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Connexins are a family of proteins that can form two distinct types of channels:
hemichannels and gap junction channels. Hemichannels are composed of six
connexin subunits and when open allow for exchanges between the cytoplasm and
the extracellular milieu. Gap junction channels are formed by head-to-head docking of
two hemichannels in series, each one from one of two adjacent cells. These channels
allow for exchanges between the cytoplasms of contacting cells. The lens is a
transparent structure located in the eye that focuses light on the retina. The
transparency of the lens depends on its lack of blood irrigation and the absence of
organelles in its cells. To survive such complex metabolic scenario, lens cells express
Cx43, Cx46 and Cx50, three connexins isoforms that form hemichannels and gap
junction channels that allow for metabolic cooperation between lens cells. This review
focuses on the roles of Cx46 hemichannels and gap junction channels in the lens under
physiological conditions and in the formation of cataracts, with emphasis on the
modulation by posttranslational modifications.
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INTRODUCTION

The eye lens is a small but important organ that focuses light on the retina, which is essential for clear
vision. The lens cells are subjected to a hard metabolic environment as they live under hypoxic
conditions and do not have organelles. Cell-to-cell communication allows for the metabolic
cooperation between lens cells through the fluxes of inorganic ions, small organic molecules and
water (Goodenough et al., 1980; Mathias et al., 1997; Harris and Locke, 2009; Valiunas et al., 2018),
with the lens operating as a syncytium of cells interconnected by gap junction channels formed by
proteins called connexins (Goodenough, 1992; Giannone et al., 2021).

There is a strong link between connexin mutations and the appearance of cataracts (clouding of
the lens). Due to the importance of Cx46 (a connexin isoform) in lens physiology (Jiang, 2010;
Berthoud and Ngezahayo, 2017; Bai et al., 2021), and the recent discovery of its importance in
cancer (Banerjee et al., 2010; Burr et al., 2011; Mulkearns-Hubert et al., 2019; Acuña et al., 2020;
Acuña et al., 2021; Orellana et al., 2021), our group have been interested in the posttranslational
regulation of this protein, and this review focuses on how Cx46 posttranslational regulation affects
lens cells’ functions.
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CONNEXINS IN THE LENS

Gap junction channels are formed by head-to-head docking of
two hemichannels in series, each from one of two adjacent cells
(Saez et al., 2003; Mese et al., 2007; Nielsen et al., 2012; Abascal
and Zardoya, 2013), where each hemichannel is formed by
oligomerization of six connexin subunits (Saez et al., 2003;
Mese et al., 2007; Nielsen et al., 2012; Abascal and Zardoya,
2013). Even though gap junction channels and hemichannels are
formed by the same proteins (Figure 1), they have very different
roles in cell physiology. Gap junction channels and hemichannels
allow the permeation of ions and molecules up to 1.5 kDa, but
while gap junction channels mediate exchanges between
cytoplasms of adjacent cells, hemichannels do so between the
intracellular and extracellular fluids, which have very different
compositions (Harris and Locke, 2009; Vinken, 2015; Valiunas
et al., 2018).

There are 21 human genes coding for different connexin
isoforms, which are expressed in almost all cell types (Sohl
and Willecke, 2004; Abascal and Zardoya, 2013). Among
them, Cx23 and Cx43 have been identified mostly in lens
epithelial and differentiating fiber cells, while Cx46 and Cx50
are predominantly located in mature fiber cells (see Figure 2A)
(Puk et al., 2008; Berthoud and Beyer, 2009; Beyer and Berthoud,
2014). Relevant to the lens pathology, mutations in Cx46 and
Cx50 have been associated to lens malfunction and cataract

formation (Beyer and Berthoud, 2014; Retamal et al., 2015;
Berthoud et al., 2020; Bai et al., 2021). In particular for Cx46,
it has been reported that mice lacking this connexin develop
cataracts due to the absence of Cx46-based communication
between mature fiber cells and more peripheral cells (Gong
et al., 1998) and that Cx46 mutations that result in non-
functional gap junction channels (e.g., N63S and frame-shift
mutant fs380) produce cataracts in human lenses (Pal et al.,
2000; Berthoud and Ngezahayo, 2017; Berthoud et al., 2020). In
summary, the current data show that the presence of cell-to-cell
communication mediated by Cx46 gap junction channels is
fundamental for the normal function and transparency of
the lens.

The lens is a biconvex structure of the eye whose main
function is to focus light on the retina. To fulfill this task the
lens must be transparent, a characteristic achieved by several
factors that include the absence of blood vessels, lack of organelles
and tight packing of mature fiber cells. The lens consists of the
anterior surface epithelium and the fiber cells that form the bulk
of the organ (Figure 2A). The differentiating fiber cells arise from
the epithelial cells in the equatorial region, which transform into
mature fiber cells by a process that involves cell elongation and
loss of organelles, including the nuclei. In the absence of blood
vessels, survival of the fiber cells depends on an internal
circulation system that allows delivery of ions and nutrients,
and removal of waste metabolites to and from the center of the

FIGURE 1 | Connexins, hemichannels and gap junction channels. (A) Schematic representation of a connexin subunit. EL1 and EL2, extracellular loops; IL,
intracellular loop; CTD, C-terminal domain. The rectangle blocks represent transmembrane helices 1–4. The location targets of some of the posttranslational
modifications discussed in the text (phosphorylation, S-nitrosylation and carbonylation) are indicated. (B) Schematic representation of a connexin hemichannel. Each
cylinder corresponds to a connexin subunit as seen in panel (A). The two different tones represent different connexin isoforms (e.g., Cx46 and Cx50) and indicate
hemichannels formed by only one isoform (homomeric) or more than one (heteromeric). (C) Schematic representation of a gap junction channel. Gap junction channels
can be formed by docking of two hemichannels of the same subunit composition (homotypic) or hemichannels of different composition (heterotypic).
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lens, respectively (Mathias et al., 2007; Berthoud et al., 2020). Lens
circulation depends on communication through intercellular gap
junction channels (Dawes et al., 2014; Berthoud and Ngezahayo,
2017; Berthoud et al., 2020; Giannone et al., 2021). Since Cx46
seems to be the most important connexin in fiber lens cells, its
properties define the intracellular circuit properties in the lens
(Mathias et al., 2007; Berthoud et al., 2020). Consistent with a
critical role of Cx46 gap junction channels in lens circulation,
there is a flux of glutathione (GSH) from the outer cortex to the
mature fiber cells at the lens center, and GSH in the lens center is
reduced in Cx46-but not in Cx50-knockout mice (Slavi et al.,
2014). Figure 2 shows a representation of the lens and its
circulation system. More details can be found in published
reviews (Mathias et al., 2007; Berthoud et al., 2020).

Characteristics of Gap Junction Channels
and Hemichannels Formed by Cx46 and
Their Roles in Lens Physiology
In the early 1990s, two independent groups localized the Cx46
gene (GJA3) in chromosome 13 (Hsieh et al., 1991; Mignon et al.,
1996). Northern blot analyses revealed that Cx46 mRNA was
highly expressed in rat lens and to a lesser degree in the heart, and
was almost undetectable in the kidney (Paul et al., 1991). Cx46
mRNA distribution in mice is similar to that in rat, whereas in
hamster Cx46 seems to be expressed only in the lens (Cruciani
et al., 2004). In humans, according to the “Human Protein Atlas”
(https://www.proteinatlas.org/ ENSG00000121743-GJA3/tissue),
Cx46 mRNA is present in the lens, heart, kidneys, and female and
male reproductive organs. At a functional level, Cx46 can form

gap junction channels and hemichannels (Paul et al., 1991;
Ebihara and Steiner, 1993; Verselis et al., 2000), and also
seems to have non-canonical functions such as in exosome-
mediated communication (Acuña et al., 2020). As the lens is
an avascular organ, lens cells live under hypoxia, and it has been
proposed that Cx46 protects against its deleterious effects
(Banerjee et al., 2010). Although the Cx46 promoter is
activated by the hypoxia inducible factor in human epithelial
lens cells in culture (Molina and Takemoto, 2012), this
mechanism cannot operate in vivo as fiber cells lack a nucleus.
Our review focuses on Cx46 as a channel-forming protein in
the lens.

Cx46 Gap Junction Channels
Cx46 forms gap junction channels between fiber cells in bovine
(Paul et al., 1991; Tenbroek et al., 1992), chicken (Biswas et al.,
2010), mouse (Gong et al., 1998; Berthoud et al., 2016), and
monkey (Lo et al., 1996) lenses. The current evidence based on the
association of cataract development with Cx46 mutations
strongly supports the notion that Cx46 also forms gap
junction channels in human fiber cells (Jiang, 2010; Retamal
et al., 2015; Berthoud and Ngezahayo, 2017; Berthoud et al.,
2020). In most studies, the gap junction channel conductance was
in the 130 to 180 pS range, but higher values have also been
reported (e.g., ~250 pS in mice fiber cells) (Donaldson et al., 1995;
Hopperstad et al., 2000; Sakai et al., 2003; Rubinos et al., 2014;
Yue et al., 2021). The reason for the differences in single-channel
conductance are unknown, but they may be due to the formation
of heterogeneous channels (heteromeric hemichannels
containing different connexin isoforms and/or heterotypic

FIGURE 2 | Lens internal circulation. (A) Schematic representation of the lens and its internal circulation. Ions and fluid enter the extracellular spaces at the anterior
and posterior poles and leave through the epithelial cell membranes at the equator. The colors indicate the expression of the predominant connexin isoforms in different
regions. Cells from the anterior epithelium express Cx43 and Cx50; differentiating fiber cells express Cx43, Cx46, and Cx50; mature fiber cells express Cx46 and Cx50.
(B)Representation of the ion circulation and some of the components that support ionmovements from the lens core to its surface. Na+ andCa2+ that enter the lens
at the anterior and posterior poles move to the center through the extracellular spaces where influx into fiber cells is driven by their electrochemical gradients across the
membranes. They move towards the lens surface at the equator through gap junction channels, as the coupling conductance is highest at the equator, where these ions
are extruded from the epithelial cells. Ion movements generate transmembrane osmotic gradients that couple their movement to that of fluid. Reproduced with
permission from the Int. J. Med. Sci. 21(16):5822 (Berthoud et al., 2020).
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channels formed by hemichannels of different subunit
composition) (Figure 1).

Gap junction channels display two distinct voltage-gating
phenomena that are intrinsic properties of the hemichannels,
fast (or trans-junctional voltage) gating, and slow (or loop) gating
(Trexler et al., 1996; Bukauskas and Peracchia, 1997; Verselis,
2000; Verselis et al., 2000; Bukauskas et al., 2002; Bukauskas and
Verselis, 2004; Gonzalez et al., 2007; Bargiello and Brink, 2009;
Bargiello et al., 2012; Bargiello et al., 2018). Closure by slow-
gating is favored by inside-negative voltages in hemichannels
formed by all connexin isoforms, whereas the polarity of the fast
gating varies among connexin isoforms (Verselis, 2000; Verselis
et al., 2000; Harris, 2001; Bukauskas et al., 2002; Bukauskas and
Verselis, 2004; Gonzalez et al., 2007; Bargiello et al., 2018). The
fast gating occurs by transitions between the open and
subconductance states (Trexler et al., 1996; Bukauskas and
Verselis, 2004; Gonzalez et al., 2007; Bargiello et al., 2018),
whereas in the slow gating a series of small amplitude
transitions appear as a slow and complete closure (Trexler
et al., 1996; Bukauskas and Verselis, 2004; Gonzalez et al.,
2007; Bargiello et al., 2018). It is believed that the slow-gating
mechanism also mediates “chemical” gating in response to
changes in intracellular Ca2+ and pH, as well as hemichannel
opening during gap junction formation (loop gating) (Bukauskas
and Peracchia, 1997; Bukauskas and Verselis, 2004). Our
knowledge of the structure and location of the voltage sensors
and gates is complex and details can be found elsewhere (Harris,
2001; Bukauskas and Verselis, 2004; Gonzalez et al., 2007;
Bargiello et al., 2012; Bargiello et al., 2018; Natha et al., 2021).

Under normal conditions intracellular Ca2+ flows from the
center to the periphery of the lens, where the Ca2+-ATPase and
Na+/Ca2+ exchangers transport it out of the lens, avoiding its
accumulation (Figure 2) (Gao et al., 2004). Consistent with this,
the lack of Cx46 in mice lens fiber cells results in development of
nuclear cataracts associated to crystallin proteolysis by caspases
(Gong et al., 1997) and Lp82 (Baruch et al., 2001), both Ca2+-
dependent proteases. A possible explanation is that the absence of
Cx46 reduces Ca2+ flow through Cx46 gap junction channels,
which leads to Ca2+ accumulation in the cytoplasm of fiber cells,
followed by protease activation (Figure 3) (Gao et al., 2004).
When Cx46 was knocked into both Cx50 alleles in mice lenses,
fiber cells homeostasis and gap junction coupling were
maintained, but the size of the lens was reduced (White, 2002;
Martinez-Wittinghan et al., 2004). Therefore, gap junction
channels mediate metabolic coupling, but intercellular
channels formed by Cx46 and Cx50 are not fully
exchangeable. Potentially relevant to this, gap junction
channels formed by Cx43, Cx46 and Cx50 are permeable to
second messengers, but permeation rates vary, with cAMP
permeability of Cx46 gap junction channels much higher than
that of Cx50 channels, although both are lower than that of Cx43
channels (Qu and Dahl, 2002; Brink et al., 2020).

Cx46 Hemichannels
Formation of Cx46 hemichannels in living cells was first
suggested when overexpression of Cx46 in Xenopus oocytes
resulted in cell lysis, correlated with Lucifer yellow uptake, a
large outward current, and plasma membrane depolarization
(Paul et al., 1991). Xenopus laevis oocytes expressing Cx46
show large currents that are usually activated slowly (time
constant in the tens seconds) at voltages above +5–10 mV
(Ebihara and Steiner, 1993; Trexler et al., 1996; Retamal et al.,
2010). Cx46 hemichannels are cation selective and show marked
rectification, with conductances of ~300 and ~135 pS at −50 mV
and +50 mV, respectively (Trexler et al., 1996). In addition to the
main conductance of ~300 pS at negative membrane voltages,
Cx46 hemichannels display a sub-conductance of 100–200 pS
(Trexler et al., 1996; Pfahnl and Dahl, 1998).

Hemichannels are not only activated by membrane
depolarization but are also modulated by extracellular Ca2+. In
the normal mM range this ion maintains Cx46 hemichannels
mostly closed (Verselis and Srinivas, 2008) and this inhibition is
modulated by membrane voltage (Pfahnl and Dahl, 1999) and
monovalent ions (Srinivas et al., 2006). Studies on Cx26
hemichannels showed that Ca2+ produces subtle conformational
changes near the pore’s extracellular entrance (Bennett et al., 2016;
Lopez et al., 2016). It appears that Ca2+ disrupts an intersubunit salt
bridge, which results in neighboring electrostatic interactions that
involve other charged residues (Lopez et al., 2016), and it has been
proposed that a network of electrostatic intrasubunit and
intersubunit interactions plays a critical role in hemichannel
gating, with two anionic residues in this region interacting with
Ca2+ directly to occlude the pore (Lopez et al., 2016). Recent work on
Cx46 hemichannels showed that the voltage sensor movement and
Ca2+ binding domain are allosterically coupled, and it has been
proposed that Ca2+ binds to negative charges in the voltage sensor

FIGURE 3 | One example of the role of gap junction channels in
metabolic coordination between lens fiber cells. (A) Normal junctional
coupling. Under normal conditions gap junction communication prevents
Ca2+ accumulation in lens fibers. The Ca2+ transported from the central
to peripheral cells is extruded by the Ca2+ pump and a Na+/Ca2+ exchanger.
(B) Loss of gap junctional coupling. Inhibition of gap junction communication
can lead to Ca2+ accumulation and development of cataracts. Factors such as
phosphorylation (-P) of Cx46 and association with Ca2+-calmodulin (CaM) can
inhibit gap junction channels.
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that are reachable by Ca2+ only in the inside-negative voltage resting
conformation of the voltage sensor (Pinto et al., 2017). Cx46
hemichannels also present a characteristic that we called
“facilitation,” which refers to the increase in current in response
to repetitive positive voltage pulses (> +60mV), a phenomenon
dependent on the time between pulses and the extracellular Ca2+

concentration (Retamal et al., 2010). Thus, Cx46 hemichannel
properties are complex and are modulated by small molecules
normally presents in the extracellular medium.

Cx46 hemichannels are also mechanosensitive (Bao L. et al.,
2004), with hemichannels’ activity increasing when negative
pressure is applied to the recording pipette or in response to
cell swelling by exposure to hypotonic solution (Bao L. et al.,
2004). It has been suggested that the mechanosensitivity of Cx46
hemichannels has a role in fluid equilibration after mechanical
stresses associated with the change in shape of the lens during the
process of accommodation to focus light on the retina from
objects at different distances.

Although the presence of functional connexin hemichannels
in the lens can be inferred from studies in the 1990s (Rae et al.,
1992; Rae and Rae, 1992; Eckert et al., 1998), demonstration that
lens fiber cells present currents that can be linked to gap junction
channels and hemichannels formed by Cx46 was obtained
20 years later in freshly dissociated fiber cells from Cx50
knockout mouse lenses (Ebihara et al., 2011). In this study,
Cx46 hemichannels currents activated by depolarization and
removal of extracellular Ca2+ displayed a large conductance
and allowed propidium uptake from the extracellular space
(Ebihara et al., 2011). Despite their low open probability at
resting potential, the activity of Cx46 hemichannels seems
sufficient to account for a constant Na+ entry into the fiber
cells that depolarizes the membrane potential by a few mV
(Ebihara et al., 2014), which may an essential part of the Na+

lens circuit flux (Figure 2). Moreover, Cx46 hemichannel activity
enhances Cx46 gap junction channel formation in Xenopus
oocytes (Beahm and Hall, 2004), and therefore, there could be
a balance between Cx46 hemichannel activity and gap junction
channel formation in lens fiber cells.

Since a low level of hemichannel activity may be responsible
for the chronic Na+ current in the normal lens (Ebihara et al.,

2014) and may also participate in cell volume regulation (Bao L.
et al., 2004), reduced opening could affect accommodation or
lead to cataracts by affecting the internal circulation of the lens.
Conversely, increased hemichannel opening can lead to the
development of cataracts due to damaging disbalances that
result from changes that include increases in Na+ and Ca2+

influxes, losses of K+, ATP and GSH, and depolarization
(Figure 4). Hyperactive hemichannels can be the result of
mutations or a variety of mechanisms that include
membrane depolarization, increases in intracellular Ca2+, and
changes in the phosphorylation and redox status (Bao L. et al.,
2004; Bukauskas and Verselis, 2004; Saez et al., 2005; Berthoud
and Beyer, 2009; Fasciani et al., 2013; Retamal et al., 2015;
Figueroa et al., 2019; Berthoud et al., 2020; Peracchia, 2020;
Natha et al., 2021; Retamal et al., 2021). Overall, the information
available supports a role of Cx46 hemichannels in the lens. The
electrical and permeability behaviors of Cx46 hemichannels are
complex and more studies in vivo are needed to understand the
role of Cx46 hemichannels in lens physiology and
pathophysiology.

Cx46 POSTTRANSLATIONAL
MODIFICATIONS AND THEIR POTENTIAL
RELEVANCE TO LENS PHYSIOLOGY
Phosphorylation
This is a reversible posttranslational modification in which a
protein kinase adds a phosphate group to serine, threonine, or
tyrosine residues, which can be removed by protein phosphatases.
The phosphorylation status of a protein can affect expression and/
or function and it is frequently an important regulator (Cohen,
2002; Fischer, 2013), as is the case for gap junction channels and
hemichannels (Saez et al., 1998; Lampe and Lau, 2000, 2004;
Moreno, 2005; Pogoda et al., 2016). Western blot analyses of
bovine and rat lenses showed that Cx46 migrates as two
prominent bands of ~46 kDa and 56–60 kDa (Paul et al., 1991),
and analyses of cultured bovine lens revealed that the ~46-kDa
band corresponds to unphosphorylated Cx46 and the slower
migrating bands to Cx46 phosphorylated at serine residues
(Jiang et al., 1993). The degree of phosphorylation changes
during development, with unphosphorylated Cx46 prevailing
during early gestation and fully phosphorylated Cx46 after birth
(Jiang et al., 1993). PKCγ is one of the kinases that regulates Cx46
phosphorylation status in vivo. It has been shown that Cx46 co-
immunoprecipitates with PKCγ (Lewis et al., 2001; Saleh et al.,
2001) and that PKCγ co-immunoprecipitation with Cx46 increases
in rats lens exposed to oxidation by H2O2 (Lin et al., 2004). Under
the latter condition, both serine and threonine Cx46 residues were
phosphorylated (Lin et al., 2004). In contrast, another study
showed that the activation of PKCγ by 12-O-
tetradecanoylphorbol-13-acetate (TPA) only increased Cx46
phosphorylation of threonine residues (Zampighi et al., 2005).
One explanation for the discrepancy is a high phosphorylation level
of Cx46 serines under control conditions in the latter study.

It has been suggested that phosphorylation of Cx46 by PKC
has a role in the development of cataracts associated with diabetes

FIGURE 4 | Example of the role of increased Cx46 hemichannel activity
in cataracts development. Abnormal increase in hemichannel activity can
produce a variety of potentially deleterious effects in cells, including increases
in Ca2+ influx, and ATP and glutathione (GSH) efflux.
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and oxidative stress, but the relationship between Cx46
phosphorylation and cataracts is not straightforward and likely
depends on many factors. Diabetes is correlated with cataract
development in humans and animal models, and in rats fed with
high galactose (diabetes model) an increase in lens Cx46 serine
phosphorylation by PKCγ and inhibition of dye transfer between
fiber cells were observed (Lewis et al., 2001). In contrast, lenses
from rats exposed to selenite, which causes cataract development
due to an excess of free radicals, showed dephosphorylation of
Cx46 forming gap junction channels (Fleschner, 2006).
Consistent with the association of a decrease in Cx46
phosphorylation and cataracts, the absence PKCγ in a
knockout mice was correlated with the development of
cataracts and an increase of oxidative stress, suggesting that
the lack of Cx46 regulation may disrupt channel function and
make the cells prone to damage by oxidative stress (Lin et al.,
2006).

A Mass spectrometry study determined 11 phosphorylation
sites, all in the Cx46 C-terminal domain (Wang and Schey, 2009).
However, hemichannels made of a C-terminal truncated form of
rat Cx46 expressed in Xenopus oocytes were still inactivated by
PKC stimulation with TPA (Walter et al., 2008). This result
suggests the presence of Cx46 regulatory proteins phosphorylated
by PKC and/or that PKC phosphorylates amino acids in the
intracellular loop, or less likely the N-terminus, that were not
identified in theWang and Schey’s work (Wang and Schey, 2009).
In addition to PKCγ, Cx46 has three putative target sites for
phosphorylation by casein kinase 2 (CK2), and it seems that this
kinase phosphorylates the Cx46 C-terminus and increases
hemichannel formation (Walter et al., 2008). Contrary to CK2,
neither PI3k nor Akt seem to modulate Cx46 gap junction
channels expressed in Xenopus oocytes (Martinez et al., 2015).

In summary, phosphorylation by PKC and other kinases
affects Cx46 expression and function, and cataract formation
is associated with phosphorylation of Cx46 in diabetes and its
dephosphorylation following oxidate stress. However, details on
the role of Cx46 modifications in the pathophysiological

mechanisms leading to the formation of cataracts are still
unresolved. A summary of the main posttranslational
modifications discussed in this review is presented in Table 1.

S-Nitrosylation
Nitric oxide (NO) is a gaseous transmitter that signals through the
activation of the guanylyl cyclase and the formation of
S-nitrosothiols, resulting in S-nitrosylated proteins (Hess et al.,
2005; Nakamura and Lipton, 2016; Lee et al., 2021). NO is a short-
lived and highly reactive gas produced during conversion of
arginine to citrulline and NO by NO synthases (Snyder, 1992;
Iwanaga et al., 1999), and NO production is stimulated by Ca2+ or
regulated at the transcriptional level, depending on the synthases
involved (Bredt and Snyder, 1994; Nelson et al., 2003; Nakamura
and Lipton, 2016). The formation of S-nitrosylated proteins results
from reaction between a redox-sensitive thiol group (actually a
thiolate anion) and a nitrosonium cation (NO+) in the presence of
transition metals that accept an electron from NO (Hess et al.,
2005; Martinez-Ruiz et al., 2011; Nakamura and Lipton, 2016; Lee
et al., 2021), although other mechanisms are possible (Hess et al.,
2005; Martinez-Ruiz et al., 2011; Smith and Marletta, 2012;
Nakamura and Lipton, 2016), including protein-to-protein
transnitrosylation. In the latter, NO is transferred from a donor
protein to a specific acceptor protein (Nakamura and Lipton, 2013;
Jia et al., 2014). Not all cysteine thiols in a protein can be
S-nitrosylated. Although details on the S-nitrosylation selectivity
are not completely understood, S-nitrosylation is promoted by
proximity to the NO source and local hydrophobicity that serves to
concentrate NO (e.g., thiols close to the membrane), the presence
of charged amino acids in close proximity, and location in flexible
regions (Liu et al., 1998; Hess et al., 2005; Doulias et al., 2010; Smith
and Marletta, 2012; Nakamura and Lipton, 2016; Lee et al., 2021).
S-nitrosylation is often a relatively labilemodification and reducing
agents and enzymes such as thioredoxin and S-nitrosoglutathione
(GSNO) reductases can remove the NO from the modified
cysteines (Benhar et al., 2008; Benhar et al., 2009; Nakamura
and Lipton, 2016).

TABLE 1 | Posttranslational modifications of Cx46.

Posttranslational
modification

Target Enzyme/
molecule

Effects on
GJCs

Effects on
HCs

Reference

Phosphorylation Ser ND ND ND Jiang et al. (1993)
Ser and Thr PKCγ ND ND Lin et al. (2004)
Thr PKCγ ND ND Zampighi et al. (2005)
Ser PKCγ Dye transfer ND Lewis et al. (2001)
Ser348,Ser410 PKCγ ND ND Walter et al. (2008)
Thr307 CK2 ND HC formation Walter et al. (2008)

S-nitrosylation Cys NO ND Voltage inactivation Retamal et al. (2009)
Cys218 NO No effects Activation Retamal et al. (2019)

Carbonylation Extracellular Cys 4-HNE ND Inhibition Retamal et al. (2020)
Extracellular Cys CO ND Inhibition Leon-Paravic et al. (2014)

Cleavage Leu255 — Dye transfer ND Jacobs et al. (2004)
Ile238-P251 ND ND Slavi et al. (2016)

The table shows a summary of posttranslational modifications presented in the text. See references for the Cx46 ortholog studied and additional details. GJC: gap junction channel; HC:
hemichannel; ND: not determined; CK2: casein kinase 2; NO: nitric oxide; 4-HNE: 4-hydroxynonenal; CO: carbon monoxide.

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 8649486

Retamal and Altenberg Regulation of Lens Cx46

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


An association between connexins, redox potential and
oxidative stress is well established (Quan et al., 2021; Zhang
et al., 2021), although low or physiological levels NO could have a
protective effect in lens epithelial cells (Chamberlain et al., 2008).
A high production of NO in human lens has been associated with
cataracts, especially in hypertensive patients (Ornek et al., 2003)
and smokers (Anitha et al., 2019), and a similar association has
been found in animal models of hypertension and diabetes
(Abdul Nasir et al., 2017; Yadav et al., 2018). For example,
rats injected with CdCl2 develop hypertension and lens
opacity, and the lens opacity was diminished by topical
application of the NO synthases inhibitor L-NG-Nitro arginine
methyl ester and was aggravated by the NO donor
S-nitrosoglutathione (Yadav et al., 2018). The deleterious effect
of NO on lens cells could be the result of the decreases of
membrane transport efficiency, intracellular ATP, and/or GSH
observed in rat lenses after exposition to a NO donor (Varma and
Hegde, 2007). Additionally, a decrease of cytochrome c oxidase
expression and function was found in a rat model of cataract
where an increase of NO production was observed (Nagai and Ito,
2007).

Based on the association between NO and cataracts, we
studied the effects of NO donors on Cx46 hemichannels and
found that following exposure to S-nitrosoglutathione Cx46
hemichannels expressed in Xenopus oocytes opened at lower
positive voltages, displayed a current inactivation evident at
voltages above +50 mV, and showed increased tail currents
(Retamal et al., 2009). These changes did not occur in
hemichannels formed by a Cx46 mutant without cysteines at
positions 218 (transmembrane segment 4 near membrane/
cytosol interface), 283 and 321 (C-terminus), or in oocytes
treated with the reducing agent dithiothreitol (DTT),
suggesting that one or more of the mutated cysteines becomes
S-nitrosylated by NO. We identified cysteine 218 as the NO
sensor and found that, unexpectedly, NO did not affect Cx46 gap
junction channels (Retamal et al., 2019). These observations
suggest that cysteine 218 is not available for modification in
the gap junction channels or that conformational changes that
follow hemichannel docking prevent the effect of S-nitrosylation.
We also found that rats injected with selenite developed cataracts
and that Cx46 was S-nitrosylated in the lenses extracted from the
selenite-treated animals (Retamal et al., 2019). In addition,
exposure to NO donors increased hemichannel activity as
measured by an increase of ethidium uptake in human lens
epithelial cells in culture (HLE-B3 cells). This rise in
hemichannel activity was correlated with an increase of
S-nitrosylated Cx46 as determined by immunoprecipitation
and Western blot analyses (Retamal et al., 2019). In summary,
Cx46 hemichannels are sensitive to NO, which modifies cysteine
218. S-nitrosylation affects Cx46 hemichannel properties, which
could play a role in cataract development and/or could worsen the
effects of signaling pathways activated in diseases such as
diabetes.

Carbonylation
Protein carbonylation is a posttranslational modification in
which amino acids are chemically modified by free radicals

through a non-enzymatic reaction, and where oxidative stress
is often involved (Wong et al., 2013a; Hwang et al., 2016; Tola
et al., 2021). Under normal conditions, there is a balance between
the generation of reactive oxygen species (ROS) and antioxidant
defenses. Primary carbonylation consist of the modification of
amino acids such as lysine, proline and threonine by free radicals
to form ketones and aldehydes (Tola et al., 2021), whereas
secondary carbonylation is associated with the oxidation of
nucleophilic amino acids by lipid peroxides (cysteine >
histidine > lysine) (Wong et al., 2013a; Zhang and Forman,
2017). The latter can be reversed in a thiol-dependent manner
(Wong et al., 2013b). Reactive carbonyl species produced by
oxidation of polyunsaturated fatty acids and sugars are highly
reactive and can easily carbonylate proteins (Uchida et al., 1999;
Basta et al., 2004; Hwang et al., 2016; Gaschler and Stockwell,
2017). The lipid peroxidation product 4-hydroxinonenal (4-
HNE) is one of the most abundant and toxic reactive carbonyl
species, which is generated via β-cleavage of hydroperoxide
derived from ω-6 polyunsaturated fatty acids such as linoleic
acid and arachidonic acid (Uchida et al., 1999; Carini et al., 2004;
Hwang et al., 2016; Zhang and Forman, 2017).

Unsaturated fatty acids are hydrophobic molecules that have
multiple roles in physiological and pathological conditions, and
their excess is associated with the development of cataracts (Iwig
et al., 2004). With this in mind, we tested the effects of linoleic
acid (an omega-3 essential fatty acid) on Cx46 hemichannels. At
low concentration (0.1 μM) linoleic acid increased hemichannel
currents in Xenopus oocytes by a process that requires activation
of an intracellular mechanism (Retamal et al., 2011). However, at
concentrations above 1 μM the fatty acid inhibited Cx46
hemichannels in a dose-dependent manner (Retamal et al.,
2011). The inhibitory effect was PKC- and intracellular Ca2+-
independent but depended on the integrity of the linoleic acid
double bond at position 9 (Retamal et al., 2011). As for the case of
S-nitrosylation (Retamal et al., 2019), linoleic acid did not affect
Cx46 gap junction channels (Retamal et al., 2011). A simple
explanation for these results is that linoleic acid and other fatty
acids are oxidized to lipid peroxides, which are much more
reactive than the non-oxidized lipids. In this context, the
prevention of the increase of lipid peroxides precluded lens
opacification in an animal model of cataracts (Nagai et al.,
2008). Also, consistent with this notion, the lipid peroxidation
product 4-HNE also inhibits Cx46 hemichannels in a dose
dependent manner and its effect is reversed by DTT,
suggesting the involvement of cysteine oxidation (Retamal
et al., 2020). Western blot analysis revealed that Cx46
expressed in HeLa cells becomes carbonylated after exposure
to 4-HNE, and that DTT reduced this carbonylation (Retamal
et al., 2020). Additional studies with Cx46 cysteine mutants
suggested that the inhibitory effect of 4-HNE on hemichannels
occurs through carbonylation of extracellular cysteines, which
could explain the absence of effects on gap junction channels
(Retamal et al., 2011), as these cysteines are not available for
modification in the latter (Foote et al., 1998; Maeda et al., 2009;
Myers et al., 2018). This is congruent with the importance of
extracellular cysteines in gap junction channel formation due to
the formation of disulfide bridges (Bao X. et al., 2004; Maeda
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et al., 2009; Heja et al., 2021), whereas Cx43 without cysteines can
still form functional hemichannels (Bao X. et al., 2004). The
potential role of carbonylation is stressed by the finding of Cx46
carbonylation in rat’s lenses with cataracts (Retamal et al., 2020).
It seems therefore possible that peroxidation products of fatty
acids oxidation can inhibit Cx46 hemichannels through
carbonylation of extracellular cysteines and that this effect
may lead to cataract formation.

Carbon monoxide (CO) is a metabolite produced by
decomposition of heme groups by heme oxygenases (Yang
et al., 2021). In general, CO protects against oxidative stress
(Yang et al., 2021) and exogenous administration of CO-
donors has been used for the treatment of conditions
associated with oxidative stress, such as inflammation,
sepsis, lung and cardiovascular diseases, and cancer (Bauer
and Pannen, 2009; Motterlini and Otterbein, 2010; Ryter and
Choi, 2013). In lens epithelial cells in culture the expression of
heme oxygenase-1 (HO-1) increased in response to oxidative
stress (Padgaonkar et al., 1997) and the cell damage elicited by
H2O2 was inhibited by the CO-releasing molecule 3 (CORM-3)
through the inhibition of NF-κB nuclear translocation,
reduction of ROS concentration, and enhancement of GSH
and superoxide dismutase levels (Huang et al., 2018).
Accordingly, mice expressing a negative dominant HO-1
display accumulation of lipid peroxides, reduced
concentration of GSH, and develop cataracts (Huang et al.,
2021). We found that CORM-2 produced a major decrease in
the amplitude of the currents of Cx46 hemichannels expressed
in Xenopus laevis oocytes (Leon-Paravic et al., 2014). The effect
of the CO donor was independent on the presence of the
Cx46 C-terminal domain but required the presence of
extracellular Cx46 cysteines and was reversed by reducing
agents. We also found that CORM-2 induces carbonylation
of purified Cx46 (Leon-Paravic et al., 2014), but the amino
acids modified have not been identified. Based on these
observations, we have proposed that CO carbonylates
extracellular Cx46 cysteines through lipid peroxides, which
reduces Cx46 hemichannel activity, with a protective effect
against oxidative stress and cataract development (Retamal,
2016).

The evidence presented above on the relationship between
Cx46 hemichannel inhibition, carbonylation, and cataracts can be
confusing, as increased carbonylation induced by 4-HNE is
associated with hemichannel inhibition and cataracts, whereas
CO is also associated with hemichannel inhibition but has a
protective effect on the lens. As mentioned in Characteristics of
Gap Junction Channels and Hemichannels Formed by Cx46 and
Their Roles in Lens Physiology under Cx46 hemichannels, a
normal hemichannel activity may be essential for the internal
lens circulation, whereas abnormally high hemichannel activity
can damage lens cells because of ionic and metabolic disbalances.
Therefore, it is possible that the same posttranslational
modification affects the lens differently, depending on the
underlying hemichannel activity and experimental conditions,
additional effects of fatty acids/4-HNE and CO, residues
carbonylated, or differences in the signaling cascades involved
in response to increases in fatty acids/4-HNE and CO.

C-Terminal Cleavage
In early 2000s it was demonstrated that the C-terminal domain of
native Cx46 of fiber cells can be cleaved. Cleavage was correlated
with the loss of cell nuclei, decrease of gap junction plaques’ size
and transfer of fluorescein between fiber cells (Jacobs et al., 2004).
Using MS/MS mass spectrometry it was demonstrated that Cx44
(bovine orthologue of human Cx46) was cleaved at Leucine 255,
while human Cx46 was cleaved between amino acids 238 and 251,
and that Cx46 truncation increases with age (Slavi et al., 2016). As
Cx46 gap junctions are blocked at intracellular acidic pH (Trexler
et al., 1999) and the pH at the frog lens center is ~6.8, a significant
decrease of gap junction communication mediated by Cx46 can
be expected in the center of the lens. However, fiber cells located
at the lens center remain coupled upon acidification by increasing
CO2 (Mathias et al., 1991). Therefore, it seems likely that
C-terminus truncation maintains metabolic coupling between
lens fibers in a pH independent way as fiber lens cells have the
truncated version of Cx46 and remain ~80% functional at pH 6.8
(Eckert, 2002).

It has been proposed for Cx40 and Cx43 that the C-terminal
domain acts as a “ball” (“particle”) of a “ball-and-chain”
(“particle-receptor”) pH-dependent gating mechanism where
the C-terminal domain acts as gating particle that binds to a
receptor in the cytoplasmic loop (Ek-Vitorin et al., 1996;
Stergiopoulos et al., 1999; Anumonwo et al., 2001; Delmar
et al., 2004; Hirst-Jensen et al., 2007; Ponsaerts et al., 2010; Oh
and Bargiello, 2015; Khan et al., 2020). However, the role of the
ball-and-chain mechanism in Cx46 pH gating is unclear as Cx46
gap junction channels truncated at amino acid 251 are still
inhibited by acidification in HeLa cells (Slavi et al., 2016). This
work suggests that the sensitivity of C-terminus truncated Cx46
to an acidic environment is cell dependent and/or that there are
other mechanisms involved in addition to the ball-and-chain
gating. In studies of mice lenses ex vivo, it was found that the pH
sensitivity of Cx46 gap junction channels is complex and depends
on the activity of Cx50, as the gap junction channels become
insensitive to acidification in the presence of mefloquine, a
selective Cx50 gap junction channel inhibitor (Martinez-
Wittinghan et al., 2006). In summary, Cx46 is pH sensitive,
but the gating mechanism is complex and more experiments
are needed to unravel the roles of the truncation in lens
physiology and pathophysiology.

Others
Oxidative stress has a great impact in lens physiology and it is well
established that an excess of free radicals is associated with the
development of cataracts (Berthoud and Beyer, 2009). The work
of glutathione peroxidase-1 (GPRx-1 or GSHPx-1) is one of the
ways that lens cells use to fight against the excess of free radicals.
This enzyme is a catalase that reduces H2O2 bioavailability and
therefore protect lens cells from the damage induced by this
molecule (Reddy et al., 2001). Knockout mice lacking this enzyme
develop cataracts at early age that progress to complete
opacification in older animals (Reddy et al., 2001). In this
knockout animal model, the expression of Cx46 and Cx50 was
reduced to half and the cell-to-cell conductance was reduced in
outer differentiated fibers cells and inner core mature fibers,
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suggesting decreased gap junctional communication by oxidation
as a factor in the development of cataracts in this model (Wang
et al., 2009). It is interesting to note that gap junction coupling
between fiber cells decreases with age, a phenomenon correlated
with a decrease of Cx46 and Cx50 (Gao et al., 2013; Gong et al.,
2021), which is associated with oxidative stress (Gao et al., 2013;
Gong et al., 2021). We found that whole-cell Cx46 hemichannel
currents recorded from freshly obtained Xenopus oocytes
increase progressively, but as time passes inactivation at
positive voltages (> +50 mV) tends to appear (Retamal et al.,
2019). We believe that this inactivation arises from the oxidation
of the channel, which could have consequences such as changes in
its permeability to large molecules (Retamal et al., 2009). In
summary, oxidation can reduce both expression and function
of gap junction channels and hemichannels formed by Cx46. The
reduction of gap junction coupling by an increase in oxidative
stress could be explained by a reduction in Cx46 content and/or
some of the posttranslational modifications described above.

Protein-protein interactions also modulate connexin channels
and hemichannels (Sorgen et al., 2018; Van Campenhout et al.,
2020). It has been reported that Cx46 in the lens interacts with
Ca2+-calmodulin (CaM) and that a Cx46 mutant (G143R)
associated with cataracts in humans enhances the Cx46-CaM
interaction and forms gap junction channels and hemichannels
with altered voltage gating and permeability (Hu et al., 2018).
From these results, it has been suggested that the alteration in
Cx46-CaM interaction can mediate the deleterious effect of some
Cx46 mutations in lens fiber cells (Figure 3) (Hu et al., 2020).

SUMMARY

Cx46 forms functional hemichannels and gap junction channels
in lens fiber cells. These channels participate in different cell tasks,
and their malfunction favors cataracts formation. Hemichannels
and gap junction channels formed by different connexin isoforms
are controlled by posttranslational modifications. In the case of
Cx46 channels, they are modulated by a variety of factors,
including phosphorylation, oxidation, carbonylation, and
C-terminal cleavage. Pathological conditions can diminish or
enhance molecular pathways associated to these modifications
and alter Cx46-based channel properties, which in turn can
produce ion and metabolites disbalances. Therefore,
understanding the molecular mechanisms of Cx46 regulation
could benefit future new therapies against cataracts (Retamal
et al., 2021).
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