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Reproducible chemostat cultures
to minimize eukaryotic viruses
from fecal transplant material

Signe Adamberg,1 Torben Sølbeck Rasmussen,2 Sabina Brigitte Larsen,2 XiaotianMao,1 Dennis Sandris Nielsen,2

and Kaarel Adamberg1,3,*
SUMMARY

Recent studies indicate an important role of bacteriophages for successful fecal microbiota transplanta-
tion (FMT). However, wider clinical applications of FMT are hampered by to donor variability and concerns
of infection risks by bacteria and human viruses. To overcome these challenges, mouse cecal and human
fecal material were propagated in a chemostat fermentation setup supporting multiplication of bacteria,
and phages, while propagation of eukaryotic viruses will be prevented in the absence of eukaryotic host
cells. The results showed decrease of the median relative abundance of viral contigs of classified eukary-
otic viruses below 0.01%. The corresponding virome profiles showed dilution rate dependency, a repro-
ducibility between biological replicates, and maintained high diversity regarding both the human and
mouse inocula. This proof-of-concept cultivation approach may constitute the first step of developing
novel therapeutic tools with high reproducibility and with low risk of infection from the donor material
to target gut-related diseases.

INTRODUCTION

During the last decades it has become evident that complex diseases such as metabolic syndrome, autoimmune diseases, and colon cancer

are associated with gut microbiome (GM) imbalances. This makes the GMan attractive therapeutic target for fecal microbiota transplantation

(FMT). Until now, transplantation of fecal microbiota has been successfully applied to treat recurrentClostridioides difficile infections possibly

through bacteriophage-mediated (bacterial viruses, in short phages) modulation of the GM landscape.1–4 The fecal donor material used for

FMT is screened for pathogenic bacteria and viruses prior FMT to ensure safety. However, this process is laborious and may end up with only

3% of the donor candidates passing all safety steps.5 Further, there is a risk of transferring disease-causing agents through FMT if screening

fails6,7 as emphasized by an incident in June 2019when two patients in the US had severe infections following FMT, of which one patient died.8

As an alternative to FMT, fecal virome transplantation (FVT, sterile filtrated donor feces) has also shown promising efficacy against C. difficile

infections.2,9,10 An important advantage of FVT over FMT is the diminishing of bacterial transfer as a potential threat. However, there is still the

risk of transferring disease-causing eukaryotic viruses despite the screening of donor material for known pathogenic viruses as long-term ef-

fects of most of the viruses inhabiting the human gastrointestinal tract are not yet studied.11,12

The interactions between gut bacteria and phages are complex and mutual, hence making the gut virome an important component in

health and disease.13,14 There are indications that viromes of the dysbiotic and healthy GM differ,15–17 but the causal links between gut

virome dysbiosis and disease are still poorly understood. However, the impact of the phageome on the composition and function of the

GM has been suggested to have important consequences for health and outcome of FMT or FVT treatments.2,18–21 The estimated number

of virus-like particles (VLP) remains between 109 and 1010 per gram of feces22–25 being dominated by phages (over 97%) while only about one-

tenth of these have been annotated until now.26 Phages belonging to the order Caudoviricetes are, together with single-stranded DNA

phages (ssDNA) of the order Petitvirales, dominant in the human gut.12–14,27,28

While phages only infect bacterial and not eukaryotic cells, we aimed to develop a methodology to produce active enteric phage com-

munities with minimal amounts of eukaryotic viruses using two different inocula; murine cecal and human fecal microbiota. Chemostat culti-

vation is an effective approach to reproduce stable and diverse microbial, as well as, bacteriophage communities from fecal inoculum.29,30

Chemostat cultivation has been used for studying virus-mediated perturbations on stable microbial communities31 and for enrichment of

phages of specific bacteria.32 Our aim was to generate reproducible enteric viromes that can be compared with FMT in GMmodulation inter-

vention studies. To overcome the variability derived from individual microbiotas, pooled mouse cecal or human fecal cultures were used as
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Figure 1. The experimental setup of chemostat cultivations of mice cecal culture

At start 1% of five times diluted cecal content (0.5 g cecal content and 2 mL buffer) was inoculated into a bioreactor followed by batch growth for 23 h. The

chemostat culture was then run up to 5 residential times (corresponding to 100 h and 25 h total time in chemostat at D = 0.05 1/h and D = 0.2 1/h,

respectively). The sampling points for metabolite and microbiota (16S rRNA gene amplicon and metavirome sequencing) analyses are indicated. See also

Figure S1 about the origin of mouse inoculum and Figure S2 about the timeline of chemostat experiments.

ll
OPEN ACCESS

iScience
Article
inocula for the chemostat cultivations. Dynamics of chemostat cultures was followed by determination of bacterial and viral composition,

growth characteristics, and metabolic products. We hypothesized that the continuous culture system would ensure high reproducibility of

microbial communities within biological replicates as well as washing out the majority eukaryotic viruses by dilution. To our knowledge,

the reproducibility and stabilization of bacterial viruses from human and mice inoculum in chemostat cultures have not been described

thoroughly.
RESULTS

With the aim of generating viromes with minimal contents of eukaryotic viruses, mouse cecal, and human fecal matters were comparatively

propagated in chemostat mode at two different dilution rates (Dlow, 0.05 1/h and Dhigh, 0.2 1/h) for five residence times (the time [h] that a unit

of feedingmedium [l] stays in a unit of bioreactor [l]). All fermentations started from batch cultures up to stationary phase prior to starting the

continuous mode. The dilution rates were chosen according to characteristic transit rates of human digestive tract. The overall cultivation

parameters for mouse cecal and human fecal cultures (i.e., dilution rates, temperature, and pH) were the same except for some differences

in the media composition (Figure 1). In the medium designed to resemble the high content of complex carbohydrate in mice chow feed, the

total carbohydrate concentration was three times higher compared to that mimicking the human chyme conditions (15.2 g/L vs. 5 g/L,

respectively).
Wash-out of eukaryotic viruses from chemostat cultures

The relative abundance of eukaryotic viruses in the end of batch phase ranged from 0.06% to 0.27% and 0.05%–0.23% in mouse cecal and in

human fecalmatter inoculated cultures, respectively (Figure 2). The amount of virus like particles (VLP) in the beginning of cultivationwas 1*108

VLP/ml that gradually increased up to 2*109 VLP/ml during 5-volumes of the chemostats. The relative abundance of eukaryotic viruses at low

dilution rate (0.05 1/h) declined below 0.01% but in two cases remained around 0.1% in human fecal matter inoculated cultures. At the same

time, the bacterial virome maintained high diversity in the chemostat phase and the numbers of bacterial viral OTUs remained at least 1000

times higher than those of eukaryotic viral OTUs (Figures 3 and S3).

Among the RNA viruses mainly eukaryotic viruses, but also some RNA phages were identified in both inocula (Figure 3). The most abun-

dant taxa of eukaryotic viruses in bothmouse and human viromes wereDuplopi-, Stepla-, andMegaviricetes. After chemostat of mouse cecal

matter at low dilution rate, Astroviridae from Steplaviricetes and Picobirnaviridae from Duplopiviricetes still present in the culture while in

chemostat at high dilution rate, the abundances of eukaryotic viruses were below 0.01%.
Reproducibility of the viromes in continuous cultures

When examining compositional patterns of the virome and bacteriome, distinct clusters formed of the inocula and samples frombatch phase,

slow and fast chemostat cultures (Figure 4). Viromes of the batch samples were closer to these of the inocula as there was no outflow but also

showed persistence of eukaryotic viruses in these conditions. More importantly, our results indicate reproducible dynamics of the chemostat

cultures as the samples formed clearly separate clusters (Figure 4, p values of PERMANOVA tests below 0.04 and 0.05 in mouse cecal and hu-

man fecal matter inoculated cultures, respectively). Similar distinct clustering was observed also for the bacteriome (see below and Figure S4).

The Shannon diversity index of the viromes of mouse cecal matter inoculated cultures remained high throughout the whole stabilization

phase (five residence times) at low dilution rate (0.05 1/h), while a remarkable decrease was observed at high dilution rate (0.2 1/h, Figure 4).

Shannon diversity indices of cultivated human fecal matter were higher than those of the mice cecal cultures, but variability was also high

(Figure 4).
2 iScience 27, 110460, August 16, 2024
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Figure 2. Relative abundance of eukaryotic viruses in chemostat propagated viromes

Eukaryotic viruses shown as the number (A and B) or relative abundance (C and D) of observed eukaryotic viral operational taxonomic units (vOTUs, viral contigs)

after batch and chemostat propagation of mouse cecal and human fecal matter. Batch_slow and batch_fast designate the batch cultures prior to the chemostat

mode of low and fast dilution rates, respectively (n = 3).
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The effect of the dilution rate on the composition of bacteriomes and corresponding viromes

In mouse cecal matter inoculated cultures most of the viral taxa remained unidentified. Those identified were characteristic to chemostat cul-

tures at high or low dilution rates. At low dilution rate, identified phage taxa belonged to Tubulavirales and several virus order level clusters

(VOCs) from Caudoviricetes while at high dilution rates Crassvirales and other VOCs from Caudoviricetes were observed (Figures 3 and S3).

On the summarized viral contigs (vOTUs) level (based on DESeq2 analysis) most of the differential changes were observed in chemostat

cultured mouse cecal matter at low dilution rates compared to these in chemostat cultures at high dilution rates (Figure S5).

The bacteriome of the mouse cecal matter inoculated chemostat at low dilution rate was dominated by Bacteroides, Bifidobacterium,

Blautia, and an unidentified taxon from the family Ruminococcaceae while at high dilution rate the main taxa were Bacteroides, lactobacilli,

Enterococcus, and Enterobacteriaceae (including Escherichia, Figures 5 and S6). Characteristic taxa for slow growing bacteriome only were
iScience 27, 110460, August 16, 2024 3
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Figure 3. Relative abundance of viruses in inoculum, and batch and chemostat propagated viromes

Reduction of eukaryotic viral families and enrichment of bacterial viral families from batch to stabilized chemostat cultures of mouse cecal (A and C) or human

fecal (B and D) matter inoculated cultures. Color intensity in the heatmaps indicates the relative abundance of eukaryotic (A and B) or prokaryotic (C and D) viral

contigs from total eukaryotic or prokaryotic viral contigs, respectively. Batch_slow and batch_fast designate the batch cultures prior to the corresponding

chemostat modes of low and fast dilution rates, respectively. ‘‘Slow’’ and ‘‘fast’’ indicate the dilution rates used in the chemostat (Dlow 0.05 and Dhigh 0.2 1/h,

respectively). See also Figure S3.
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Akkermansia and Intestinimonas. Compared to inoculum there were many bacterial OTUs decreasing over two magnitudes in low dilution

rate chemostat such as Alistipes and Anaerotruncus or increased such as Intestinimonas, Blautia, and Escherichia (Figure S7). However,

both chemostat modes supported diverse and reproducible mice cecal-derived cultures (Figure S4). Using pairwise Spearman’s correlation

analysis we observed specific clusters between bacterial and viral OTUs (Figure S8). A group of BacteroidesOTUs correlated to specific viral

OTUs while other group of viral OTUs was specific to Escherichia, Enterococcus, Holdemania, and Clostridium.

The most abundant viruses in human fecal matter inoculated cultures were Petitvirales, Tubulavirales, and several VOCs from Caudovir-

icetes (Figure 3). In the end of either low or high dilution rate chemostat, the pattern of phages were similar and described by decrease of the

abundance of Petitvirales and domination mainly by VOCs from Caudoviricetes.

The assembled viral contigs were used to predict bacterial hosts using iPHoP.33 Most of the dominant predicted bacterial hosts in the cul-

ture of mouse cecal matter at low dilution rate such as Akkermansia, Blautia, and Ruminococcaceae were in accordance with the bacteriome

data (Figure S9).On the contrary, phage host analysis indicated also a high abundance of Faecalibaculum and Enterococcus as hosts for iden-

tified phages. Phage host analysis for high dilution rate chemostat cultures of mouse cecal matter showed similar host pattern as observed at

low dilution rate chemostat, although neither Faecalibaculum nor Akkermansia were dominant when propagated in high dilution rate

chemostat.

The metabolite profiles of low and high dilution rates also differed. At low dilution rate the highest acetate production (61 G 2 mol-% of

total products) and absence of lactic acid was observed (Figure S10). Production of each of butyrate, propionate, and ethanol was around 10

mol-% (Figure S11). Production of succinate remained below 10 mol-% of total products in low dilution rate chemostat and the amount of

formate was marginal (about 0.1 mol-% of total products) while more hydrogen sulfide was detected compared to that at high dilution

rate (1.3 G 0.1 vs. 0.33 G 0.03 mmol/gDW, respectively). Regarding gaseous products, formation of CO2 (0.46 G 0.06 and 0.49 G 0.04

mol-CO2/mol-products, respectively) and hydrogen (0.015G 0.002 and 0.19G 0.01 mol-CO2/mol-products, respectively) were lower in che-

mostats at low dilution rates.
DISCUSSION

Reproducibility of the virome propagation

Here, we aimed to produce reproducible chemostat-propagated gut viromes with minimal amount of eukaryotic viruses. Two different

inocula (mouse cecal and human fecal matter) were used at two different dilution rates to simulate slow (dilution rate D = 0.05 1/h) and
4 iScience 27, 110460, August 16, 2024
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Figure 4. Diversity of chemostat propagated viromes

Chemostat propagation of fecal inocula at different dilution rates leads to viromes with reproducible composition according to beta (Bray-Curtis) diversity (A and

B) and diverse viral community by Shannon diversity index (C and D). Samples from inoculum, batch and chemostat cultures of mouse cecal (A and C) and human

fecal (B and D) matter inoculated cultures are shown. ‘‘Slow’’ and ‘‘fast’’ in the column names indicate the dilution rate used in the chemostat (Dlow 0.05 and Dhigh

0.2 1/h, respectively). Batch_slow and batch_fast designate the batch cultures prior to the corresponding chemostat modes of low and fast dilution rates,

respectively. PERMANOVA p values between all pairs of chemostat_slow vs. chemostat_fast, chemostat_slow vs. batch_slow and chemostat_fast vs.

batch_fast were below 0.1 and 0.02 for mouse cecal and human fecal matter inoculated cultures, respectively. Beta diversity and Shannon diversity indices of

bacteriomes are shown on the Figure S4 and DESeq2 analysis in the Figure S5.
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fast (D = 0.2 1/h) growth of bacteria. In both mouse cecal and human fecal matter inoculated cultures the median relative abundance of

contigs of the eukaryotic viruses decreased from 0.2% to below 0.01% in most cases (excl. mouse cecal matter inoculated chemostat cultures

at low dilution rates) after five volumes pumped through the fermenter. As the amount of all viruses after 5 volumes dilution was 2*109 VLP/ml

and relative amounts of eukaryotic viruses of those 0.006%, the estimated number of eukaryotic viruses was below 105 VLP/ml. Previous

studies have shown that the single effective dose of an enteric virus (Noro-, Rota- Hepatovirus) to infect 50% of humans in population ranges

from 103–106 VLP per dose.34 As our chemostat cultures contained similar amount of VLPs it can be expected that it is most probably less

than effective dose of a specific virus. However, to ensure further decrease of eukaryotic viral load the chemostat run could be extended.

Additionally, for better identification of viruses and measure the dilution effect on specific viruses, further experiments using spiked (with

known eukaryotic viruses measured by qPCR) inoculum should be carried out. As the medium contained plant- and animal-origin compo-

nents these may contain some viral particles continuously fed into the bioreactor. This can also explain the higher amounts of eukaryotic

viruses compared to inocula in the batch phase samples. However, as the substrate is sterilized before use viruses potentially originating

from the substrate will not be infective. Another possibility can be related to misclassification of phages as some phage genes may be similar

to eukaryotic viruses.35 Positive is that we identified mainly RNA viruses as this observation is in line with eukaryotic viruses being dominated

by RNA viruses.36,37
iScience 27, 110460, August 16, 2024 5



Figure 5. Relative abundance of bacteria in inoculum, and batch and chemostat cultivated bacteriomes

Bacteriome composition of mice cecal (A) and human fecal matter inoculated cultures (B) after batch and chemostat propagation. ‘‘Slow’’ and ‘‘fast’’ in the column

names indicate the dilution rate used in the chemostat (Dlow 0.05 and Dhigh 0.2 1/h, respectively). Batch_slow and batch_fast designate the batch cultures prior to

the corresponding chemostat modes of low and fast dilution rates, respectively. To minimize errors caused by different data processingmethods, the human gut

bacteriome sequences from a previous study29 were reanalyzed using the same pipeline from DNA extraction as described in Materials andMethods for analysis

of mouse samples. See also Figures S6–S11.
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We observed reproducibility of viral OTUs in chemostat experiments (Figures 4, S3 and S9). Very little is known about viral profiles of

continuous cultures inoculated with fecal or cecal matter. The phage community is expected to reflect the bacteriome profile due to inherent

host-phage relationship. The relative abundances of phages did not always correspond to their bioinformatically predicted host bacteria (Fig-

ures 5 and S9). However, the phage-host prediction analyses for the abundant bacteria such as Akkermansia, Blautia, or Ruminococcaceae

were in good agreement. Among the abundant genera only phages of Bacteroides or Bifidobacterium were not identified by phage host

prediction, which can be explained by the currently incomplete viral databases.
Effect of the dilution rate on microbial diversity

Reduction of eukaryotic viruses is more efficient at higher dilution rates, however, the composition of microbial consortia largely depends

on the dilution rate as shown in this study and previously.29,38 In this study the cultivation conditions and substrates were chosen to sustain

the highest microbial diversity based on previous knowledge. Dilution rates 0.2 and 0.05 1/h denote the fast transit rate and degradation of

dietary fibers in the cecum, and slow growth in the colon, respectively.39 The colonic transit rate varies according to the diet and personal

characteristics.40 Hence, changing a single parameter in the bioreactor can reduce the complexity of the microbial community. In a steady

state of mixed cultures, the microbial composition is driven by affinity to substrates, rate to convert substrates into biomass, cross-feeding,

and maximal specific growth rate of cells. If the pre-set dilution rate is higher than the specific growth rate of the cells, they will be expected

to be washed out. In slowly growing mouse cecal matter inoculated cultures, higher diversity of the bacteriome was obtained similar to

what has also been reported for human fecal matter inoculated chemostat cultures by us and Attai et al.31 Furthermore, Attai and co-au-

thors showed formation of highly diverse viromes at low dilution rate (0.04 1/h). Slow growth appears appropriate to produce diverse gut

microbiomes and phageomes. In contrast, the growth of Enterobacteriaceae and their viruses was remarkably supported by fast dilution

(Dhigh = 0.2 1/h) in mouse cecal matter inoculated cultures, reflecting the high maximum specific growth rate of Enterobacteriaceae.41

Overall, application of the chemostat provides several possibilities to prepare diverse bacterial and viral compounds for further testing

in preclinical studies.
Chemostat propagation of bacterial virome for preclinical studies

To avoid variability deriving from individual microbiomes, pooled mouse cecal, and human fecal cultures were used as inocula for chemo-

stat cultivation. Pooling of different gut microbiomes provides the opportunity to generate completely new microbial communities, which

may harbor new properties for further applications such as GM therapeutics and targeted probiotics. A pooling approach can also

improve standardization of microbiomes to study the growth trends in a complex fecal consortium, diminishing variations of individual

donors. Drawbacks of pooling are related to physiological studies if mechanisms between the co-existence of specific bacteria would be

studied.

Currently, FMT is mainly used for treating recurrent C. difficle in clinical practice. However, the potential of FMT is much wider. According

to the FMT regulations and donor screening programs, presence of C. difficile in donor material is not allowed, neither areC. difficile phages

since these reflect the presence of C. difficile.42,43 Beneficial effects of the FVT-based treatments in balancing the GM have been shown in

treatments of distinct disease models such as metabolic syndrome,20,44 C. difficile infection,1,4 necrotizing enterocolitis,18 antibiotic gut mi-

crobiota perturbations,45 stress-associated behavior,46 and in improving tight junction expression47 by independent research groups.

Recently, we showed that FVT community originating from Akkermansia-rich donors increased the native Akkermansia in the recipient colon

without administering any Akkermansia strains.48 The developed approach of chemostat propagated viromes was recently studied in a
6 iScience 27, 110460, August 16, 2024
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C. difficile infection mouse model.10 In this study we showed that transplantation of the chemostat propagated virome to C. difficile infected

mice exhibited survival rate similar to that of FVT treatedmice (5 out of 8 and 5 out of 7 survived, respectively), compared to 2 out 7mice in the

sham treated control group.10 Despite the different initial viral composition of these treatments, both decreased the C. difficile abundance

(gene copies per gram feces), as well as showed comparable effect on both the recipient gut bacteriome and virome.10 This indicates that

viruses playing role in survival were carried over in both virome preparations. Eukaryotic viruses constituted 0.1–3.0% of the total viral reads

in the present studymaking abundance analysis very sensitive. Further, the taxonomic resolution at this level is not sufficient to unambiguously

differentiate the eukaryotic viral taxa between virome preparations. Read counts may also be affected by minor inputs of eukaryotic viruses

from the medium components and false positive classification of eukaryotic viruses. In future studies spiking with relevant eukaryotic viruses

and qPCR should be implemented to show the dilution effect on e.g., eukaryotic vira in chemostats and animal models. Strong arguments for

chemostat cultivation are the ability to propagate reproducible viromes and to provide enough of the viral preparation despite of the small

initial amount of fecal or cecal matter.

In conclusion, we showed that chemostat cultivation is a highly promisingmethod to generate reproducible mouse cecal and human fecal

phageomes with minimal content of eukaryotic viruses. We have previously demonstrated propagation of reproducible bacterial consortia

from human fecal matter inoculated cultures in chemostat.29 In this study we confirmed this phenomenon with mouse cecal matter inoculated

cultures. The GM-derived phage populations can be used in transplantation experiments after removing all bacteria to modulate GM. Using

the conditions tested here, the number of eukaryotic viruses decreasedbymore than a hundred times of the initial load. This proof-of-concept

study may constitute the first step of developing therapeutic tools to target a broad spectrum of gut-related diseases and thereby supple-

menting FMT with a safer phage-mediated therapy.
Limitations of the study

The limitations of the study comprise: (i) in vitro cultivations cannot fully mimic the conditions of the gut; hence, we selected themost suitable

parameters (substrates, pH, dilution rates, and residence times) for chemostats based on our previous studies.29,38,39 (ii) The compositions of

the cultured viromes did not match exactly the mouse cecal and human fecal viromes. However, this was not the main objective of the study.

The aim of the study was to show the applicability of chemostat cultivation for propagation of reproducible viromes with minimal amounts of

eukaryotic viruses. The cultivation conditions will be systematically studied in further experiments. (iii) Sensitivity of virus analyses is a limitation

of identification. Precautions were taken in the sample preparation by removing all larger microbes and only keeping the viral particles for

sequencing analysis.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: C57BL/6N Taconic, Lille Skensved, Denmark;

Janvier, Le Genest-Saint Isle, France;

Charles River, Sulzfeld, Germany

N/A

Key reagents

Apple pectin Sigma-Aldrich, USA 93854

Chicory inulin Orafti, Belgium HP

Corn core xylan TCI, Japan X0078

Corn starch Sigma-Aldrich, USA S9765

Larch wood arabinogalactan TCI, Japan A1328

Porcine mucin type II Sigma-Aldrich, USA M2378

Bacterial DNA extraction kit A&A Biotechnology (Gdynia, Poland) Bead-Beat Micro AX Gravity (mod.1)

Viral DNA/RNA extraction kit Qiagen Viral RNA mini kit

DNA amplification kit Cytiva GenomiPhi V3

Sequencing library preparation kit Illumina Nextera XT

Deposited data

Bacterial 16S rRNA and

viral shotgun sequences

European Nucleotide

Archive (ENA)

PRJEB58787

Software and algorithms

Trimmomatic v0.35 Bolger et al., 201449 http://www.usadellab.org/cms/?page=trimmomatic

BBMap N/A https://www.osti.gov/servlets/purl/1241166

Spades v3.13.1 Bankevich et al., 201250

VirSorter2 Guo et al., 202151

VIBRANT Kieft et al., 202052

CheckV Nayfach et al., 202153

VirBot Chen et al., 202354

COPSAC Neri et al., 202255

iPHoP Roux et al., 202333

Bowtie2 Langmead and Salzberg, 201256 https://github.com/frejlarsen/vapline3

OTU-tables, taxonomy lists,

mapping files and R scripts

GitHub https://github.com/MaoAria15/Chemostat

R version 4.3.2 https://cran.r-project.org/doc/

manuals/fullrefman.pdf

https://www.r-project.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kaarel Adamberg

(kaarel.adamberg@taltech.ee).

Materials availability

This study did not develop new unique reagents.

Data and code availability

� All sequencing datasets are available in the ENA database under accession number PRJEB58787.
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� OTU-tables, taxonomy lists, mapping files and R scripts for sequencing data analysis are available in GitHub: https://github.com/

MaoAria15/Chemostat. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANTS DETAILS

Chemostat inocula

The cultivations were carried out with two different intestinal inocula ofmouse and human origin, respectively. In total 18 C57BL/6Nmalemice

were purchased to harvest intestinal content for downstream applications. The mice were five weeks old at arrival and purchased from three

vendors, represented by 6 C57BL/6NTac mice (Taconic, Lille Skensved, Denmark), 6 C57BL/6NRj mice (Janvier, Le Genest-Saint Isle, France),

and 6 C57BL/6NCrl mice (Charles River, Sulzfeld, Germany) and ear marked at arrival.

Cecal contents of mice from all vendors were pooled, as previously we have shown that mice from different vendors represents distinctly

different gut microbiota profiles (both the bacterial and viral community).57,58 Animal housing was carried at the AAALAC accredited facilities

at Section of Experimental Animal Models, University of Copenhagen, Denmark, under conditions described previously.57 For 13 weeks the

mice were fed an ad libitum low-fat diet (LF, Research Diets D12450J, New Brunswick, USA) until termination at 18 weeks old and their body

weight were measured every second week. To preserve the viability of the strict anaerobic bacteria the mice were sacrificed by cervical dislo-

cation and immediately transferred to a jar containing an anaerobic sachet (cat. no. AN0035A AnaeroGen, Thermo Fisher Scientific, Basing-

stoke, UK) and subsequently to an anaerobic chamber (containing �93% N2, �2% H2, �5% CO2) at room temperature (Model AALC, Coy

Laboratory Products, Grass Lake, Michigan, USA) where cecum content of the mice was sampled. Inside the anaerobic chamber, the samples

were processed according to vendor (Janvier, Charles River and Taconic); weighed, suspended in an anoxic 1:1 mixture of PBS (NaCl 137mM,

KCl 2.7 mM, Na2HPO4 10 mM, KH2PO4 1.8 mM) and 50% glycerol and homogenized in BagPage 100 mL filter bags (Interscience, Saint-Nom-

la-Bretèche, France) with a laboratory stomacher (Stomacher 80, Seward, UK) at medium speed for 120 s. The cecum content frommice from

of all vendors weremixed, and the pooled cecum content was divided into 6 cryotubes�0.5 g cecum content in each, one for each chemostat

run. The samples were frozen and kept at �80�C until use in chemostat experiments. The abovementioned processes are illustrated with a

flow-diagram (Figure S1). All procedures regarding the handling of these animals used for donormaterial were carried out in accordance with

the Directive 2010/63/EU and the Danish Animal Experimentation Act with the license ID: 2012-15-2934-00256.

The human study was approved by Tallinn Medical Research Ethics Committee, Estonia (protocol no. 554). All participants signed written

informed consent forms before the study. Fecal samples from seven healthy donors (age 19–37 years, Caucasian, threemale and four female,

no diagnosed diseases, no use of antibiotics and travels to sub-tropic countries during the last three months) were diluted five times in

dimethyl sulfoxide phosphate saline buffer, pooled in equal volumes and stored frozen at �80�C until use as described previously in Adam-

berg et al..59

METHOD DETAILS

Growth medium

The base medium was prepared in 0.05 M potassium phosphate buffer containing amino acids, mineral salts and vitamins as described pre-

viously.29 Hemin (5 mg/L), menadione (0.5 mg/L), bile salts (0.5 g/L), NaHCO3 (2.0 g/L), Tween-80 (0.5 g/L), Na-thioglycolate (0.5 g/L) and Cys-

HCl (0.5 g/L, freshlymade in oxygen reducedwater) were added to the basemedium. Carbohydrate sources and other components added to

the medium for murine cultures were apple pectin (2 g/L, Sigma-Aldrich, USA), chicory inulin HP (1 g/L, Orafti, Oreye, Belgium), corn core

xylan (2 g/L, TCI, Tokyo, Japan), corn starch (5 g/L, Sigma-Aldrich, USA), larch wood arabinogalactan (2 g/L, TCI, Tokyo, Japan) and porcine

mucin (4 g/L, Type II, Sigma-Aldrich, USA), acetic acid (0.3 g/L, Sigma-Aldrich, USA), tryptone (3 g/L, LABM, Heywood, UK) and yeast extract (3

g/L, LABM, Heywood, UK) as described by Macfarlane et al..60 Carbohydrate sources for the human fecal matter inoculated cultures were

apple pectin (2.5 g/L, Sigma-Aldrich, USA) and porcinemucin (2.5 g/L, Type II, Sigma Aldrich, USA). The carbohydrate sources were sterilized

separately and added to the medium before experiments. The medium for mouse cecal matter inoculated cultures contained about three

times more carbohydrates than that for human fecal matter inoculated cultures.

Cultivation system and culture conditions

The cultivation system described earlier29 was used for human fecal and mouse cecal matter inoculated cultures. Briefly, the Biobundle culti-

vation system consisting of fermenter, the ADI 1030 bio-controller and cultivation control program ‘‘BioXpert’’ (Applikon, The Netherlands)

was used. The fermenter was equipped with sensors for pH, pO2, and temperature control. Variable speed pumps for feeding and outflow

were controlled by a chemostat algorithm: D = F/V, where D is the dilution rate (1/h), F is the feeding rate (L/h), and V is the fermenter working

volume (L). pH was controlled by adding 1M NaOH according to the pH setpoint. The medium in the feeding bottle and the culture were

flushed with sterile-filtered nitrogen gas (99.9%, AS Linde Gas, Estonia) before inoculation and throughout the cultivation to maintain anaero-

biosis. The culture volume was kept constant (600 mL for mouse cecal and 300 mL for human fecal matter inoculated cultures). The temper-

ature was kept at 36.6�C pH was kept constant at 6.4 for mouse cecal and 7.0 for human fecal matter inoculated cultures depending on the

physiological pH of the host. The scheme of experiments with mouse cecal matter inoculated culture is depicted in Figure 1. The pooled

mouse cecum matter was diluted five times and inoculated into 600 mL medium to start the experiments. The chemostat algorithm was

started 15–20 h after inoculation, which corresponds to the middle of the exponential growth phase of the fecal culture. Three replicates
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were carried out with human fecal andmouse cecal inocula at two dilution rates, 0.05 1/h (Dlow) and 0.2 1/h (Dhigh), except for experiments with

mouse cecal inocula at Dhigh where two experiments were performed. Stabilization of five residence times was used in all experiments (cor-

responding to 100 h and 25 h total time in chemostat at D = 0.05 1/h and D = 0.2 1/h, respectively). On-line and at-line parameters used for

experiment control are depicted on the Figure S2.

Analytical methods

Samples from the outflow were collected on ice, centrifuged (14,000 g, 5 min, 4�C) and stored separately as pellets (at �80�C) and superna-

tants (at �20�C) for further analysis. For chromatographic analyses, culture supernatants were filtered using AmiconR Ultra-10K Centrifugal

Filter Devices, cut-off 3 kDa according to the manufacturer’s instructions (Millipore, USA). The concentrations of organic acids (succinate,

lactate, formate, acetate, propionate, isobutyrate, butyrate, isovalerate and valerate) and ethanol were determined by high-performance

liquid chromatography (HPLC, Alliance 2795 system, Waters, Milford, MA, USA), using a BioRad HPX-87H column (Hercules, CA, USA)

with isocratic elution of 0.005 M H2SO4 at a flow rate of 0.5 mL/min and at 35�C. Refractive index (model 2414; Waters, USA) and UV

(210 nm; model 2487; Waters, USA) detectors. Analytical grade standards were used for quantification of the substances. The detection limit

for the method was 0.1 mM.

The composition of the gas outflow (H2, CO2, H2S, CH4, and N2) was analyzed using an Agilent 490 Micro GC Biogas Analyzer (Agilent 269

Technologies Ltd., USA) connected to a thermal conductivity detector. The volume of the gas flow was regularly recorded using

MilliGascounter (RITTER Apparatebau GMBH & Co, Germany).

The Redox potential of the growth medium and culture supernatant was measured by a pH/Redox meter using an InLabRedox electrode

(Mettler Toledo, USA). The biomass dry weight was measured gravimetrically from 10 mL culture by centrifugation (6,000 rpm, 20 min),

washing the biomass with distilled water and drying in an oven at 105�C for 20 h.

Pre-processing of samples for separation of viruses and bacteria

Culture and inoculum samples were included to investigate microbiome changes over time. Separation of the viruses and bacteria from the

culture/inoculum samples generated a pellet and supernatant by centrifugation and 0.45 mmfiltering as describedpreviously.57 The volumeof

culture/inoculum homogenate was adjusted to 5 mL using SM buffer.

Bacterial DNA extraction, sequencing and pre-processing of raw data

The Bead-Beat Micro AX Gravity (mod.1) kit from A&A Biotechnology (Gdynia, Poland) was used to extract bacterial DNA from the culture/

fecal pellet by following the instructions of the manufacturer. The final purified DNA was stored at �80�C and the DNA concentration was

determined using Qubit HS Assay Kit (Invitrogen, Carlsbad, California, USA) on the Qubit 4 Fluorometric Quantification device (Invitrogen,

Carlsbad, California, USA). The bacterial community composition was determined by NextSeq-based (Illumina) high-throughput sequencing

of the 16S rRNA gene V3-region, as previously described [24]. Quality-control of reads, de-replicating, purging from chimeric reads and con-

structing zOTUs was conducted with the UNOISE pipeline61 and taxonomically assigned with Sintax.62 Taxonomical assignments were ob-

tained using the EZtaxon 16S rRNA gene database.63 Code describing this pipeline can be accessed in github.com/jcame/Fastq_2_zOTUt-

able. The average sequencing depth after quality control (Accession: PRJEB58787, available at ENA) for the 16S rRNA gene amplicons of all

samples was 60,719 reads (min. 11,961 reads and max. 198,197 reads).

Viral RNA/DNA extraction, sequencing and pre-processing of raw data

The sterile filtered culture/inoculum samples were concentrated using centrifugal filters Centrisart with a filter cut-off at 100 kDA (Sartorius) by

centrifugation centrifuged at 1,500 x g at 4�C (dx.doi.org/10.17504/protocols.io.b2qaqdse). The concentrated supernatant (140 mL) was

treated with 5 units of Pierce Universal Nuclease (ThermoFisher Scientific) for 10 min at room temperature prior to viral DNA extraction to

remove free DNA/RNA molecules, and the viral DNA/RNA was extracted using the Viral RNA mini kit (Qiagen) as previously described.57

Reverse transcription was executed using the SuperScript VILOMastermix by following the instructions of themanufacturer and subsequently

cleanedwithDNeasy blood and tissue kit (Qiagen) by only following step 3–8 of themanufacturers standard protocol. In brief, theDNA/cDNA

samples were mixed with ethanol, bound to the silica filter, washed two times, and eluted with 40 mL elution buffer. Multiple displacement

amplification (MDA, to include ssDNA viruses) using GenomiPhi V3 DNA amplification kit (Cytiva) and sequencing library preparation using

Nextera XT kit was performed at previously described,57 and sequenced at a commercial facility using the NovaSeq platform (NovoGene).

The average sequencing depth of raw reads (Accession: PRJEB58787, available at ENA) for the fecal viral metagenome was 22,701,135 reads

(min. 342,022 reads andmax. 203,403,294 reads. Raw reads were trimmed for adaptors and low quality sequences (<95% quality, <50nt) were

removed using Trimmomatic v0.35.49 High-quality reads were de-replicated and checked for the presence of PhiX control using BBMap

(bbduk.sh) (https://www.osti.gov/servlets/purl/1241166). Virus-like particle-derived DNA sequences were subjected to within-sample de

novo assembly only using Spades v3.13.150 and contigs with a minimum length of 2,200 nt, were retained. Contigs from all samples were

pooled and dereplicated by chimera-free species-level clustering at �95% identity using the script described by Shah et al.,12 and available

at https://github.com/shiraz-shah/VFCs. Contigs were classified as viral by VirSorter251 ("full" categories | dsDNAphage, ssDNA, RNA, Lav-

idaviridae, NCLDV | viral quality = 1), VIBRANT52 (High-quality | Medium-quality | Complete), CheckV53 (High-quality | Medium-quality | Com-

plete), and VirBot.54 Any contigs not classified as viral by any of the 4 software’s were discarded. The taxonomical categories of "Other,"
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"Unclassified virus," and "Unknown" that are used in the different figures are different entities. "Other" encompasses all remaining low abun-

dance taxa not depicted in the plot. "Unknown" refers to contigs thatmay be viruses but lack specific data records confirming their viral origin,

and "Unclassified virus" represents viruses that have been identified as having viral origin but could not be further classified. Taxonomy was

inferred by blasting viral ORFs against a database of viral proteins created from the following: VOGDB v217 (vogdb.org), NCBI (downloaded

14/10/2023), COPSAC,12 and an RNAphage database,55 selecting the best hits with aminimume-value of 10e-6. Phage-host predictions were

done with iPHoP,33 which utilizes a combination of different host predictors. Following assembly, quality control, and annotations, reads from

all samples were mapped against the viral (high-quality) contigs (vOTUs) using bowtie256 and a contingency table of contig-length and

sequencing-depth normalized reads, here defined as vOTU-table (viral contigs). Code describing this pipeline can be accessed in https://

github.com/frejlarsen/vapline3. Mock phage communities (phage C2, T4, phiX174, MS2, and Phi6, Table S110) were as positive controls

(normalized to �106 PFU/mL for each phage) for virome sequencing to validate the sequencing protocol’s ability to include the different

genome types of ssDNA, dsDNA, ssRNA, and dsRNA.
Bioinformatic analysis of bacterial and viral sequences

Initially, the dataset was purged for zOTU’s/viral contigs, which were detected in less than 5% of the samples, but the resulting dataset still

maintained 99.8% of the total reads. R version 4.3.0 was used for subsequent analysis and presentation of data. A minimum threshold of

sequencing reads for the bacteriome and virome analysis was set to 2,200 reads and 15,000 reads, respectively. The main packages used

were phyloseq,64 vegan,65 DESeq2,66 ampvis2,67 ggpubr, psych, igraph, ggraph, pheatmap, ComplexHeatmap, and ggplot2. The contam-

ination of viral contig was removed by read count detected in negative controls through R package microDecon68 (runs = 1, regressions = 1),

and 12.24% of entries were removed. Cumulative sum scaling normalization was performed using the R software using the metagenomeSeq

package. a-diversity analysis was based on raw read counts and statistics were based on ANOVA. b-diversity was represented by Bray-Curtis

dissimilarity and statistics were based on pairwise PERMANOVA corrected with FDR (false discovery rate). DESeq2 was used to identify

differential microorganisms on the summarized bacterial species level and viral contigs (vOTUs) level. The correlation network heatmaps

between bacterial zOTUs and viral contigs (vOTUs) were calculated using pairwise Spearman’s correlations and corrected with FDR. The

non-parametric two-side Wilcoxon rank-sum tests were adopted for analysis of the Shannon diversity index (a-diversity), PERMANOVA of

b-diversity.
Fluorescence microscopy

To determine the phage titer of the different viromes we did epifluorescence microscopy, staining virus-like particles (VLP) with SYBR Gold

(Cat. no S11494 Invitrogen, Thermo Fisher Scientific) and capturing them on aluminum oxide filters (Cytiva’s Whatman 6809-6002 Anodisc) as

described online dx.doi.org/10.17504/protocols.io.bx6cpraw. One filter was prepared for each virome, and were photographed using an ep-

ifluorescence microscope, acquiring 10–14 images, at random, of the filter to determine average VLPs for each virome. The VLPs were

counted using ImageJ.
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