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The COVID-19 pandemic is a global, national, and local public health concern which has caused a significant outbreak in all
countries and regions for both males and females around the world. Automated detection of lung infections and their
boundaries from medical images offers a great potential to augment the patient treatment healthcare strategies for tackling
COVID-19 and its impacts. Detecting this disease from lung CT scan images is perhaps one of the fastest ways to diagnose
patients. However, finding the presence of infected tissues and segment them from CT slices faces numerous challenges,
including similar adjacent tissues, vague boundary, and erratic infections. To eliminate these obstacles, we propose a two-route
convolutional neural network (CNN) by extracting global and local features for detecting and classifying COVID-19 infection
from CT images. Each pixel from the image is classified into the normal and infected tissues. For improving the classification
accuracy, we used two different strategies including fuzzy c-means clustering and local directional pattern (LDN) encoding
methods to represent the input image differently. This allows us to find more complex pattern from the image. To overcome the
overfitting problems due to small samples, an augmentation approach is utilized. The results demonstrated that the proposed
framework achieved precision 96%, recall 97%, F score, average surface distance (ASD) of 2.8 + 0.3 mm, and volume overlap
error (VOE) of 5.6 + 1.2%.

1. Introduction

Since December 2019, the world has been experiencing a new
disease caused by SARS-CoV-2, which can cause asthma
symptoms, acute respiratory malfunctioning, and even per-
manent changes to the biology of the lungs in patients regardless
of their age limit. This disease was reported for the first time in
Wuhan, Hubei province of China, and became a pandemic all
over the world [1, 2]. The common symptoms of COVID-19

are shortness of breath, diarrhoea, coughing, sore throat,
headaches, and fever. Vanishing of taste, nasal blockage, loss
of smell, aches, and tiredness can also be observed in patients.
The new infectious disease caused by the virus was named
Coronavirus Disease 2019 (COVID-19) by the World Health
Organization (WHO), and this coronavirus was named as
SARS-CoV-2 by the International Committee on Taxonomy
of Viruses (ICTV) [3, 4]. As there are only some definite
vaccines available to prevent COVID-19, most of the
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unvaccinated people can be easily infected. One of the best
ways to prevent the spread of virus infection in healthy per-
sons is isolation and diagnosis of the infected person by any
possible legal approach. One of the best methods is through
the X-ray or CT images of patients’ chest [5-7].

Inflammation growths in the lung can pose significant
risks to human health. The increasing occurrence of infected
people among the population demands more effective treat-
ments along with a cost-efficient procedure that relies on its
primary diagnosis. Providing prompt and precise recognition
of the infected tissue plays a key role in effective patient treat-
ment and survival [8, 9].

A CT scan or computed tomography scan as a routine
tool and a high sensitivity for the diagnosis of COVID-19
are broadly employed in hospitals and can perform early
screening for the defected tissue to recognize them precisely
[10-12]. Doctors and specialists are increasingly employing
such imaging modality to categorize local injuries and lesions
[13]. Also, due to intensity similarity between lesions and
normal tissues in CT images, the precise detection and seg-
mentation of the infected area are certainly a cumbersome
task, even for experienced radiologists or doctors [14, 15].
The flow of detection and feature extraction of texture infor-
mation from the lung via manual observation is a time-con-
suming, tedious, and monotonous process. Computer-aided
diagnostic (CAD) approaches are used for such tasks and
are based on artificial intelligence and machine learning algo-
rithms to recognize the border differences between two
objects. These procedures are standardizable, reproducible,
and can be useful in enhancing diagnostic accuracy in a very
short time. These procedures act by helping doctors and
experts to accomplish accurately sophisticated tasks, employ-
ing a combination of diversity classification approaches with
a practical running time [3, 16].

Image segmentation is a complex and challenging area of
the biomedical engineering task that is affected by numerous
aspects, including illumination, low contrast, noise, and
irregularity of the objects. Segmentation refers to partitioning
an image into different parts or regions based on similar
characteristics in neighboring proximity.

Deep learning systems, as a prominent segment of the ris-
ing artificial intelligence (AI) technology in recent years, have
been reported with significantly improved diagnostic accu-
racy in medical imaging [11, 17]. These intelligent systems
are aiding an accelerated progress in early-stage diagnosis
and treatment of many diseases including automatic detec-
tion of the liver, lung, and brain diseases [16]. Therefore,
the aim of our study is to develop a deep learning model
for automatic diagnosis of regions of the lungs infected with
the COVID-19 virus using chest CT volumes.

Minaee et al. [18] investigated the application of deep
learning structures on chest radiography images to detect
COVID-19 patients. For this purpose, they employed four
popular convolutional neural networks, including Dense-
Net-121, ResNetl8, SqueezeNet, and ResNet50 to identify
COVID-19 disease in the analyzed chest X-ray images. Also,
transfer learning on a subset of 2000 radiograms was applied
to all networks to overcome the overfitting problem and
improve the models’ accuracy. Fan et al. [14] applied a lung
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infection segmentation deep network (Inf-Net) for segment-
ing the infected tissue in a CT slice automatically. In the first
step, a parallel partial decoder is employed for aggregating
the high-level features and creates a global map. Then, to
increase the accuracy, the implicit reverse attention and
explicit edge-attention were incorporated into a model to
segmentation the boundaries.

A 3D deep convolutional neural network (DeCoVNet)
proposed in [4] for detecting COVID-19 from CT volumes.
They used a pretrained UNet model to generate the 3D lung
masks. The proposed DeCoVNet was divided into three
stages. The first stage is called the network stem, which con-
sisted of a vanilla 3D convolution. A batch normalization
layer and a pooling layer with a kernel size of 5% 7 x 7 were
used to preserve rich local visual information based on the
ResNet [19] and AlexNet [20]. Also, two 3D residual blocks
(ResBlocks) were employed in the second stage. Lastly, a pro-
gressive classifier (ProClf) was utilized.

Early-phase detection of Coronavirus proposed by [21]
which employed five different feature extraction algorithms.
To classify the extracted features, support vector machines
(SVM) along with 10-fold cross-validation during the classi-
fication process were applied.

To overcome the limitations of previous works, a new
hybrid algorithm for finding the location and boundary of
the infected tissue from clinical CT images which takes
advantage of clustering, local descriptor, and convolutional
neural network is introduced. It is broadly considered to be
challenging to find the exact location of the lesions inside
the lung and extract their borders precisely due to the impact
of the COVID-19 which caused the much similar intensity
values across the lung. The growing progress of deep learning
in all areas of image processing was a great motivation for
this study. This work is interested to investigate the power
of a CNN model for detecting and segmenting the infected
regions inside the lung due to the COVID-19.

2. Methodology

The remaining parts of this paper are organized as follows. In
Section 2.1, the Z score normalization technique is repre-
sented. In Section 2.2, the fuzzy clustering method is
described. In Section 2.3, a local directional number patterns
(LDN) encoding approach is proposed. In Section 2.4, the
architecture of the convolutional neural network (CNN) is
demonstrated. In Section 2.5, our CNN pipeline is repre-
sented. The explanation of the dataset, evaluation metrics,
and experimental results are clarified in Section 3. Our algo-
rithm is displayed in Figure 1.

2.1. Image Normalization. As indicated in [22], due to the
presence of the statistical noise in the computed tomography
images (CT images), a deviation in the Hounsfield units
(HUs) about a mean can be observed that lead to a high var-
iance in the gray scale or RGB values of all image pixels.
These unwanted noises that affect the ability to visualize ana-
tomic structures can be categorized into three main sources:
(1) electronic noise that is an unwanted disturbance in an
electrical signal caused by electrical equipment in the
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FIGURE 1: Schematic of the proposed pipeline for segmentation of the infected tissues.

neighborhood, (2) noise of the reconstruction procedure
caused by imperfections in the receiver coils, and (3) stochas-
tic noise.

As the stochastic noise is the principal source of noise in
these kinds of imaging, the bad effects can be diminished
during the imaging procedure by increasing the amount of
photons (by considering a tradeoff between radiation risk
and image quality). However, in obtained images from any
hospital or medical center, a significant amount of noise is
observed which needs to be removed before starting the pro-
cess of the segmentation.

By further investigation, we found out that a normaliza-
tion approach can be beneficial to create a smooth image
along with increasing the contrast of illumination near the
border of the organs. So, to overcome the mentioned prob-
lems and enhance the result of the segmentation, a Z score
normalization technique is employed so that all the nonzero
values inside the image have a unit variance and zero mean
([23-25]; Jafarzadeh [26]). Equation (1) outlines how to
apply Z score normalization.

PaRCalD)

(1)

where o and g indicate the standard deviation and mean
value of nonzero pixels, respectively. Moreover, x describes
the intensity of the current pixel.

The outcomes of the normalization strategy are depicted
in Figure 2. In Figure 2, the first column shows the chest CT
images of patients, and their corresponding lesions in the sec-
ond column demonstrates the Z score output. As illustrated
in Figure 2(b), the borders of both the lungs are detected
exactly without the effect of the lesions.

2.2. Fuzzy c-Means. After detecting the borders of the lungs
with high accuracy, we need to recognize the volume and

border of the infected areas inside the lungs more efficiently.
The image of the detected lungs achieved from the previous
stage has to be clustered to segment the infected areas from
the other organs (background tissue). Clustering can be out-
lined as an unsupervised strategy that is aimed at fragment-
ing the input data (image or signal etc.) into the predefined
segments (such as K-means method) or automated recognize
parts (such as mean-shift method) based on certain criteria
such as differences in the color, magnitude, and location
[27-30]. The fuzzy c-means (FCM) algorithm used in our
work is an unsupervised data dividing/splitting strategy. In
this method, data is split into n predefined natural groupings,
namely, the so-called clusters such that every single pixel in
the dataset be owned by at least two clusters with dissimilar
weights. In this fuzzy partitioning technique, finding the
cluster center of each segment and related pixels are accom-
plished through an iterative optimization of the objective
function [31-33]. This iterative optimization is accomplished
by minimizing the following membership cost/objective
function:

(2)
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where center;, shows the center of the kth cluster and pixel,
illustrates the ith sample of I, y4;; outlines the membership
value of the ith sample with respect to the kth cluster which
is linked inversely to the distance from pixel; to the cluster
center center;, m defines the number of clusters, ¢ refers to
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FIGURE 2: A demonstration of employing Z score normalization approach. (a) Original images. (b) Z score normalization.

the level of cluster fuzziness, and N denotes the number of
pixels image pixels I.

The result of the clustering on the lung’s image is repre-
sented in Figure 3. For better visualization, we applied a ran-
dom value to each cluster in the RGB domain. As is
illustrated clearly, by defining the number of five for the cen-
ter of clusters by experimental results, a high distinction
between the lesion and normal tissue can be observed in
many samples. It means the number of clusters more or less
than five cannot obtain an acceptable result. However, as
depicted in Figure 4, in some CT images due to much color
similarity between the normal and lesion tissues, using only
a clustering method to segment the lesions is not optimal.

So, in the next step, textural analysis approaches will be
employed to improve segmentation accuracy as much as
possible.

2.3. Local Directional Number Pattern. Textural analysis of
medical and biological images attempts to mine some charac-
terizations of a surface texture such as smoothness, rough-
ness, contrast, colors, and shapes [34]. As presented in
many works [35, 36], numerous types of local descriptors
are used for converting images into a new representation
based on the predefined coding rules or codebook of visual
patterns.
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(a)

(b)

FIGURE 3: A demonstration of employing fuzzy c-means clustering technique. (a) Original images. (b) Clustered images. For better
understanding, the colors of the clusters are in the RGB domain with random values.
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F1GURE 4: Nonlinear Kirsch kernels in 8 rotations [15].

Local ternary patterns (LTP) and local binary pattern
(LBP) feature descriptors are easy to implement and be influ-
enced by the change of the pixel intensity of nearest-neighbor
(circular, rectangular, etc. neighborhood) in clockwise or
counterclockwise to alter (encoding) the low-level informa-
tion of a spot, edges, curve, and line inside an image and cal-
culate the outcome as a binary value [37, 38]. Owing to the
robustness of the gradient value than a gray level intensity
in encoding applications, in recent investigations, some tech-
niques based on the gradient value such as local word direc-
tional pattern (LWDP) and local directional number patterns
(LDN) have attained much attention [36]. The LDN operates
in the gradient domain to create an illumination-invariant
representation of the image. It uses directional information
for recognizing edge locations that their magnitudes are
insensitive to lighting variations.

In our work, the first phase for encoding the chest images
is to define the location and value of all significant edges. This
is implemented by operating 8 directions of Kirsch kernels
(filters) that are rotated by 45° in 8 main compass directions



BioMed Research International

F1GURE 5: The result of applying the Kirsch filter and LDN approach to a chest image. The second column illustrates edge detection using the
Kirsch filter. The third column demonstrates the results of the LDN technique.

(Figure 4). These nonlinear edge detector kernels are respon-
sible for identifying the final edges. Each filter produces a fea-
ture map, and only the maximum value in each location is
selected to create a final edge map [39, 40]. An example of
employing the nonlinear Kirsch filter to the chest images is
depicted in Figure 5. This section causes a substantial
increase in final lesion segmentation, especially when the
border of the lesions is vague.

2.4. Convolutional Neural Network Design. Automated rec-
ognition of patterns in data by computers based on knowl-
edge already obtained is called pattern recognition. It has
applications in image analysis, information retrieval, signal
processing, bioinformatics, data compression, statistical data
analysis, computer graphics, and machine learning [27, 31,
33, 41-44].

In machine learning approaches and applications, the
convolutional neural network (CNN) structures demon-
strate a high capability to extract and classify some key

features and bridging the gap between the capabilities of
machines and humans [45-47]. The structure of a CNN
was inspired by the organization of the visual cortex in
the human brain and is similar to that of the connectivity
pattern of neurons. Every neuron responds to an irritant
only in a constrained region of the visual field known as
the receptive field. The CNN structure that is originally
designed for image analysis largely exploits the low level
and high level of the textural features and is used in many
applications including action detection and automated
lesion segmentation [48, 49].

This neuron-based pipeline that captures temporal and
spatial dependencies has a grid-like topology and permits
us for extracting characteristics powerfully from the 1D or
2D input data by passing through a stack of convolution
layers with the predefined dimension of the filters [36, 50,
51]. This grid-like model is a class of deep learning networks
and has numerous trainable biases and weights based on the
type of the topology and is applied for feature extraction,
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regression, and classification. These trainable weights need to
be defined randomly at the beginning.

This structure is able to extract high-level features auto-
matically from raw input features, which are considerably
powerful than human-designed features. The core building
block of a CNN is outlined as the convolutional layer which
calculates the dot product between input data and a set of
learnable filters, much like a traditional neural network [49,
52-54]. It should be noticed that the dimension of the filters
is smaller than the dimension of the input data [49, 55]. The
computed feature maps using the convolutional layer are
achieved by stacking the activation maps of all kernels along
the depth dimension. The output of one kernel (filter)
applied to the previous layer is called the feature map. In
the convolving process, for controlling the dimension of the
feature maps, padding the input data with zeros around the
border can be employed.

Mostly, the spatial-temporal dependencies at various
scales are able to be effectively obtained by the convolu-
tional layers. The dimension of the kernel which defines
the dimension of the receptive field needs to be selected
based on the depth of the applied 1D, 2D, or 3D data.
Also, stride defines how much the convolution filter can
be moved at each step. Moreover, the bigger strides lead
to less overlap between the receptive fields (smaller feature
map) [55].

The high-level features are extracted (such as the hand,
legs, and, body in pedestrian detection) in the deeper convo-
lutional layers of the model, while the first convolutional
layers are responsible for mining the low-level information
including curves, edges, and points. It should be mentioned
that the numbers of columns and rows for each filter need
to be an odd number, for instance, 9 x 9,7 x 7,and 3 x 3 [54].

It is noteworthy that the dimension of the extracted fea-
tures in the last convolutional layer is greatly smaller than
the input matrix (1D or 2D matrix). The diminution in the
width and height of the image relies upon the length of the
strides and the filter size employed for the convolution
procedure.

The output of the convolution layer is fed to the activa-
tion layer in order to help the network learn complex pat-
terns [56]. This layer leaves the size of the applied matrix
(data) unchanged. To decrease the consequence of the van-
ishing gradient in the training process, an activation function
is utilized for each feature map to improve the computational
effectiveness by inducing sparsity [55, 57].

In this study, the nonlinearity (ReLU) activation function
has been employed to shift the negative values to zero. The
ReLU act as a linear function for the positive and zero values.
As all negative values change to the zero number, it leads
some nodes to completely die and not learn anything. It
means fewer neurons in the model would activate because
of the limitations imposed by this layer.

Some of the most important benefits of the ReLU layer
can be expressed as follows [58-60]:

(1) Train deep networks: the architecture with large
labeled datasets is able to reach the best performance
on purely supervised tasks

(2) Linear behavior: the procedure of decreasing the cost
function (optimization) in the CNN is much easier if
their behavior could be close to a linear manner

(3) Representational sparsity: as the ReLU layer shift the
negative input values to the zero values, it causes
some of the neurons in the hidden layers in neural
networks to have zero values. In other words, by
removing the effect of some neurons with zero
weight, an accelerating in the learning process can
be achieved which is called a sparse representation

(4) Computational simplicity: dissimilar to the tan h and
Sigmoid activation functions, ReLU consists of only
simple operations in terms of computation so that
computing the exponential function in activations
can be eliminated and therefore much more practica-
ble to implement in models

The ReLU layer does not cause the vanishing gradient
problem and avoid easy saturation. Also, due to overcoming
the vanishing gradient issue, models are permitted to learn
faster and perform better. Equation (2) outlines how the
ReLU activation function accomplishes [58, 59].

f(x) =max (0, x), (4)

where x demonstrates the input value and f(x) is its
related output.

Since in object recognition applications, there is evidence
that demonstrates the form, dimension, color, or position of
the object has no matter, only the spatial variances need to be
investigated. In order to accomplish this, a downsampling
layer is applied by summarizing the key information in
patches of each feature map without losing any details that
lead to a good classification. In contrast to the convolution
operation, the pooling layer has no parameters and only
slides a window over its input, and simply takes the prede-
fined value (mean, max, etc.) in the window. Furthermore,
as the quantity of pixels in this layer (in both row and col-
umn) is dropped, it leads to shortening the training time
and combats overfitting [54, 61-63].

An appropriate technique for dimensionality reduction
of feature maps is to reduce the number of parameters and
computation in the network so that the model can be robust
to alter the high-frequency information (key information)
and preserves vital features [55]. This dimension-reduction
procedure happens by utilizing a filter along the spatial
dimensions (width, height) with a predefined dimension.
This layer is regularly incorporated between two sequential
convolutional layers. The max pooling layer accomplished
in this study first partitions the extracted matrix of features
into a set of parts with no overlapping and then takes the
maximum number inside each district. The max pooling
strategy also employs as a noise suppression technique [53,
64].

In a CNN structure (shallow or deep CNN), since the
receptive field in the last convolutional layer does not cover
the entire spatial dimension of the image, the generated fea-
tures by the last convolutional layer correspond to a section



of the input image. Therefore, one or some FC layers are
obligatory in such a scenario. A fully connected layer (FC)
allows the model to learn the nonlinear combinations of the
high-level features in an input image.

Each node in the fully connected layer produces a single
output with its learnable corresponding weight that is linked
to all the activations in the previous nodes [56]. It is notewor-
thy that before applying the generated feature matrixes to the
fully connected layer, all 2D features have to be changed into
a one-dimensional matrix (1D vector) [65-67]. The latest
layer for classification tasks in a CNN-based pipeline is the
Softmax regression layer which is able to differentiate one
from the other. The Softmax regression is also called multi-
nomial logistic, multiclass logistic regression, or just maxi-
mum entropy classifier. This single-layer regression tries to
normalize an input value into a vector of values to demon-
strate how likely the input data belongs to a user-defined
class. Also, as the output values are between the range (0,
1), the sum of the output values obtained from the probabil-
ity distribution procedure is equal to one [52, 53, 67, 68].

For the training step, since we are not working with a big
dataset with hundreds of different samples from many
patients, it is enormously easy for the CNN-based models
to converge or to be specialized according to its reliability
level and application area (to be less intelligent). To over-
come this issue, there are two main strategies: (1) transform
learning and (2) data augmentation.

The transform learning method is utilized to bring some
trained biases and weights into any pipeline rather than select
them randomly at the first step. Data augmentation is a pop-
ular method for artificially boosting the number of training
examples [69, 70].

2.5. Our CNN Pipeline. As mentioned before, CNNs are used
to explore significant details from an input of raw pixels more
efficiently. Hence, in this study, we investigated the probabil-
ity of the presence of the lesions caused by CVOID-19 using a
novel model based on the combination of global and local
features. Moreover, to maximize the segmentation accuracy
for even small damaged healthy tissue, the proposed
approach concludes three distinct input images instead of a
single one. The three input images include original image,
fuzzy clustered image, and encoded image (LDN). These
three different inputs enable our model to handle many types
of variability in the raw input pixels. The flowchart of the
proposed structure is shown in detail in Figure 6.

When we use CNNs for automatic feature extracting that
are effective for various tumor or lesion detection problems,
the need for preprocessing and highlighting the suspect
regions is significantly reduced. This is due to the fact that
the CNN-based structures have millions of parameters that
are able to produce the best suited feature maps for express-
ing the class probability. Although numerous CNN pipelines
have been recommended for lesion segmentation in recently
published papers, none of them has concentrated on apply-
ing the combined the textural encoding algorithm, fuzzy
clustered, and raw image pixels as an input to a CNN struc-
ture. Since miscellaneous texture or images definitely encom-
pass complementary and detailed information (features), our
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experimental outcomes for small samples (data) imply that
this complex two-path strategy is effective to enhance the
score of the evaluation indexes.

While analyzing the complex texture of our input images,
due to many similarities of the lesion (infected area) with nor-
mal tissue in the margin of the lesion, semiglobal and local fea-
tures must be taken into account. Moreover, the lesions may
appear anywhere on the lung since COVID-19 has a multifo-
cal distribution that for gaining better results need to have
knowledge of neighbor information in a little further of each
analyzing pixel location. As is clearly indicated in Figure 6,
the recommended cascading model is based on investigating
key features using two distinct local and global paths.

In contrast to some other recently published methods
such as studies by Hu et al. [71], Wang et al. [4], and Fan
et al. [14] that employ all pixels inside the image as an input,
our method only considers two patches from each applied 2D
data (totally 6 patches) as an input to classify each pixel
inside the output image. In other words, if there are 1000
pixels inside the image, the number of the produced patches
are 1000 x 2, and due to the use of the three input images,
there are 1000 x 2 x 3 patches. This is very interesting that
using both local and global patches with a different route
for extracting features can get better results compared to
using only one of them.

In our model, two distinct routes are employed; the first
one (upper path) comprises of the five convolutional layers
for extracting the global features. The other path (bottom
path) utilizes two convolutional layers for extracting the local
features. The local and global investigation windows
(patches) are 25 x 25 and 60 x 60, respectively.

The semiglobal patches are employed for providing key
details about the analogous touching textures with scar tis-
sues, while the local patches are applied more for recognizing
inflammation in the tiny air sacs. Moreover, the outcome of
our strategy for inflammation detection highly depends on
information extracted from the global windows. In Table 1,
we exhibit the effect of employing semiglobal and local
patches in the ultimate outcome of our approach. As is
depicted in Table 1, the best observed Dice score is obtained
when the sizes of the local and global patch are 25 x 25 and
60 x 60, respectively.

The size of the local region is 25 x 25 x 3, which three
implies three distinct input images. The selected regions are
convolved using 64 kernels to generate the feature maps
based on the 3 x 3 receptive field. In the next layer, the num-
ber of filters is changed to 128 with the same receptive field.
After producing feature maps in the first layer, the max pool-
ing layer is not, while after the second layer, max pooling
decreases the dimension of the produced feature maps.

Unlike the local features extraction path, in the global fea-
ture extraction procedure, five convolutional layers are
employed. In this path, only two intermediate layers are
employed that are using the max pooling approach. All
extracted feature maps with the size of 9 x 9 at the end of each
route are concatenated to create 384 feature maps in order to
use in the next convolutional layer. After the concatenation
step, 128 kernels are applied to these feature maps, and then,
a max-pooling layer changes the all dimensions to the 4 x 4.
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FIGURE 6: Our implemented two-path CNN model using three distinct inputs.

TaBLE 1: Investigating the accuracy of employing dissimilar
dimensions of the regions in the final result of the approach.

Size of the Size of the local ~ DICE value for lesion
semiglobal patch patch segmentation
40 x 40 11 x11 24%
50 x 50 11 x11 31%
60 x 60 11x11 33%
70 x 70 11 x11 40%
80 x 80 11x11 41%
40 x 40 15x15 61%
50 x 50 15x 15 70%
60 x 60 15x15 72%
70 x 70 15x15 73%
80 x 80 15x 15 81%
40 x 40 21 x21 74%
50 x 50 21 x21 76%
60 x 60 21 x21 81%
70 x 70 21 x21 88%
80 x 80 21 x21 91%
40 x 40 25x25 56%
50 x 50 25x25 73%
60 x 60 25x25 92%
70 x 70 25 %25 89%
80 x 80 25x25 87%

Then, all created feature maps are transformed into a 2048 x 1
feature vector. Lastly, by applying a Softmax layer, all extracted
data are tagged to one of two expected classes (1 implies the
inflammation and 2 shows the normal tissues.).

For minimizing the cross-entropy loss, the proposed
CNN structure with two routes was learned through stochas-
tic gradient descent (SGD) in 1000 epochs with a batch size of

128 [72], in Equation (5). Our pipeline calculates the discrep-
ancy between the predicted output and groundtruth for
lesion segmentation. The dropout is applied before the FC
layer, which is aimed at avoiding “overfitting” and equals to
0.2. For optimization, we applied a weight decay of 0.0001
and a learning rate of 0.01. In the output layer, two logistic
units to obtain the probabilities of the given sample belong-
ing to either of the two classes were employed. The backpro-
pagation scheme was applied to generate the derivative of the
objective function.

U
loss; = — log Le_k , (5)
Yievd

where loss; implies the loss value for training data i,
and Uy demonstrates the raw production score (is not nor-
malized) for the reference class K.

The unnormalized production score is generated by mul-
tiplying the outputs from the previous FC layer with the
parameters of the corresponding logistic unit. To find the
normalized scores for each class between 0 and 1, the denom-
inator aggregates the scores for all the logistic units L. Since
two output neurons are presented at the output layer, in the
above equation, L is equal to 2.

3. Experiments

3.1. Datasets. The proposed novel technique and three
recently published models were investigated on a public chest
dataset [73] to evaluate the reliability, validity, and accuracy
of experiments. This dataset is available at https://github
.com/UCSD-AI4H/COVID-C. To segment the corrupted tis-
sues accurately, four experienced specialists segmented the
borders manually. It is noteworthy that by employing an aug-
mentation strategy to increase the number of data, a lot of
new samples are generated. Also, 70% of data for training,
10% for validating, and 20% for testing are used. Data aug-
mentations are useful approaches to decrease the validation


https://github.com/UCSD-AI4H/COVID-C
https://github.com/UCSD-AI4H/COVID-C

10

and training errors. The augmentation methods artificially
inflate the training dataset size by either data oversampling
or warping. When in the augmentation process, the labels
of the existing images are preserved; this process is called data
warping augmentations. This method includes augmenta-
tions such as color and geometric transformations, adversar-
ial training, random erasing, and neural style transfer.
Oversampling augmentations generate synthetic samples
and add them to the training set [74].

Six approaches of data augmentation are utilized in this
paper to increase efficiency, namely, flipping, color space,
rotation, translation, noise injection, color space transforma-
tions, and random erasing.

In flipping, a horizontal axis flipping is used. In the color
space, contrast enhancing is employed. In rotation, 180
degrees is selected. In translation, left, right, up, and down
are applied. In noise injection, a Gaussian distribution is uti-
lized. In the color space transformations, decreasing and
increasing the pixel values by a constant value are applied.
In random erasing, an n x m patch of an image is randomly
selected and masking it with zero values.

3.2. Evaluation Metrics. In this study, the following nine mea-
sures were calculated by comparing the segmentation results
with that of lesions segmented by the experts to appraise the
proposed architecture’s efficiency. The promising accuracy of
the proposed two-path architecture was assessed using recall,
precision, F score, ASD (average surface distance), RVD (rel-
ative volume difference), RMSD (root mean square symmet-
ric surface distance), MSD (maximum surface distance),
VOE (volume overlap error), and DICE (Dice similarity)
[15, 75-77]. Some mentioned metrics are defined as follows:

Precision = % 100%,

TP
TP + FP

Recall = x 100%,

T

TP + FN

Fe 2 x Precision x Recall « 100%
" Precision + Recall ”

TP

>< e —
2TP + FP + EN
M, NM

- #) X 100%,
M:l u MSZ

Msl - MSZ

$2

DICE = (2 > x 100%,

VOE(MSI’ MSZ) = (1

RVD(M,;, M,,) = ( ) x 100%,

1

ASD= ————— — x
|Bar, | + |Ba, |

Y. d(xBy,)+ Y d(nBy,) |

xeB Mo yeBsz
(6)

where M, and M, denote the result of segmentation
using our strategy and ground-truth mask, respectively. Also,
By, and By, imply the borders result of our segmentation
technique and ground-truth image, respectively. Moreover,
the FN, FP, and TP represent false negative, false positive,
and true positive, respectively [37, 78].
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Dice similarity coeficient (DSC) is defined as one for a
perfect segmentation and is a statistical tool for measuring
the similarity between two sets of data. MSD measures the
distance between the borders of each segmented object from
its corresponding border in the groundruth image. Measur-
ing the difference between the segmented object and related
object in the groundtruth image can be calculated by RVD,
in which the positive value implies oversegmentation and
the negative value represents the undersegmentation result.
It means that the best value is zero that indicates the seg-
mented object is equal to the groundtruth image.

3.3. Experimental Results. Our two-path architecture was
implemented in Python, and the experiments were run on
an Intel(R) Core(TM)i7-3.4 GHz + GEFORCE GTX 1080
Ti GPU+16 gigabytes of RAM under the windows 10 (64-
bit) operating system. The results of our pipeline using 3 dis-
tinct input images were appraised utilizing the corresponding
ground-truths and reported in Tables 2 and 3. In our dataset
samples with a large diversity in the volume of the lesions,
not well-defined borders (unclear or blurred margin) have
the greatest part of the train, validation, and test samples.

For exemplifying the significance of utilizing the group-
ing of the LDN encoding approach, Z score normalization
technique, and CNN framework to accurate estimating bor-
ders, Figure 7 demonstrates the outcomes of our structure
(drawn by a green line). The results of our method compared
to three other recently published methods are shown in
Figure 7 on a few slices with the intensity inhomogeneity,
ambiguous boundaries, heterogeneous appearances, and var-
ious infection shapes. Accordingly, it can noticeably be
observed that the intensity inhomogeneity and ambiguous
boundaries inside the lung due to the infection cause the
infected regions are not suitably extracted when the Dense-
Net201 [1], weakly supervised deep learning [71], and weakly
supervised framework [4] approaches are applied.

As indicated in Figure 7, segmentation by employing the
DenseNet201 [1] structure shows the fewest match with the
reference data (groundtruth), especially when similar inten-
sity values are encountered near the borders of the infected
regions. Weakly supervised deep learning [71] is good to rec-
ognize the infection boundary when there is much distance
(more than 20 pixels) between two lesions, but when in the
small distance (less than 20 pixels), it performs so poorly
and the chance of combining two lesions is highly increased.
Also, the DenseNet201 [1] method undersegment the
infected areas in the most cases, whereas the weakly super-
vised deep learning [71] and weakly supervised framework
[4] models oversegment with equivalent intensity values.
Moreover, such pipelines are more prone to boundary leak-
age, especially when there are unclear borders among the dif-
ferent kinds of infection progress. To solve this issue, we
came up with the idea of employing both local and global fea-
tures when there are three representations of the infected and
noninfected tissues. Our model also has not noteworthy
boundary leakage, substantial oversegmentation, or under-
segmentation, predominantly in particular sections that are
near the white objects. By using the Z score normalization
and fuzzy clustering methods, our approach is more capable
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TaBLE 2: Quantitative comparison of infected tissue segmentation outcomes based on our model and three recently published structures. The
evaluations are based on average surface distance (ASD), relative volume difference (RVD), Volume overlap error (VOE), root mean square
symmetric surface distance (RMS), and maximum surface distance (MSD).

Approach ASD (mm) VOE (%) RVD (%) MSD (mm) RMS (mm)
DenseNet201 [1] 54+0.3 11.4+7.3 -4.2+59 23.6+7.1 5904
Weakly supervised deep learning [71] 51+0.4 11+7.3 7.8+10.3 21+6.6 55+0.7
Weakly supervised framework [4] 6.1+£0.6 11.7+4.2 83+6.6 22.7+5.2 58+0.5
Proposed CNN 6.3+0.5 11.9+6.8 -5.8+3.5 21.3+6.1 5704
Proposed CNN+LDN 51+0.1 83+47 6.5+4.1 154+4.38 4.7+0.2
Proposed CNN+fuzzy c-means 553+04 8.9+52 -6.9+7.3 16.5+4.9 52+0.5
Proposed CNN+fuzzy c-means+LDN 28+03 5612 37+£56 74+73 3602

TaBLE 3: Quantitative comparison of infected tissue segmentation
outcomes based on our pipeline and three recently published
structures. The evaluations are based on recall, precision, and F
score.

Approach Precision  Recall F
pp (%) (%) score
DenseNet201 [1] 86% 89% 87%
E/;]le]akly supervised deep learning 38% 90% 89%
Weakly supervised framework [4] 91% 89% 90%
Proposed CNN 88% 89% 88%
Proposed CNN+LDN 93% 91% 92%
Proposed CNN+fuzzy c-means 92% 94% 93%
E;%)I?Ised CNN-+fuzzy c-means 96% 97% 97%

of enhancing the contrast near the border of the lung to
obtain more accuracy in the distinction of an infected region
and vague border of the lung. Considering the heterogeneous
textures, opaque appearance of the infected tissue, misalign-
ment of the infection boundaries, unclear borders, and differ-
ent dimensions of the infection regions, it is more evident
that our pipeline suitably finds a pattern most similar to the
infected area, which demonstrates its robust performance
under realistic scenarios on countless infection outlines. It
worth mentioning that in all methods, the white tissue (pul-
monary nodules) near the infected area cannot be properly
recognized due to much similarity between both tissue
values. The results may get better if the amount of training
data is increased.

The proposed two-path CNN structure achieved a higher
segmentation performance than the other three evaluated
methods when other representations of the lung images are
applied; meaning more substantial features are available to
achieve the best distinction between classes. The efficiency
of our technique on different CT infected lungs was assessed
using the Dice similarity index, as illustrated in Figure 8. The
Dice score averages for the segmented infection areas with
diverse appearance varied from 80% to 94%. As is shown,
the worst result belongs to the DenseNet201 approach with
an average of 84%. The result of our approach implies that
the appearance, intensity values, and outline of the infected

tissue cannot significantly affect the segmentation perfor-
mance and efficiency.

Tables 2 and 3 indicate the comprehensive evaluation of
our complex strategy for lesions segmenting and compare it
with the results of other mentioned methods on our dataset.

Table 2 implies a quantitative comparison, in practice,
between the automated lesion segmentation outcomes of
the novel proposed two-patch model over the other three
mentioned approaches. For each index in Tables 2 and 3,
the highest values of RVD, ASD, RMS, MSD, VOE, recall,
precision, and F score are highlighted in bold. The outcomes
of every first five assessment criteria are demonstrated by
standard deviation and mean values in Table 2. The proposed
two-route segmentation model gains a smaller mean in men-
tioned assessment criteria. The obtained VOE is meaning-
fully altered between all appraised architectures, while the
outcomes of RMS and ASD imply the lowest variance. The
RVD score for DenseNet201, proposed CNN, and proposed
CNN-+fuzzy c-means algorithms are less than 0. Also, adding
the LDN method to the proposed CNN model leads to
observe the positive value in the RVD result. The RMS score
imply that the proposed CNN+fuzzy c-means+LDN and
proposed CNN+LDN methods produced the best outcomes
among the seven structures. Also, the DenseNet201 tech-
nique gains the highest mean score of RMS.

In addition, the mean value of MSD and VOE of the
models employed by DenseNet201 and weakly supervised
framework were outstandingly higher as compared to our
outcomes. Moreover, both the weakly supervised deep learn-
ing and the weakly supervised framework models show a
large standard deviation in the RVD; however, a major stan-
dard deviation in MSD score is obtained in the DenseNet201
method. The observed results in the ASD and VOE indicate
that adding LDN and fuzzy clustering methods to our CNN
model can significantly improve our model accuracy.

The results in Table 3 indicate the measurements for dif-
ferentiating the objects inside the lung, including normal and
infected tissues. As can be observed in Table 3, our technique,
CNN-+fuzzy c-means+LDN, consistently performs the best
among all approaches. The F score, precision, and recall of
the DenseNet201 and weakly supervised deep learning struc-
tures are highly similar to the proposed CNN algorithm;
however, by adding the LDN or fuzzy clustering approach,
these three criteria are highly increased. Also, the
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F1GUrEe 7: Comparisons between four different kinds of strategies for COVID-19 infection detection. The red contours indicate the reference
border (groundtruth). Segmentation based on the (a) proposed strategy, (b) DenseNet201 [1], (c) weakly supervised deep learning [71], and
(e) weakly supervised framework [4].
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FIGURE 8: Comparison between the Dice scores of the four models employed for lung infection segmentation in CT images.



BioMed Research International

DenseNet201 approach gains the worst results and our archi-
tecture obtains the competitive performance on lesions seg-
mentation in all evaluation metrics.

4. Discussion and Conclusions

In this study, we implemented a two-path CNN pipeline that
incorporates the three distinct input images, to automatically
segment the infected tissues inside the lung caused due to the
COVID-19 from CT images. For a better demonstration of
the tissues to extract more key features inside the CNN
model, we showed the input CT image represented in the
two other different ways which each of them includes some
unique information. Due to inflammation inside the lung
because of COVID-19, infected areas near the border of the
lung are highly difficult to segment. So, our algorithm first
employed a Z score normalization technique to obtain a
more distinguishable lung border from the original image.
Then, by using a fuzzy clustering method, all tissues in the
image are clustered and obtain a distinct pixel value for all
pixels corresponding to each cluster. This approach helps
the CNN pipeline for decreasing the convolutional layers
for extracting some key features and leads to a drop in the
training time of the pipeline and increase the final efficiency.

Then, an LDN encoding approach was implemented for
representing the information of the images in another form
to extract more essential details from the input image. This
strategy roots in the fact that sometimes by changing the rep-
resentation domain (like frequency domain rather than the
time domain) some other substantial features can be
observed.

We also represented a new two-route CNN model that
considered semiglobal and local information to categorize
each pixel in the input image to one of the two normal and
infected tissues. The number of the convolutional layers in
the global route is more than the local route, while the kernel
size for all convolutional layers is the same. To overcome the
overfitting problems and boost efficiency, using data aug-
mentation methods, the number of samples has been
increased. Lastly, using the CT image and two obtained
images, our CNN structure was trained.

The suggested two-route segmentation pipeline was
appraised on a public dataset which 70% of data for training,
10% for validating, and 20% for testing were used. Our signif-
icant findings demonstrate that our CNN pipeline and three
distinct input images gained the following: (1) acceptable
performance even if the infected area shared an extended
border with touching tissues, (2) appropriately robust as
indicated by the negligible standard deviations which show
the uniformity of the values for all the nine criteria, and (3)
accomplished well in the detection and segmentation process
even for the intricate cases with numerous unalike categories
of the infection, which had the amoeboid shapes and analo-
gous thicknesses.

The proposed architecture satisfactorily overcomes the
difficulty of failing in accurate detection of the lesions at the
presence of the similar adjacent tissues and identification of
an uneven border where it seemed to not properly appear
to exist with an aim to reach superior outcomes. In addition,
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the employed technique does not require more extra param-
eters for feeding into the algorithm apart from one CT image
to define the position of the lesions and border detection. But
the functional limitation of this architecture is that the white
matter (pulmonary nodules) inside the normal lung near the
border of a lesion cannot properly be recognized from the
infected tissue. We think that by increasing the training sam-
ples this problem can be solved.

Tables 2 and 3 approve that our technique divides erratic
and wide infections and irregular shapes. Most of the seg-
mentation strategies that merely rely on measuring the illu-
mination, energy, thickness, location, and shape could fail
when the infected tissue and other touching objects have an
analogous density and intensity levels. Under such specific
circumstances, applying additional distinguishable features
from different kinds of images may result in improving the
ability of segmentation and fulfilled a leading role in gently
separating infections associated with the abovementioned
problems. Our unique pipeline could potentially be more
advantageous when encountering diverse infections with
the blurred boundaries and wide-ranging lesion sizes. The
implemented procedure proposed herein yields a more clas-
sification efliciency in terms of simplicity, stability, and time
consumption compared to the baseline models.

Data Availability

The data used to support the findings of this study are
included within the article (https://github.com/UCSD-
AI4H/COVID-CT).
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