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Abstract: Today, the palindromic analysis of biological sequences, based exclusively on the study
of “mirror” symmetry properties, is almost unavoidable. However, other types of symmetry, such
as those present in friezes, could allow us to analyze binary sequences from another point of view.
New tools, such as symmetropy and symmentropy, based on new types of palindromes allow
us to discriminate binarized 1/ f noise sequences better than Lempel–Ziv complexity. These new
palindromes with new types of symmetry also allow for better discrimination of binarized DNA
sequences. A relative error of 6% of symmetropy is obtained from the HUMHBB and YEAST1 DNA
sequences. A factor of 4 between the slopes obtained from the linear fits of the local symmentropies
for the two DNA sequences shows the discriminative capacity of the local symmentropy. Moreover,
it is highlighted that a certain number of these new palindromes of sizes greater than 30 bits are more
discriminating than those of smaller sizes assimilated to those from an independent and identically
distributed random variable.

Keywords: palindrome; palindromic vectors; symmetry; symmentropy; symmetropy; entropy;
complexity; descriptor; binary sequence

1. Introduction

The palindromic analysis of discrete sequences has partly revolutionized molecular
biology and is widely used as shown by the following work [1–8], to name a few. Very
recently, the study of quantum behavior [9], encountered in palindromes within the DNA
structure, revealed that the symmetry properties of the unitary structure, other than those
present in classical palindromes, play an important role in the origin and cause of mutations.

In the continuity of the work carried out by Tibatan and Sarisaman [9], our article aims
to highlight the symmetry links between the concept of frieze and the concept of palindrome,
which have been insufficiently exploited until now in the analysis of binary data.

The “mirror” symmetry on which the concept of palindrome was based is certainly
the basis of the oldest symmetry descriptors. Its greatest success is undoubtedly derived
from the analysis of biological sequences (DNA, RNA and proteins), even if in this case
the definition of DNA palindromes is slightly different from the classical definition. (Let
us consider the sequence of characters ‘ATGGCCAT’. It is qualified as a 8-palindrome
sequence. It is composed of a 4-pattern on the right (‘CCAT’) obtained by a mirror reflection
of its 4-pattern complementary on the left (‘ATGG’): ‘ATGG’|‘CCAT’, where •|• indicates
the mirror reflection and • indicates the complementary. Note that ‘T’ is the complementary
of ‘A’, and ‘C’ is the complementary of ‘G’.)

To fix ideas, a palindrome of size m, called “m-palindrome”, is a discrete sequence
composed of two contiguous symmetrical (mirror) sub-sequences each composed of k-
patterns with k = bm/2c. For example, the alphabetic character sequence ddddddddbbbbbbb
is a 16−palindrome composed of two 8−patterns: dddddddd, bbbbbbbb. Even if the theo-
retical research around the palindrome is still going on, as shown by the recent article by
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Gabric and Shallit [10] to name but a few, it is the older work of Allouche et al. [11,12],
which is used as a starting point in this work and in particular the notion of palindromic
complexity.

Today, when studying a word or a discrete sequence, its analysis is still limited to only
one type of symmetry: the “mirror” symmetry. Wanting to extract many more intrinsic fea-
tures in the discrete sequences studied can consist of looking for other types of symmetries,
as it is explicitly the case in friezes.

A frieze is a horizontal strip composed of an infinite number of symmetrical patterns, i.e.,
a periodic geometric object. As an illustration, five types of alphabetical sequences of 16 char-
acters, having the same symmetries as friezes, are presented as follows: bbbbbbbbbbbbbbbb,
dbdbdbdbdbdbdbdb, bpbpbpbpbpbpbpbp, bqbqbqbqbqbqbqbq, bqpdbqpdbqpdbqpd.

If the objective is indeed to extend the analysis of discrete periodic sequences to other
types of sequences, then the search for all symmetric patterns is the next step. To reach this
goal, the concept of palindrome and then that of frieze is presented in Section 2. Then, the
concept of palindromes is extended and new tools such as symmetropy and symmentropy
are proposed in Section 3. Finally, the set of symmetry descriptors are tested on binarized
1/ f noises and binarized DNA sequences in Section 4; then, the results are discussed in
Section 5.

2. Palindromes and Friezes

In this section, we recall the concept of palindromes [11–13] and the concept of
friezes [14,15].

2.1. Palindromes

For a binary sequence, an m-palindrome is, by definition, a grouping of m bits that
form an m-pattern of mirror symmetry. In other words, for a binary sequence X =
{x(1), x(2), . . . , x(M)} composed of M bits, an m-palindrome can be defined as the concate-
nation of two k-patterns: Xm(i) = [Xk(i) ΓR[Xk(i)], with k = bm/2c being the order of the
palindrome. The first k-pattern Xk(i) = {x(i), x(i + 1), . . . , x(i + k− 1)}, 1 ≤ i ≤ M− k + 1
is the reference pattern, and the second k-pattern obtained by ΓR[Xk(i)] is the symmet-
ric pattern, where ΓR[•] is the transformation corresponding to the mirror symmetry, a
reflection.

For example, for the binary sequence X = {01100110} of 8 bits, the first 4-pattern
of X of order 2 is written as X4(1) = [X2(1) ΓR[X2(1)] = [{01}{10}] = {0110}, with
X2(1) = {01} and ΓR[X2(1)] = {10}. In the same way, the 8-palindrome of X of order 4 is
written as X8(1) = [X4(1) ΓR[X4(1)] = [{0110}{0110}] = {0110010}, with X4(1) = {0110}
and ΓR[X4(1)] = {0110}.

A palindrome of odd length can be seen as the concatenation of a pattern of size
(m− 1) and its mirror, for which the rightmost bit of the (m− 1)-reference pattern (bit in
bold in the following example) and the leftmost bit of the (m− 1)-mirror pattern (bit in bold
in the following example) are merged to give only one. Example: [{01}{10}] = {01 10}
becomes {010}.

Although there is a plethora of scalar descriptors such as those indicated in [11–13]
to name but a few, here, we limit ourselves to the concept of palindromic complexity c̃
computed from D, which lists, from the palindromic dictionary, the cardinal of the different
palindromic words of size m:

D = [d(0), d(1), . . . , d(m), . . . , d(M)]t. (1)

where d(m) is the cardinal of “palindrome words” of size m [11] present in the binary
sequence. The empty palindrome obtained for m = 0 is e and {e, 0, 1} are the trivial
palindromes. The palindromic complexity c̃, which corresponds to the cardinal of D, is
defined by the following:

c̃ = card(D). (2)
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In order to measure the level of mirror symmetry present in a binary sequence, we
propose to count the frequency of occurrence of m-palindromic patterns in the binary
sequence studied by the following:

V = [v(0), v(1), . . . , v(m), . . . , v(M)]t. (3)

where v(m) is the frequency of occurrence of a palindromic pattern of size m. The “mirror”
symmetry level σ̃ is the sum of all occurrences for non-trivial palindromes:

σ̃ =
M

∑
m=2

v(m). (4)

An illustration given in Table 1 for the binary sequence X = {01101001}, specifies
the value of the palindromic complexity c̃ = 5. There are, in all, five non-zero elements
in D = {1, 2, 2, 2, 2, 0, 0, 0, 0} which is itself computed from the empirical palindromic
dictionary Dict = {e, 0, 1, 00, 11, 010, 101, 0110, 1001}.

Table 1. Dict, d(m) and v(m) calculated from the binary sequence X = {01101001} composed of
M = 8 bits. There are in total c̃ = 5 sizes of palindromes (0, 1, 2, 3, 4) derived from the dictionary
and used in the binary sequence X. There are two palindromes of size 2, two palindromes of size 3,
and two palindromes of size 4, so a total of σ̃ = 6 = 2 + 2 + 2 palindromes composing the binary
sequence.

m 0 1 2 3 4 5 6 7 8

Dict e 0,1 00,11 101,010 0110,1001 - - - -

d(m) 1 2 2 2 2 0 0 0 0

v(m) 8 8 2 2 2 0 0 0 0

2.2. Friezes

As stated in the Introduction, a frieze is a periodic horizontal band composed of a few
basic symmetrical patterns repeated ad infinitum. There are only seven different types of
friezes [14,15] (see Figure 1) obtained from five types of isometries (isometry is a geometri-
cal transformation that leaves the objects invariant thus transformed while preserving the
distances, which is the case for the five following operations: translation, vertical reflec-
tion, horizontal reflection, inversion, and glide reflection). (TRIGH: Translation, vertical
Reflection, Inversion and Glide reflection, Horizontal reflection). There are only 5 possible
types of periodic discrete sequences obtained from 4 types of isometries (TRIG: Translation,
vertical Reflection, Inversion and Glide reflection), vertical reflection not allowing to obtain
a 1D-sequences.

For example, from the friezes in Figure 1 and replacing p by {10}, we can construct
five types of periodic discrete sequences, all having different types of symmetry:

• sequence X = {10101010 . . . } obtained with translations;

• sequence X = {10011001 . . . } obtained with vertical reflections (mirror);

• sequence X = {10011001 . . . } obtained with glide reflections and translations;

• sequence X = {10101010 . . . } obtained with inversions and translations;

• sequence X = {10100101 . . . } obtained with inversions and vertical reflections.

Among the five previous sequences, two are composed of mirror palindromes (the
second and the last). By no longer limiting the search to mirror palindromes, it should be
possible to describe binary sequences more precisely; this is the subject of the next section.
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Figure 1. The seven types of friezes with a p pattern. The friezes 1, 2, 4, 5 and 6 can constitute periodic
discrete sequences because no pattern appears with the same abscissa. This is not the case for friezes
3 and 7, which cannot constitute a discrete sequence. Among the five periodic sequences, friezes 2
and 6 are composed of palindromes.

3. Methods

In this section, we propose to extend the different palindromic vector and scalar de-
scriptors by integrating the different types of symmetry revealed in the friezes. Then, new
palindromic descriptors such as the notions of symmetropy and symmentropy are pro-
posed.

As mentioned later, through the notion of friezes, several types of symmetries can be
considered using the combination of only four isometries (TRIG). On this basis, we propose
to generalize the notion of palindromes by taking into account all types of symmetries.

For a binary sequence X = {x(1), x(2), . . . , x(M)} composed of M bits, an
m-palindrome of type j ∈ {T, R, I, G} can be defined as the concatenation of two k-patterns:
Xm(i) = [Xk(i) Γj[Xk(i)]] with k = m/2. The first k-pattern Xk(i) = {x(i), x(i + 1), . . . , x(i +
k − 1)}, 1 ≤ i ≤ M − k + 1 is the reference pattern, and the second k-pattern is the one
obtained by one of the four isometries Γj[Xk(i)] with j ∈ {T, R, I, G}:

- ΓT [Xk(i)]] = {x(i), x(i + 1), . . . , x(i + k − 1)}. A translation is simply a “copy and
paste”;

- ΓR[Xk(i)]] = {x(i + k− 1), . . . , x(i + 1), x(i)}. A vertical reflection is simply a “copy,
return and paste”;

- ΓI [Xk(i)]] = {x(i + k− 1), . . . , x(i + 1), x(i)}. An inversion is simply a “copy-
complement-return-paste”;

- ΓG[Xk(i)]] = {x(i), x(i + 1), . . . , x(i + k− 1)}. A glide reflection is simply a “copy-
complement-paste”;

where • is the logical function NOT, also called a complement. For example, with the binary
sequence X = {01010101}, the first 4-palindrome of type ‘T’ is written as X4(1) = {0101},
with X2(1) = {01} and ΓT [X2(1)] = ΓI [X2(1)] = {01}.

If the objective is to measure the level of symmetry of a binary sequence through the
presence of palindromes of type j ∈ {T, R, I, G}, then we can define the following measure:

v∗j (m) =
vj(m)

2(M−m + 1)(M− 1)
(5)



Entropy 2022, 24, 82 5 of 13

with vj(m) being the total number of palindromes of size m, vj(0) = M and the palindrome
vector of type j by the following:

V∗j = [v∗j (0), v∗j (1), . . . , v∗j (m), . . . , v∗j (M)]t. (6)

In order to propose a scalar measure of the level of symmetry of a given type, it seems
judicious not to take into account the non-trivial palindromes because they could mask,
for very long sequences, the presence of larger palindromes in smaller numbers. The total
number of non-trivial palindromes σ∗j of type j ∈ {T, R, I, G}, for the whole range of sizes
m, is obtained by computing

σ∗j =
M

∑
m=2

v∗j (m). (7)

To obtain the global level of symmetry present in a binary sequence, the global palin-
dromic symmetropy σ∗ is defined as follows:

σ∗ = σ∗T + σ∗R + σ∗I + σ∗G, (8)

where σ∗R = σ̃ is defined in Section 2. Note that, for binary sequences where the level
of symmetry is the maximum as for example for the sequences X = {01010101} and
X = {111111}, the symmetropy is maximum with σ∗ = 1.

To quantify the “diversity” of different types of palindromes, the overall palindromic
symmentropy E can be defined as follows:

E = −Pt log4 P, (9)

where P is the quarte probability P defined as follows:

P = [pT , pR, pI , pG]
t, (10)

with pj = σj/σ∗. Note that the values of the symmentropy are between 1/2 and 1. When
there is equi-probability, then E = 1. For example, for the sequence X = {01010101} of
M = 8 bits, the symmentropy is maximal at E = 0.99, and the value of E = limM→∞ 1.
When two probabilities out of four are null with P = [1/2, 1/2, 0, 0]t, as is the case for the
8-bit sequence X = {11111111}, then the symmentropy is minimal and is E = 1/2. This
means that, when the symmentropy is minimal, there is always a minimum symmetric
information content in the binary sequences.

Finally, it seems appropriate to compute a local palindromic symmentropy ε(m) for
each m scale:

ε(m) = −Qt(m)log4Q(m), (11)

where Q(m) = [qT(m), qR(m), qI(m), qG(m)]t is the quarte probability at scale m, where

qj(m) =
vj(m)

σ(m)
and with σ(m) = vT(m) + vR(m) + vI(m) + vG(m).

To illustrate, let us consider the binary sequence X = {01101001} of 8 bits. We reported
in Table 2 Dictj, vj(m), v∗j (m) and qj with j ∈ {T, R, I, G}.

Remark: This measure of symmentropy is similar in idea to the one proposed by
Yodogawa [16], who proposed an entropic measure of the level of symmetry present in
the images via a decomposition in the Walsh–Hadamard basis. (The method of Yodogawa
that measures the entropy of symmetric patterns is called symmetropy. From our point of
view, it is rather a symmentropy since it is derived from an entropy measure, which is not
the case of symmetropy as we define it in Section 3. On the other hand, in Yodogawa’s
approach, the probabilities allowing us to computation the entropy in base 2 are obtained
from a decomposition in the Walsh–Hadamard basis. In Yodogawa’s paper, it is clearly
stated that not all symmetries are considered, which is not the case for our approach based
on symmetry friezes.) Here, the proposed definition is different.
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Table 2. Dictj, vj(m), qj and ε(m) with j ∈ {T, R, I, G} computed from the 8 binary sequence
X = {01101001}. The non-trivial palindromic symmetropy is σ∗ = 0.44 = 1302/2940 with
σ∗T = 102/2940, σ∗R = 214/2940, σ∗I = 472/2940 and σ∗G = 514/2940, and the global palindromic

symmentropy is E = 0.89 = −
(

102
1302 log4(

102
1302 ) +

214
1302 log4(

214
1302 ) +

472
1302 log4(

472
1302 ) +

514
1302 log4(

514
1302 )

)
.

m 0 1 2 3 4 5 6 7 8

DictT e 0,1 00,11 - 1010 - - - -
vT(m) 8 8 2 0 1 0 0 0 0
v∗T(m) - - 2

2×7×7
0

2×6×7
1

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
0

2×1×7
qT(m) - - 2/14 0 1/6 - 0 - 0

DictR e 0,1 00,11 101,010 0110,1001 - - - -
vR(m) 8 8 2 2 2 0 0 0 0
v∗R(m) - - 2

2×7×7
2

2×6×7
2

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
0

2×1×7
qR(m) - - 2/14 1/2 2/6 - 0 - 0

DictI e 0,1 01,10 - 1010 - 110100 - 01101001
vI(m) 8 8 5 0 1 0 1 0 1
v∗I (m) - - 5

2×7×7
0

2×6×7
1

2×5×7
0

2×4×7
1

2×3×7
0

2×2×7
1

2×1×7
qI(m) - - 5/14 0 1/6 - 1 0 1/2

DictG e 0,1 01,10 010,101 0110,1001 - - - 01101001
vG(m) 8 8 5 2 2 0 0 0 1
v∗G(m) - - 5

2×7×7
2

2×6×7
2

2×5×7
0

2×4×7
0

2×3×7
0

2×2×7
1

2×1×7
qG(m) - - 5/14 1/2 2/6 - 0 - 1/2

ε(m) - - 0.93 0.50 0.96 - 0 - 0.50

4. Results

In this section, we wish to show the interest of these new scalar and vector descriptors
in the study of binarized sequences. We propose to compute the different proposed
descriptors (palindromic vectors, symmetropy and symmentropy) for binarized sequences
taken from 1/ f noises and 2 DNA sequences.

4.1. Binarized 1/ f Noise

One way to study complexity, in which the meaning here is reduced to that of irreg-
ularity as reported in [17], is to vary the exponent β of the noise in f β. For β = 0, the
generated noise is white noise, and for β = −2, the generated noise is a Brownian motion,
with the integral of a white noise being a Brownian motion.

Here, in order to stay within the framework of our study, the time series are binarized.
All values above the median are replaced by ‘1’, otherwise ‘0’. Moreover, in order to
compare the different scalar and vector descriptors, the Lempel–Ziv complexity Clz is
proposed as a reference and is computed as presented in [18]. This normalized complexity
is almost zero for periodic binary sequences and close to unity for random sequences such
as white noise.

In Figures 2–4, the scalar and vector descriptors obtained for noises in f β with β ∈
{−2 : 0} by step of 0.2 are presented. For a same value of β, 300 binarized noises composed
of 1000 bits are generated.

In Figure 2, the different scalar palindromic descriptors are computed and plotted as
whisker boxes. From Figure 2, we observe that all scalar palindromic descriptors describe
monotonic curves increasing for Lempel–Ziv complexity and symmentropy and decreasing
for symmetropy (as well as these components through the quarte probability P). This
monotonicity property can be auspicious for tracing the values of β knowing the value
of the descriptor. Indeed, it is possible to discriminate binarized noises in f β on larger or
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smaller regions depending on the descriptor considered. For example, for the Lempel–Ziv
complexity, the body (second and third quartile) of the non-overlapping whisker boxes
in the region −1.2 < β < −0.6 allows us, from a Lempel–Ziv complexity of 0.62, to
go back to a value of β = −1.2 without much error. When β = 0, the complexity is
maximal and tends to unity; when β = −2, the complexity is less and is 0.2 for a Brownian
motion. For symmetropy, the non-overlapping boxes for −1.2 < β < −0.4 also allows us
to find the value of β from the symmetropy measures. Note that the discrimination range
(β > −1.2) of symmentropy is much larger than those obtained by Lempel–Ziv complexity
and symmetropy. We also check that the values of the symmentropy are well between
1/2 and 1. Finally in Figure 2, we observe a decrease in the probabilities drawn from the
quarte P. Indeed, it decreases as β approaches zero for types ‘T’ and ‘R’ to go from 50% to
25% and 33%, respectively, and it increases progressively for types ‘I’ and ‘G’ to go from
0% to 17% and 25%, respectively. At the maximum complexity β = 0, we observe that
the reflection symmetry level is always higher than the translation/glide reflection and
inversion: σ∗R > σ∗T = σ∗G > σ∗I .

Figure 2. Scalar palindromic descriptors obtained from binarized f β noises and for different values
of β. Left, Lempel–Ziv complexity Clz, in which the boxes do not overlap for −1.2 < β < −0.6. Left
middle, symmetropy σ∗, in which the boxes do not overlap for −1.2 < β < −0.4. Right middle,
symmentropy E , in which boxes do not overlap for β > −1.2. Left, quarte probability P versus β.
When β = −2, the quarte probability is P = [0.50, 0.50, 0.00, 0.00]. When β = 0, the quarte probability
is P = [0.25, 0.33, 0.17, 0.25] and the level of reflection symmetry is higher than the translation/ glide
reflection and the inversion: σ∗R > σ∗T = σ∗G > σ∗I . The closer β is to zero, the higher the complexity.
We notice that both Clz and E increase as the complexity increases. On the contrary σ∗ decreases as
the complexity increases.

In Figure 3, the palindromic vectors obtained for β = −2,−1, 0, which correspond to
Brownian motion, pink noise and white noise, respectively, are presented. From Figure 3,
we observe that all of the average palindromic vectors (obtained by averaging 300 palin-
dromic vectors) decrease as the palindromic size m increases and this decrease is all the
more marked as β approaches zero, i.e., when the correlations between samples are almost
non-existent. Note that, for Brownian motions (β = −2), there are large palindromes up to
about 450. On the contrary, for white noise, we note that the size of the palindromes does
not exceed 20 bits. Moreover, the palindromic vector obtained for β = 0 is very similar
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to the one obtained in the case of binary iid (independent and identically distributed)
sequences, as shown in Figure 5.

Figure 3. Average palindromic vectors obtained for binarized f β noises of length 1000, with
β = −2.0,−1.0,−0.0 (from top to bottom) and m ∈ {1 : 500}. Top, average palindromic vectors ob-
tained after averaging 300 vectors for β = −2.0. Middle, average palindromic vectors obtained after
averaging 300 vectors for β = −1.0. Bottom, average palindrome vectors obtained after averaging
300 vectors for β = 0.0. The more irregular the sequence (strong negative value of β) and the larger
the spread of the palindromic vector descriptors.

Figure 4. Average local symmentropy (with 300 trials) computed for three types of noises. Top,
local symmentropy of a Brownian motion (β = −2). Middle, local symmentropy of a pink noise
(β = −1). Bottom, local symmentropy of a white noise (β = 0). The sawtooth fluctuation comes from
the fact that the symmentropy values are slightly different for even and odd palindromes. The local
symmentropy synthesizes the information carried by the four palindromic vectors into only one.
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In Figure 4, the local symmentropy (averaged from 300 trials) ε(m) computed for
three different types of noise (Brownian motion, pink noise and white noise) is plotted. As
for the palindromic vectors, the symmentropy decreases as the size of the palindromes
increases. The spread out of the symmentropy depends on the type of noise and thus on
the correlations between samples. The range in size is very small for white noise with
no correlation between samples/bits compared with Brownian motion. Moreover, the
value of the symmetropy is close to unity for the white noise and close to half for the
Brownian motion.

In Figure 5, the palindromic vectors obtained from binary sequences independent
and identically distributed are plotted. We observe in Figure 5 a different distribution
between even and odd palindromes. There is an equi-distribution between the different
types of symmetry for the even palindromes. For odd palindromes, we also note the non-
presence of palindromes of type ‘I’. Note that there are no palindromes with sizes exceeding
40 bits. On average, the proportion of palindromes is PT = 25%, PR = 33%, PI = 17%,
PG = 25%. We notice a decrease in the symmetry levels as the size of the palindromes
increases. In logarithmic scale, the decrease in the symmetry level (and thus of the number
of symmetrical palindromes) is linear. Indeed, for a fixed length of the binary sequence, the
more the palindrome size increases, the smaller the number of palindromes composing the
binary sequence. For example, a sequence of 8 bits can only be composed of one palindrome
of size m = 8, of two palindromes of size m = 4, of four palindromes of size m = 2 and
of eight palindromes of size m = 1. This decrease is therefore inversely proportional to
the size m. If we suppose that, for a given type of symmetry, the palindrome vector is
expressed by Vj(m) = Kj/m, then log(Vj(m)) = −1× log(m) + log(Kj). This is indeed the
affine line observed in Figure 5.

Figure 5. Logarithm of the four average palindromic vectors computed from 100 binary sequences
iid (independent and identically distributed) of 5000 bits. We note a different distribution between
even and odd palindromes. There is an equi-distribution between the different types of symmetry for
even palindromes. For odd palindromes, we also note the non-presence of palindromes of ‘I’ type.
We note a decrease in the symmetry levels as the size of the palindromes increases. Note that there
are no palindromes with sizes exceeding 40. Finally, on average, the proportion of palindromes is
PT = 25%, PR = 33%, PI = 17% and PG = 25%.
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4.2. Biological Sequences: DNA

To show the relevance of the different symmetry descriptors proposed in a practical
case, let us consider two DNA sequences. The objective is to identify descriptors that
allow us to differentiate the two sequences: HUMHBB (human β-region, chromosome
11) with 73,308 bases and YEAST1 (Saccharomyces cerevisiae yeast, chromosome 1) with
230,209 bases obtained from (http://ncbi.nlm.nih.gov (accessed on 30 December 2021)).
The DNA sequences is binarized, ‘A’ and ‘G’ are coded by 1, and ‘T’ and ‘C’ are coded by 0.
For example, the sequence ‘ATATGCATTTCC . . . ’ is coded ’101010100000’.

At first, it seems interesting to indicate that, although the sequence “YEAST1” is 3.14
larger than the sequence “HUMHBB”, the total number of palindromes coming from the
sequence “YEAST1” is 2.95 times larger than that of the sequence “HUMHBB”, as indicated
in Table 3.

Table 3. Distribution in % of the total number of palindromes of different types present in each of
the two non-randomized and randomized DNA sequences, m ∈ [1, 500]. For the non-randomized
sequences, the most frequent palindromes are reflection palindromes with NR > NT > NG > NI ,
while for the randomized sequences, the distribution is NR > NT = NG > NI . The distribution of the
different types of palindromes is very similar regardless of the type of DNA sequence. The differences
between the total number of palindromes from non-randomized and randomized HUMHBB and
YEAST1 sequences are 496,028 − 441,299 = 54,729 and 1,463,633 − 1,384,396 = 79,237, respectively.

DNA seq NT /NTotal NR/NTotal NI /NTotal NG/NTotal NTotal

HUMHBB 29.5% 36.8% 13.5% 20.2% 496,028

randomized HUMHBB 24.9% 33.3% 16.7% 25.1% 441,299

Yeast1 27.9% 35.5% 14.5% 22.1% 1 463 633

randomized Yeast1 25.0% 33.3% 16.7% 25.0% 1,384,396

Moreover, we notice in Table 3 that the proportion of palindromes of type “mirror”
(i.e., ‘R’ type) is much higher than that in the other types regardless of the DNA sequence
considered. This corroborates what has been observed for 1/ f noises, namely PR > PT >
PG > pI , where Pj is the palindromic probability of type j.

In Table 4, the Lempel–Ziv complexity Clz, the symmentropy E and the symmetropy
σ∗ are reported. From Table 4, we notice that the scalar descriptors are slightly different for
the 2 DNA sequences. We note a relative difference of 4% for the Lempel–Ziv complexity
(4% = (0.98− 0.94)/0.94), of 1% for the symmentropy (1% = (0.97− 0.96)/0.96) and of 6%
for the symmetropy (6% = (0.85− 0.80)/0.80)

Table 4. Scalar palindromic descriptors of binarized DNA sequences. Lempel–Ziv complexity
Clz, symmentropy E and symmetropy σ∗ with m ∈ {0, 500}. From scalar palindromic descriptors,
it seems possible to differentiate the 2 DNA sequences. The values of Lempel–Ziv complexity
and symmentropy are close to unity, indicating a high level of complexity. For randomized DNA
sequences, Lempel–Ziv complexity and symmentropy tend toward unity.

DNA seq Clz E 100× σ∗

HUMHHB 0.94 0.96 0.85

randomized HUMHHB 1.02 0.98 0.75

Yeast1 0.98 0.97 0.80

randomized Yeast1 1.01 0.98 0.75

To go further in the analysis of DNA sequences, in Figure 6, the palindromic vector de-
scriptors for each type j for m ∈ (0, 100) are reported, even if the calculation has been made

http://ncbi.nlm.nih.gov
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with mmax = 500. We notice that the palindromic vectors are rather concentrated in the
0–100 band with some peaks (not shown here) beyond m = 100 located in m = 270, 192 for
“YEAST1” and m = 124 for “HUMHBB”. As for the noises in 1/ f , we notice a different dis-
tribution of the types of palindromes. For example, there are no more palindromes of type
‘R’ for the sequence “YEAST1” beyond m = 60, idem for the palindromes of type ‘I’ for the
sequence “YEAST1” beyond m = 40. By the way, note that there are no even palindromes
of type ‘I’. This shows the importance of taking into account all types of palindromes and
not only the “mirror” palindromes of type ‘R’. By superimposing the palindromic vectors
obtained after randomization, we can better see the “useful” information. The signature
after randomization being similar to that of an independent and identically distributed
random variable seems to be less important information and therefore useless for DNA
sequence discrimination.

Figure 6. Logarithm of the palindromic vectors obtained from the entirety of the two DNA sequences
for mmax = 500. Zoom for m ∈ (1, 100). In green, logarithm of the palindromic vectors obtained after
randomization of the DNA sequences.

Finally, it seems interesting to show how local symmentropies allow us to differentiate
each DNA sequence. In Figure 7, the local symmentropies calculated from “HUMHBB”,
randomized “HUMHBB”, “YEAST1” and randomized “YEAST1” are reported. Straight
lines derived from linear fitting from symmentropies show slopes that are significantly
different between each DNA sequence. Indeed, from odd palindromes, the slope derived
from the linear fitting for YEAST1 is 4.41 times the slope obtained from HUMHBB. For
even palindromes, the slope derived from the linear fitting for YEAST1 is 3.61 times the
slope obtained from HUMHBB. As expected, symmentropies obtained from randomized
DNA sequences are similar while m < 20 and close to unity. Indeed, the binary sequence
obtained after randomization is very similar to an independent and identically distributed
random variable for which the symmentropy is maximal and worth unity. For m > 30, as
shown in Figure 7, the symmentropies between the 2 DNA sequences are different.
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Figure 7. Local symmentropies obtained from binarized DNA sequences in the scale range
m ∈ {1, 60}. Top, odd palindromes. In blue, local symmentropy obtained from HUMHBB and
straight line fitting. In orange, local symmentropy obtained from YEAST1 and straight line fitting.
In magenta, local symmentropy obtained from randomized HUMHBB. In red, local symmentropy
obtained from randomized Yeast. The slope αy derived from the linear fitting for YEAST1 is 4.41 times
the slope αh obtained from HUMHBB. Bottom, even palindromes. The slope αy derived from the
linear fitting for YEAST1 is 3.61 times the slope αh obtained from HUMHBB.

5. Discussion and Conclusions

In this work, we proposed new palindromic descriptors (scalar and vector). The
notions of palindromic vectors, palindromic symmetropy and palindromic symmentropy
have been tested with binarized 1/ f noises and 2 DNA sequences. For f β noises for which
the “complexity” level is adjustable via β, we showed that palindromic symmetropy as well
as palindromic symmentropy allows us to better discriminate the different f β noises on a
larger range than the Lempel–Ziv complexity. Moreover, we showed that symmentropy
is a complexity descriptor very similar to the Lempel–Ziv complexity. However, the
palindromic symmetropy indicates the level of symmetry and is a descriptor of “anti-
complexity”.

From this preliminary study, we notice that the “mirror” symmetry is more present
than the other types of symmetries regardless of the level of complexity (see Figure 2). This
is probably why only the “mirror” symmetry through the classical notion of palindrome
has been considered so far. However, we showed (see Figure 6) that the four types of
palindromes are necessary to better discriminate the binary sequences. Moreover, we
showed that the distribution of the types of palindrome evolves with complexity. It goes
from 50% for ‘T’ and ‘R’ types and 0% for ‘I’ and ‘G’ types when the complexity is low
to 25%, 33%, 17% and 25% for ‘T’, ‘R’, ‘I’ and ‘G’ types when the complexity is maximal.
These values are found when the binarized DNA sequences have been randomized.

Multiscale palindromic exploration, i.e., for the whole m size range of palindromes,
through palindromic vectors and local symmentropy, allows us to go further in the analysis
of binary sequences. In particular, it allows us to highlight a particular signature of
independent and identically distributed random binary sequences found for white noise
(β = 0) and in the two DNA sequences. This exploration also allows us to clearly identify
regions that allow us to discriminate the two DNA sequences. Furthermore, a factor of 4
between the slopes of the linear fits of the local symmentropies calculated from the two
DNA sequences shows the discriminative capacity of the local symmentropy.
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It seems obvious, as in the article by Tibatan and Sarisaman [9], that symmetry prop-
erties, insufficiently exploited to date, play a more important role in the exploration of
biological sequences, both at the molecular and sub-molecular levels. The new palindromic
descriptors presented in this work should contribute in a non-negligible way and should
be widely applied in the study of biological sequences.
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