataset and 
compared vector distributions derived from low- and high-quality envi-

ronments. The distributed emotion vector can be seen clearly as graphi-

cally shown in Figs. 8 and 10. With transfer learning that adapts feature 
spaces from low- to high-quality environments, the results look promis-

ing as can be seen in Figs. 9 and 11. The emotion distribution shows 
clearly inter-class separation. The grouping clusters together distinctly 
so that a line can be drawn to show the separation of the speaker gen-

ders.

In all test models, we experimented with five losses and reported 
all experimental results in Supplementary_Tables. We discovered that 
the proposed softmax with angular prototypical loss (Lo5) gives the 
best performance. A reason behind this is that Lo5 considers more loss 
information from softmax probabilities of emotion distribution and an-

gular prototypical objective works well on few-shot learning. Moreover, 
SVM and MLP were experimented for fine-tuning in a classification task. 
When testing on the same environment, SVM is the best performance 
on RAVDESS and MLP is the best on Emo-DB. Besides, MLP is the best 
one, when testing on a cross environment. It provides less decrease of 
accuracy and F1-score than SVM. That is a reason why MLP is selected 
for the main discussion.
9

Further experimental results, including the five loss criteria with 
encoder and all classification measurements are reported in Supple-

mentary_Tables. With the results explored above, they exhibit that 
our implemented verify-to-classify framework outperforms the baseline 
models not only in terms of more explainable emotion results but also 
high generalized performance.

6. Conclusion and future work

This paper has described a verify-to-classify framework for gener-

alized speech emotion recognition. The purpose of this framework is 
to overcome the limitations of end-to-end learning to meet general-

ized performance and explainable emotion results. The verify-to-classify 
framework was designed based on the vector learning concept for ex-

tracting features and combining learning and recognition of speech 
emotions. The proposed framework was implemented as follows: speech 
emotion verification used ResSE for extracting feature spaces in emo-

tion with gender domain. The fine-tuning probe on classification tasks 
used SVM and MLP as classifiers. In improving the model efficiency, 
five losses, including three existing loss functions and our two proto-

typical loss functions, have been investigated for comparison to seek 
the suitable one. The performance of our model was tested on two dif-

ferent cultural variation datasets, German on Emo-DB and English on 
RAVDESS.

Based on our experiments in cross environments, first, on testing of 
speech emotion verification, the results show that the PerformResSE-

Lo5 with ASP is the best of average EER on RAVDESS and Emo-DB, 
which were significantly better than VGG-M-40 and baselines. This vec-

tor space has well performed in cross environments; that is, the model 
was trained with a low-quality environment and was tested with a high-

quality environment. Second, on testing of classification performance, 
the results show that the implemented framework with the verify-to-

classify concept can perform better than baselines and provide more 
generalization when evaluated by macro average accuracy, precision, 
recall, and F1-score.

Although our verify-to-classify framework has provided better per-

formance in speech emotion recognition, many aspects can still be im-

proved, especially generalization from more cultural variation speakers 
with various environments. In future work, we look forward to extend-

ing our concept to support multilingual models, so that they can work 
with the cultural variation on various speaking languages.
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Table 3. A comparison of baselines and our implemented verify-to-classify framework in cross environments.

Model Encoder

Emo-DB RAVDESS

low-quality high-quality low-quality high-quality

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

1D-LFLB - 77.59 76.95 65.54 65.00 75.77 75.14 64.30 63.77

2D-LFLB - 82.69 82.23 66.69 66.39 75.47 75.14 61.79 61.52

DeepResLFLB - 82.80 82.19 68.84 68.33 83.24 82.41 69.34 64.90

TL-EESER - 84.58 81.53 83.96 79.40 87.85 86.78 85.07 84.10

VGG-M-40 (Lo4) SAP 80.14 74.59 79.35 73.64 81.10 80.04 80.46 79.39

VGG-M-40 (Lo4) ASP 85.53 81.53 82.80 80.84 81.58 80.05 80.77 79.19

SpeedResSE (Lo4) SAP 79.44 73.83 78.78 73.04 79.24 78.45 78.55 77.74

SpeedResSE (Lo4) ASP 77.57 74.92 77.10 74.44 80.19 78.39 79.52 77.69

PerformResSE (Lo4) SAP 83.64 82.96 83.08 82.50 88.40 87.79 87.82 87.20

PerformResSE (Lo4) ASP 79.56 73.96 78.88 73.25 84.23 82.81 83.73 82.31

VGG-M-40 (Lo5) SAP 80.02 75.37 79.44 74.73 83.80 82.09 83.17 81.42

VGG-M-40 (Lo5) ASP 83.06 78.33 82.43 77.67 84.58 83.60 84.00 83.00

SpeedResSE (Lo5) SAP 80.37 78.83 79.72 78.18 82.88 80.82 82.16 80.02

SpeedResSE (Lo5) ASP 83.88 82.11 83.27 81.54 84.66 83.42 84.21 82.96

PerformResSE (Lo5) SAP 85.51 84.01 85.14 83.61 88.79 87.39 88.27 86.82

PerformResSE (Lo5) ASP 92.76 90.14 92.43 89.74 88.83 87.52 88.31 86.94

Note: Only the results of our implemented verify-to-classify framework with MLP fine-tuning are shown above. The full 
experimental results are available in Supplementary_Tables.

Fig. 8. A result of explainable emotion vectors of the best speech emotion verification, testing on Emo-DB dataset with low-quality environment. Note: The triangle 
symbols represent centroids.
Additional information

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .heliyon .2022 .e09196.
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Fig. 9. A result of explainable emotion vectors of the best speech emotion verification, testing on Emo-DB dataset with high-quality environment. Note: The triangle 
symbols represent centroids.

Fig. 10. A result of explainable emotion vectors of the best speech emotion verification, testing on RAVDESS dataset with low-quality environment. Note: The 
triangle symbols represent centroids.
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Fig. 11. A result of explainable emotion vectors of the best speech emotion verification, testing on RAVDESS dataset with high-quality environment. Note: The 
triangle symbols represent centroids.
[30] K. Venkataramanan, H.R. Rajamohan, Emotion recognition from speech, arXiv :
1912 .10458, 2019.

[31] S. Demircan, H. Kahramanli, Application of fuzzy c-means clustering algorithm to 
spectral features for emotion classification from speech, Neural Comput. Appl. 29 (8) 
(2018) 59–66.

[32] J. Zhao, X. Mao, L. Chen, Speech emotion recognition using deep 1d & 2d cnn lstm 
networks, Biomed. Signal Process. Control 47 (2019) 312–323.

[33] Z. Huang, M. Dong, Q. Mao, Y. Zhan, Speech emotion recognition using cnn, 
in: Proceedings of the 22nd ACM International Conference on Multimedia, 2014, 
pp. 801–804.

[34] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: 
European Conference on Computer Vision, Springer, 2016, pp. 630–645.

[35] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for 
deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2017, pp. 1492–1500.

[36] H.S. Heo, B.-J. Lee, J. Huh, J.S. Chung, Clova baseline system for the voxceleb 
speaker recognition challenge 2020, preprint, arXiv :2009 .14153, 2020.

[37] K. Okabe, T. Koshinaka, K. Shinoda, Attentive statistics pooling for deep speaker 
embedding, Proc. Interspeech 2018 (2018) 2252–2256.

[38] W. Cai, J. Chen, M. Li, Exploring the encoding layer and loss function in end-to-end 
speaker and language recognition system, in: Proc. Odyssey 2018 the Speaker and 
Language Recognition Workshop, 2018, pp. 74–81.

[39] J.S. Chung, J. Huh, S. Mun, M. Lee, H.-S. Heo, S. Choe, C. Ham, S. Jung, B.-J. Lee, I. 
Han, In defence of metric learning for speaker recognition, Proc. Interspeech 2020 
(2020) 2977–2981.

[40] P. Kumar, S. Jain, B. Raman, P.P. Roy, M. Iwamura, End-to-end triplet loss based 
emotion embedding system for speech emotion recognition, in: 2020 25th Interna-

tional Conference on Pattern Recognition (ICPR), IEEE, 2021, pp. 8766–8773.

[41] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: deep hypersphere em-

bedding for face recognition, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2017, pp. 212–220.

[42] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, Z. Zhu, 
Deep speaker: an end-to-end neural speaker embedding system, preprint, arXiv :
1705 .02304, 2017, 650.

[43] L. Wan, Q. Wang, A. Papir, I.L. Moreno, Generalized end-to-end loss for speaker 
verification, in: 2018 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), IEEE, 2018, pp. 4879–4883.

[44] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, S. Khudanpur, 
Deep neural network-based speaker embeddings for end-to-end speaker verifica-

tion, in: 2016 IEEE Spoken Language Technology Workshop (SLT), IEEE, 2016, 
pp. 165–170.

[45] E. Hoffer, N. Ailon, Deep metric learning using triplet network, in: International 
Workshop on Similarity-Based Pattern Recognition, Springer, 2015, pp. 84–92.

[46] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, in: Pro-

ceedings of the 31st International Conference on Neural Information Processing 
Systems, 2017, pp. 4080–4090.

[47] C. Breitenstein, D.V. Lancker, I. Daum, The contribution of speech rate and pitch 
variation to the perception of vocal emotions in a German and an American sample, 
Cogn. Emot. 15 (1) (2001) 57–79.

[48] T.J. Sefara, The effects of normalisation methods on speech emotion recognition, 
in: 2019 International Multidisciplinary Information Technology and Engineering 
Conference (IMITEC), IEEE, 2019, pp. 1–8.
12
[49] M. Markitantov, Transfer learning in speaker’s age and gender recognition, in: A. 
Karpov, R. Potapova (Eds.), Speech and Computer, Springer International Publish-

ing, Cham, 2020, pp. 326–335.

[50] W. Xie, A. Nagrani, J.S. Chung, A. Zisserman, Utterance-level aggregation for 
speaker recognition in the wild, in: ICASSP 2019-2019 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, 
pp. 5791–5795.

[51] R. Pappagari, T. Wang, J. Villalba, N. Chen, N. Dehak, x-vectors meet emotions: a 
study on dependencies between emotion and speaker recognition, in: ICASSP 2020-

2020 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), IEEE, 2020, pp. 7169–7173.

[52] Y. Jia, Y. Zhang, R.J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen, P. Nguyen, R. Pang, 
I.L. Moreno, et al., Transfer learning from speaker verification to multispeaker text-

to-speech synthesis, in: Proceedings of the 32nd International Conference on Neural 
Information Processing Systems, 2018, pp. 4485–4495.

[53] M. Turkoglu, Covidetectionet: Covid-19 diagnosis system based on x-ray images us-

ing features selected from pre-learned deep features ensemble, Appl. Intell. 51 (3) 
(2021) 1213–1226.

[54] G. Bhattacharya, M.J. Alam, P. Kenny, Deep speaker embeddings for short-duration 
speaker verification, in: Interspeech, 2017, pp. 1517–1521.

[55] F.R. Rahman Chowdhury, Q. Wang, I.L. Moreno, L. Wan, Attention-based models 
for text-dependent speaker verification, in: 2018 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 5359–5363.

[56] X. Dong, J. Shen, Triplet loss in Siamese network for object tracking, in: Proceedings 
of the European Conference on Computer Vision (ECCV), 2018, pp. 459–474.

[57] A. Nagrani, J.S. Chung, W. Xie, A. Zisserman, Voxceleb: large-scale speaker verifi-

cation in the wild, Comput. Speech Lang. 60 (2020) 101027.

[58] U. Khan, J. Hernando, Unsupervised Training of Siamese Networks for Speaker Ver-

ification, in: Proc. Interspeech 2020, 2020, pp. 3002–3006.

[59] C. Zhang, K. Koishida, End-to-end text-independent speaker verification with triplet 
loss on short utterances, in: Interspeech, 2017, pp. 1487–1491.

[60] Y. Li, F. Gao, Z. Ou, J. Sun, Angular softmax loss for end-to-end speaker verification, 
in: 2018 11th International Symposium on Chinese Spoken Language Processing 
(ISCSLP), IEEE, 2018, pp. 190–194.

[61] H.-S. Heo, J.-w. Jung, I.-H. Yang, S.-H. Yoon, H.-j. Shim, H.-J. Yu, End-to-end losses 
based on speaker basis vectors and all-speaker hard negative mining for speaker 
verification, Proc. Interspeech 2019 (2019) 4035–4039.

[62] V. Menger, F. Scheepers, M. Spruit, Comparing deep learning and classical machine 
learning approaches for predicting inpatient violence incidents from clinical text, 
Appl. Sci. 8 (6) (2018) 981.

[63] L. Wang, Support Vector Machines: Theory and Applications, vol. 177, Springer 
Science & Business Media, 2005.

[64] Y. Kim, K. Toh, A method to enhance face biometric security, in: 2007 First IEEE 
International Conference on Biometrics: Theory, Applications, and Systems, 2007, 
pp. 1–6.

[65] U. Gawande, Y. Golhar, Biometric security system: a rigorous review of unimodal 
and multimodal biometrics techniques, Int. J. Biom. 10 (2) (2018) 142–175.

[66] P. Agrawal, R. Kapoor, S. Agrawal, A hybrid partial fingerprint matching al-

gorithm for estimation of equal error rate, in: 2014 IEEE International Confer-

ence on Advanced Communications, Control and Computing Technologies, 2014, 
pp. 1295–1299.

http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD1B987D6FD20E642483AD18A8994CEE6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD1B987D6FD20E642483AD18A8994CEE6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib45468F798F543778D89A6343A6B142B7s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib45468F798F543778D89A6343A6B142B7s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib45468F798F543778D89A6343A6B142B7s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibA51EF2B149D2FBDC3DECED477C91B468s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibA51EF2B149D2FBDC3DECED477C91B468s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib9AF163F93735C3C35FDB69BB8C809CDDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib9AF163F93735C3C35FDB69BB8C809CDDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib9AF163F93735C3C35FDB69BB8C809CDDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib246C6B1CC941E3334E8F72F30C0C1E97s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib246C6B1CC941E3334E8F72F30C0C1E97s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4C7A7C0E4861BE20C821B64B396B020Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4C7A7C0E4861BE20C821B64B396B020Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4C7A7C0E4861BE20C821B64B396B020Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibF43C548202333980154395FB312D8A2Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibF43C548202333980154395FB312D8A2Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib1E378A4DE35D58A9978167D6D42CEFB6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib1E378A4DE35D58A9978167D6D42CEFB6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE460D9B9FB2ED41AA9FB4384BC8A3D9Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE460D9B9FB2ED41AA9FB4384BC8A3D9Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE460D9B9FB2ED41AA9FB4384BC8A3D9Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE0D8BE6713EA986B996B0F4AF7FB274Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE0D8BE6713EA986B996B0F4AF7FB274Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE0D8BE6713EA986B996B0F4AF7FB274Es1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD08179ADA2A6309176E38FD2A88F8328s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD08179ADA2A6309176E38FD2A88F8328s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD08179ADA2A6309176E38FD2A88F8328s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibC7DE401FA364669FE25B179F4A434E63s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibC7DE401FA364669FE25B179F4A434E63s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibC7DE401FA364669FE25B179F4A434E63s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE09D6AE95E112F08BD500AE63413DFC2s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE09D6AE95E112F08BD500AE63413DFC2s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibE09D6AE95E112F08BD500AE63413DFC2s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib18DD2C44F7132EA4751FEE20D6B0B1BDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib18DD2C44F7132EA4751FEE20D6B0B1BDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib18DD2C44F7132EA4751FEE20D6B0B1BDs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib577AA13E757DA6B1020282C489C256ACs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib577AA13E757DA6B1020282C489C256ACs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib577AA13E757DA6B1020282C489C256ACs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib577AA13E757DA6B1020282C489C256ACs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib64AC3E68384276EA6094524C20D1AC3Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib64AC3E68384276EA6094524C20D1AC3Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD99D6C56E62FB163184FBAFC51347E3Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD99D6C56E62FB163184FBAFC51347E3Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibD99D6C56E62FB163184FBAFC51347E3Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibCDBE82291BC052BC5D393D35D3F3136As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibCDBE82291BC052BC5D393D35D3F3136As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibCDBE82291BC052BC5D393D35D3F3136As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibADAFA381FE6F8B90BB1FDB82821BF457s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibADAFA381FE6F8B90BB1FDB82821BF457s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibADAFA381FE6F8B90BB1FDB82821BF457s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibEAF540803676E6F38C8DE4CB5CDB88D9s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibEAF540803676E6F38C8DE4CB5CDB88D9s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibEAF540803676E6F38C8DE4CB5CDB88D9s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib62B36983FC356156A9988ED2880CB32As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib62B36983FC356156A9988ED2880CB32As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib62B36983FC356156A9988ED2880CB32As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib62B36983FC356156A9988ED2880CB32As1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFC7CC8C4FE5096A3DE4E33D35F044463s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFC7CC8C4FE5096A3DE4E33D35F044463s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFC7CC8C4FE5096A3DE4E33D35F044463s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFC7CC8C4FE5096A3DE4E33D35F044463s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4834F8862522E5F1555C3A682D622020s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4834F8862522E5F1555C3A682D622020s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4834F8862522E5F1555C3A682D622020s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4834F8862522E5F1555C3A682D622020s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib0CE76C6BA3B8940F257FC1BFE9DBEEC5s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib0CE76C6BA3B8940F257FC1BFE9DBEEC5s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib0CE76C6BA3B8940F257FC1BFE9DBEEC5s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib2408A727AB723B733765842DACC4A841s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib2408A727AB723B733765842DACC4A841s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib14AF995237F319BA37B7EC6C2A87BD14s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib14AF995237F319BA37B7EC6C2A87BD14s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib14AF995237F319BA37B7EC6C2A87BD14s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib6A71B7EAE4B4F56CF3AE8B73764C9123s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib6A71B7EAE4B4F56CF3AE8B73764C9123s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBEB32E452C3B35ECED3C57BA65D2CB28s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBEB32E452C3B35ECED3C57BA65D2CB28s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib7DE295831D1A77AE9227553D3CB147D0s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib7DE295831D1A77AE9227553D3CB147D0s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibB82A80DD670B135AD018E128D790A70Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibB82A80DD670B135AD018E128D790A70Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib5BE8FC2CBE336CBD576247A56C1AE399s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib5BE8FC2CBE336CBD576247A56C1AE399s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib5BE8FC2CBE336CBD576247A56C1AE399s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib258A855DD251952DC4365070F21EEB6Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib258A855DD251952DC4365070F21EEB6Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib258A855DD251952DC4365070F21EEB6Cs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib13B52CA30A5DB584B5EE5F52E10CD48Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib13B52CA30A5DB584B5EE5F52E10CD48Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib13B52CA30A5DB584B5EE5F52E10CD48Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFE0AACE53D75ED4F086D1785F511476Ds1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibFE0AACE53D75ED4F086D1785F511476Ds1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib7EF4DD91E4C7270E5C568835C7909282s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib7EF4DD91E4C7270E5C568835C7909282s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib7EF4DD91E4C7270E5C568835C7909282s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib6CFB040CF5DAC284A03E1BE28C46FA68s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib6CFB040CF5DAC284A03E1BE28C46FA68s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBD753DA7B126EBB7602E0039CDD45330s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBD753DA7B126EBB7602E0039CDD45330s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBD753DA7B126EBB7602E0039CDD45330s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibBD753DA7B126EBB7602E0039CDD45330s1


S. Singkul and K. Woraratpanya Heliyon 8 (2022) e09196
[67] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev.: Com-

put. Stat. 2 (4) (2010) 433–459.

[68] K. Pal, M. Sharma, Performance evaluation of non-linear techniques umap and t-
sne for data in higher dimensional topological space, in: 2020 Fourth International 
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, 
2020, pp. 1106–1110.

[69] R. Shah, S. Silwal, Using dimensionality reduction to optimize t-sne, preprint, arXiv :
1912 .01098, 2019.

[70] K. Vijayan, P.R. Reddy, K.S.R. Murty, Significance of analytic phase of speech signals 
in speaker verification, Speech Commun. 81 (2016) 54–71.

[71] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the de-

tails: delving deep into convolutional nets, preprint, arXiv :1405 .3531, 2014.

[72] A. Nagrani, J.S. Chung, A. Zisserman, Voxceleb: a large-scale speaker identification 
dataset, Telephony 3 (2017) 33–039.
13

http://refhub.elsevier.com/S2405-8440(22)00484-4/bibC95CC0DB3C8B262D75858155A20565F0s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bibC95CC0DB3C8B262D75858155A20565F0s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib618F3BC69229ED3CD178265CEB90419Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib618F3BC69229ED3CD178265CEB90419Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib618F3BC69229ED3CD178265CEB90419Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib618F3BC69229ED3CD178265CEB90419Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib0CC5942A934B0C96872140790AA5B8A3s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib0CC5942A934B0C96872140790AA5B8A3s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib2FD63D026399CABD39127B0B96DA57E6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib2FD63D026399CABD39127B0B96DA57E6s1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib495F733BA65AE7359B7515E27B1EE41Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib495F733BA65AE7359B7515E27B1EE41Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4E025804741B381AC9CFFACB317B5F5Bs1
http://refhub.elsevier.com/S2405-8440(22)00484-4/bib4E025804741B381AC9CFFACB317B5F5Bs1

	Vector learning representation for generalized speech emotion recognition
	1 Introduction
	2 Literature review
	2.1 Data augmentation
	2.2 Feature selection
	2.3 Speech emotion model
	2.4 Learning with loss criterion

	3 Methodology
	3.1 Raw data preparation
	3.2 Feature extraction
	3.3 Speech emotion verification
	3.3.1 ResSE model
	3.3.2 Encoding frame-level to utterance-level features
	3.3.3 Emotional prototypical loss

	3.4 Fine-tuning probe with classical machine learning

	4 Experiments
	4.1 Evaluation metrics
	4.2 Datasets and simulated environments
	4.3 Parameter settings on resource-consuming concerns

	5 Results and discussion
	6 Conclusion and future work
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	References


