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Abstract

Pairwise maximum-entropy models have been used in neuroscience to predict the activity

of neuronal populations, given only the time-averaged correlations of the neuron activities.

This paper provides evidence that the pairwise model, applied to experimental recordings,

would produce a bimodal distribution for the population-averaged activity, and for some pop-

ulation sizes the second mode would peak at high activities, that experimentally would be

equivalent to 90% of the neuron population active within time-windows of few milliseconds.

Several problems are connected with this bimodality: 1. The presence of the high-activity

mode is unrealistic in view of observed neuronal activity and on neurobiological grounds.

2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribu-

tion cannot be found: in fact, Boltzmann learning would produce an incorrect distribution;

similarly, common variants of mean-field approximations also produce an incorrect distribu-

tion. 3. The Glauber dynamics associated with the model is unrealistically bistable and can-

not be used to generate realistic surrogate data. This bimodality problem is first

demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque

monkey. Evidence is then provided that this problem affects typical neural recordings of

population sizes of a couple of hundreds or more neurons. The cause of the bimodality prob-

lem is identified as the inability of standard maximum-entropy distributions with a uniform

reference measure to model neuronal inhibition. To eliminate this problem a modified maxi-

mum-entropy model is presented, which reflects a basic effect of inhibition in the form of a

simple but non-uniform reference measure. This model does not lead to unrealistic bimodali-

ties, can be found with Boltzmann learning, and has an associated Glauber dynamics which

incorporates a minimal asymmetric inhibition.

Author summary

Networks of interacting units are ubiquitous in various fields of biology; e.g. gene regula-

tory networks, neuronal networks, social structures. If a limited set of observables is acces-

sible, maximum-entropy models provide a way to construct a statistical model for such
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networks, under particular assumptions. The pairwise maximum-entropy model only

uses the first two moments among those observables, and can be interpreted as a network

with only pairwise interactions. If correlations are on average positive, we here show that

the maximum entropy distribution tends to become bimodal. In the application to neuro-

nal activity this is a problem, because the bimodality is an artefact of the statistical model

and not observed in real data. This problem could also affect other fields in biology. We

here explain under which conditions bimodality arises and present a solution to the prob-

lem by introducing a collective negative feedback, corresponding to a modified maxi-

mum-entropy model. This result may point to the existence of a homeostatic mechanism

active in the system that is not part of our set of observable units.

Introduction

Correlated activity between pairs of cells was observed early on in the history of neuroscience

[1, 2]. Immediately the question arose whether there is a functional interpretation of this

observation [3], and this question is still with us. Hypotheses range from synchronous activa-

tion of neurons to bind representations of features into more complex percepts [4–7], to the

involvement of correlations in efficiently gating information [8]. Direct experimental evidence

for a functional role of correlated activity is the observation that the synchronous pairwise acti-

vation of neurons significantly deviates from the uncorrelated case in tight correspondence

with behaviour. Such synchronous events have been observed in motor cortex [9, 10] at time

points of expected, task-relevant information. In primary visual cortex they appear in relation

to saccades (eye movements) [11, 12]. Another argument for the functional relevance of corre-

lations is the robustness of signals represented by synchronous activity against noise [13].

Non-Gaussian distributions of membrane potentials of neurons indeed point towards the syn-

chronized arrival of synaptic events [14, 15]. An opposite view regards correlated activity

merely as an unavoidable epiphenomenon of neurons being connected and influencing one

another [16]. In the worst case, both these views are partly true, prompting us to find ways to

distinguish functionally relevant correlated events from the uninformative background.

In the context of experimental paradigms that perform repeated trials, the co-variability of

neurons across trials has been termed “noise correlation”. Recurrent network models are able

to reproduce and explain the weak magnitude and wide spread across pairs of second-order

[17–23] and higher-order correlations [24, 25]. These simple dynamical models effectively

map the statistics of the connectivity to the statistics of the activity. Even though they explain

the uninformative part of correlated activity, it is unclear how to use them to distinguish this

background from departures thereof.

The separation of the noise- or background correlation from functionally meaningful cor-

relation is in addition hampered by the diverse dimensions of information processing’s not

being completely orthogonal. Indeed, correlation transmission may be modulated by changes

of firing rate [9]. Theory [26, 27] confirmed this entanglement in the regime of Gaussian fluc-

tuating membrane potentials.

The dynamical-model approaches just outlined pivot on a more or less realistic physical

description of the network, with some stochastic features. A complementary approach is also

possible, fully pivoting on statistical models. The latter try to predict and characterize neuronal

activity without relying on a definite physical network model. Statistical models have two con-

venient features. First, intuitive statistical working hypotheses usually translate into a unique
statistical model [28, 29]; this fact streamlines the construction and selection of a such a model.

Bistability, non-ergodicity, and inhibition in pairwise maximum-
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For example, the assumption that first- and second-order correlations recorded in an experi-

ments are sufficient to predict the activity recorded in a new experiment, uniquely selects a

truncated Gaussian model [29, 30]. Second, a successful statistical model implicitly restricts

the set of possible dynamical physical models of the network: only those reflecting the well-

modelled statistical properties are acceptable. Statistical models thus help in modelling the

actual physical network structure.

A limit case of this kind of statistical models is obtained by choosing probability distribu-

tions having maximum entropy under the constraints of experimentally observed quantities

[31, 32; in neuroscience see e.g. 33]. The suitability of such maximum-entropy distributions for

neuronal activities has been tested in various experimental and simulated set-ups. For example,

to explore the sufficiency of pairwise correlations or higher-order moments, or their predictive

power for distribution tails [e.g. 34–48], and to characterize dynamical regimes [36, 49–51].

The probability distribution thus obtained, which includes the single-unit and pairwise sta-

tistics of the observation by construction, could help us to solve the background-correlation

problem described above. In assigning to every observed activity pattern a probability, we

obtain a measure of “surprise” for each such pattern; this surprise measure [e.g. 52, 53] is

related to the logarithm of the probability and thus to Shannon’s entropy. Periods of activity

with low probability correspond to large surprise: these patterns cannot be explained by the

statistical properties that entered the construction of the probability distribution. In this way,

we are able to effectively differentiate expected, less surprising events from those that are unex-

pected, surprising, and functionally meaningful.

Computing the maximum-entropy distribution from moment constraints—usually called

the inverse problem–is simple in principle: it amounts to finding the maximum of a convex

function. Hence optimization is straightforward [54, 55]. The maximum can be searched for

with a variety of methods (downhill simplex, direction set, conjugate gradient, etc. [56, ch.

10]). The convex function, however, involves a sum over exp(N) terms, where N is the number

of neurons. For 60 neurons, that is roughly twice the universe’s age in seconds, and modern

technologies enable us to record hundreds of neurons simultaneously [57–60]. Owing to the

combinatorial explosion for such large numbers of neurons, the convex function cannot be

calculated, not even numerically. It is therefore “sampled”, usually via Markov-chain Monte

Carlo techniques [61, 62]. In neuroscience the Glauber dynamics, also known as Gibbs sam-

pling [61, 63, chap. 29], is usually chosen as the Markov chain whose stationary probability dis-

tribution is the maximum-entropy one. Boltzmann learning [64] is the iterative combination

of sampling and search for the maximum, and is still considered the most precise method of

computing a maximum-entropy distribution. Alternatively one may try to approximate the

convex function by an analytic expression, as done with the mean-field [65, 66], Thouless-

Anderson-Palmer [66, 67], and Sessak-Monasson [68, 69] approximations. The goodness of

these approximations is usually checked against a Boltzmann-learning calculation [cf. 45].

Moment-constrained maximum-entropy models have also been used [70, 71] as generators

of surrogate data, again via a Glauber dynamics. Such surrogates are used to implement a null

hypothesis to estimate the statistical significance level of correlations between spike trains [70,

72–77].

The pairwise maximum-entropy model is applicable to experimentally recorded activities of

populations of a couple hundreds neurons at most, so far; but its success, or lack thereof, can-

not be automatically extrapolated to larger population sizes. Roudi et al. [78] gave evidence

that the maximized Shannon entropy and other comparative entropies of such a model may

present qualitatively different features above a particular population size. In the present paper

we discuss a feature of the pairwise maximum-entropy model that may be problematic or

undesirable: the marginal distribution for the population-averaged activity becomes bimodal,
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and one of the modes may peak at high activities. In other words, maximum-entropy claims

that the population should fluctuate between a regime with a small fraction of simultaneously

active neurons, and another regime with a higher fraction of simultaneously active neurons;

the fraction of the second regime can be as high as 90%. This feature of the maximum-entropy

model has been observed before in several theoretical studies that assumed a homogeneous

neuronal population [see e.g. 34, 41, 79, 80].

Our analysis has several points in common with Bohte & al.’s [34]. Bohte et al. wanted to

see whether a maximum-entropy distribution can correctly predict the distribution of total

activity, given only firing rates and pairwise correlations from a simulated network model as

constraints. They found that both the simulation and the maximum-entropy model yield a

bimodal distribution of total activity within particular ranges of firing rates and correlations.

The fundamental difference from our work is that our experimental data do not show a

bimodal distribution, but the maximum entropy model wrongly predicts such bimodality

from the measured rates and correlations. More quantitatively, the pairwise correlation found

in our data is much lower than that reported in Bohte et al.; in particular, it seems to belong to

the range in which their simulation yielded a unimodal distribution [34, p. 169]. Their simula-

tions therefore seems to corroborate that a second mode is biologically implausible in our cor-

relation regime.

Amari & al. [79] notice the appearance of bimodal distributions for the averaged activity

and analyse some of their features in the N ! 1 limit. Their focus is on the correlations

needed to obtain a “widespread” distribution in that limit. Our focus is on the bimodality

appearing for large but finite N, and we find some mathematical results that might be at vari-

ance with Amari & al.’s. They seem to find [79, p. 135] that the Dirac-delta modes are at values

0 and 1; we find that they can appear also strictly within this range. They say [79, p. 138] that

the “bigger peak” dominates as N ! 1; we find that the height ratio between the peaks is

finite and depends on the single and pairwise average activity, and for our data is about 2000

as N ! 1—an observable value for recording lengths achievable in present-day experiments.

We provide evidence that the bimodality of the pairwise model is bound to appear in appli-

cations to populations of more than a hundred neurons. It renders the pairwise maximum-

entropy model problematic for several reasons. First, in neurobiological data the coexistence

of two regimes appears unrealistic—especially if the second regime corresponds to 90% of all

units being simultaneously active within few milliseconds. Second, two complementary prob-

lems appear with the Glauber dynamics and the Boltzmann-learning used to find the model’s

parameters. In the Glauber dynamics the activity alternately hovers about either regime for

sustained periods, which is again unrealistic and rules out this method to generate meaningful

surrogate data. In addition, the Glauber dynamics becomes practically non-ergodic, and the

pairwise model cannot be calculated at all via Boltzmann learning or via the approximations

previously mentioned [cf. 62, S 2.1.3; 61, chap. 29]. This case is particularly subtle because it

can go undetected: the non-ergodic Boltzmann learning yields a distribution that is not the maxi-
mum-entropy distribution one was looking for.

Bohte & al. [34] remark that their neuronal-network simulation had to incorporate one

inhibitory neuron, with the effect of “curtailing population bursts” [34, p. 175], because “the

absence of inhibitory neurons makes a network very quickly prone to saturation” [34, p. 162].

This is something that a standard maximum-entropy distribution cannot do, hence a limita-

tion in its predictive power. It is intuitively clear that lack of inhibition and bimodality are

related problems: we show this in section “Intuitive understanding of the bimodality: Mean-
field picture” using a simple mean-field analysis.

In the present work we propose a modified maximum-entropy model; more precisely, we

propose a reference probability measure to be used with the method ofmaximum relative
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entropy [e.g. 31, 81] (also called minimum discrimination information [82]; see [83] for a com-

parison of the two entropies). The principle and reference measure can be used with pairwise

or higher-order constraints; standard maximum-entropy corresponds to a uniform measure.

The proposed reference measure, presented in section “Inhibited maximum-entropy model”,

solves three problems at once: (1) it leads to distributions without unrealistic modes and elimi-

nates the bistability in the Glauber dynamics; (2) it leads to a maximum-entropy model that

can be calculated via Boltzmann learning; (3) it can also “rescue” interesting distributions that

otherwise would have to be discarded because incorrect. The reference measure we propose is

neurobiologically motivated. It is a minimal representation of the statistical effects of inhibi-

tion naturally appearing in brain activity, and directly translates Bohte & al’s device of includ-

ing one inhibitory neuron in the simulated network. Moreover, the reference measure has a

simple analytic expression and the resulting maximum-entropy model is still the stationary dis-
tribution of a particular Glauber dynamics, so that it can also be used to generate surrogate

data.

In the final “Discussion” we argue that the use of such a measure is not just an ad hoc solu-

tion, but a choice required by the underlying biology of neuronal networks: the necessity of

non-uniform reference measures is similarly well-known in other statistical scientific fields,

like radioastronomy and quantum mechanics.

The plan of this paper is the following: after some mathematical and methodological pre-

liminaries, we show the appearance of the bimodality problem in the maximum-entropy

model applied to an experimental dataset of the activity of 159 neurons recorded from

macaque motor cortex. Then we use an analytically tractable homogeneous pairwise maxi-

mum-entropy model to give evidence that the bimodality problem will affect larger and larger

ranges of datasets as the population size increases. We show that typical experimental datasets

of neural activity are prone to this problem.

We then investigate the underlying biological causes of the bimodality problem and pro-

pose a way to eliminate it: using a minimal amount of inhibition in the network, represented

in a modified Glauber dynamics that includes a minimal asymmetric inhibition. We show that

this correction corresponds to using the method of maximum entropy with a different refer-

ence measure, as discussed above, and that the resulting maximum entropy distribution is the

stationary distribution of a modified Glauber dynamics. We finally bring to a close with a sum-

mary, a justification and discussion of the maximum-entropy model with the modified refer-

ence measure, and a comparison with other statistical models used in the literature.

Results

Preliminaries: Maximum-entropy models and Glauber dynamics

Our study uses three main mathematical objects: the pairwise maximum-entropy distribution,

a “reduced” pairwise maximum-entropy distribution, and the Glauber dynamics associated

with them. We review them here; some remarks about their range of applicability are given in.

Towards the end of the paper we will introduce an additional maximum-entropy distribution.

Pairwise maximum-entropy model. Neuronal activity is modelled as a set of sequences

of spikes of N neurons during a finite time interval [0, T]. These spike sequences are discre-

tized: we divide the time interval into n bins of identical length Δ equal to T/n, indexed by t in

1, . . ., n. For each neuron i, the existence of one or more spikes in bin t is represented by

si(t) = 1, and lack of spikes by si(t) = 0. With this binary representation, the activity of our pop-

ulation at time bin t is described by a vector: s(t)≔ (si(t)). We will switch freely between vector

and component notation for this and other quantities.

Bistability, non-ergodicity, and inhibition in pairwise maximum-
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Time averages are denoted by a circumflex:b�. The time-averaged activity of neuron i is
denoted bymi:

mi ≔ dsiðtÞ ≔
1

T

Xn

t¼1

siðtÞ; ð1Þ

and the time average of the product of the activities of the neuron pair ij, called raw correlation

or coupled activity, is denoted by gij:

gij ≔ dsiðtÞ sjðtÞ ≔
1

T

Xn

t¼1

siðtÞ sjðtÞ: ð2Þ

These time averages will be used as constraints for the maximum-entropy model.

The pairwisemaximum-entropy statistical model [34, 35, 39, 40] assigns a time-indepen-

dent probability distribution for the population activity s(t) of the form (time is therefore omit-

ted in the notation):

Ppðsjh; JÞ ¼
1

Zpðh; JÞ
exp

X

i

hisi þ
X

i<j

Jijsisj

 !

;

Zpðh; JÞ ≔
X

s

exp ð
X

i

hisi þ
X

i<j

JijsisjÞ;

ð3Þ

the Lagrange multipliers h(m, g) and J(m, g) are determined by enforcing the equality of the

time averages Eqs (1) and (2) with the single- and coupled-activity expectations, with their def-

initions

EpðsiÞ ≔
X

s

si PpðsÞ; EpðsisjÞ ≔
X

s

sisj PpðsÞ ð4Þ

that is, enforcing

EpðsiÞ ¼ mi and EpðsisjÞ ¼ gij: ð5Þ

By introducing the covariances c and Pearson correlation coefficients ρ,

cij ≔ EðsisjÞ � EðsiÞEðsjÞ;

rij ≔
cij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Epðs2i Þ � EpðsiÞ
2
� ½Epðs2j � EpðsjÞ

2
�

q ;
ð6Þ

the constraints above are jointly equivalent to

EpðsiÞ ¼ mi and cij ¼ gij � mimj ð7Þ

or

Ep sið Þ ¼ mi and rij ¼
gij � mimj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi � m2

i Þ ðmj � m2
j Þ

q :
ð8Þ

The maximum-entropy distribution is unique if the constraints are convex. The covariance

constraints cij = gij −mimj alone are not convex. In this case, uniqueness has to be checked sep-

arately [54, 55, 84]. On the other hand, the constraints Ep(si) =mi and Ep(sisj) = gij are sepa-

rately convex, thus their conjunction [Ep(si) =mi] ^ [Ep(sisj) = gij] is convex too. The bijective

Bistability, non-ergodicity, and inhibition in pairwise maximum-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005762 October 2, 2017 6 / 44

https://doi.org/10.1371/journal.pcbi.1005762


correspondence of the latter with [Ep(si) =mi] ^ [cij = gij −mimj] guarantees that the latter set

of constraints is convex as well. What we have said about the covariances c also holds for the

correlations ρ.

Reduced maximum-entropy model. If the time-averaged activities m are homogeneous,

i.e. equal to one another and to their population average �m, and the N (N − 1)/2 time-averaged

coupled activities g are also homogeneous with population average �g , �g ≔ 2
N ðN� 1Þ

P
i<jgij, then

the pairwise maximum-entropy distribution has homogeneous Lagrange multipliers by sym-

metry: hi = hr and Jij = Jr. It reduces to the simpler and analytically tractable form

Prðsjhr; JrÞ ¼
1

Zrðhr; JrÞ
exp hrN�s þ 1

2
JrN�s ðN�s � 1Þ

h i
;

Zrðhr; JrÞ ≔
X

s

exp hrN�s þ 1

2
JrN�s ðN�s � 1Þ

h i
;

ð9Þ

which assigns equal probabilities to all those activities s that have the same population-averaged
activity�s, defined as

�s ≔
1

N

XN

i¼1

si;

N�s 2 f0; 1; 2; . . . ;Ng:

We denote population averages that are normalized to the number of neurons by an over-

bar:��. Then the quantity N�s represents the sum of the activities of all neurons in the population

at time bin t; we call it total activity, and its plot is called “population time-histogram” in some

works [cf 85, 86].

In this homogeneous case, the values of the multipliers appearing in Eq (9) are equal to

their population averages: hi ¼ hr ¼ 1

N

P
i hi and Jij ¼ Jr ¼ 2

N ðN� 1Þ

P
i<jJij. This distribution

hence contains only information about how many neurons N�s are active at any given point in

time, but not the particular composition s of active neurons. This simpler distribution can

therefore also be interpreted as an approximation of the pairwise maximum-entropy one,

achieved by disregarding population inhomogeneities of the constraintsmi and gij. But it is

also an exact maximum-entropy distribution in its own right, obtained by only constraining

the expectations for the population averages of the single and coupled activities,

X

i

si ¼ N�s;
X

i<j

sisj ¼ N�s ðN�s � 1Þ=2;

to be equal to their measured time averages

Er N�sð Þ ¼ N �m and Er N�s ðN�s � 1Þð Þ ¼
N ðN � 1Þ

2
�g ≔

X

i<j

gij: ð10Þ

For this reason we call the model Eq (9) a reduced pairwise maximum-entropy model. But

in the inhomogeneous case the multipliers of the reduced model are not equal to the averages

of the pairwise one: hr 6¼ 1

N

P
i hi, Jr 6¼

2

N ðN� 1Þ

P
i<j Jij.

It is straightforward to derive the probability distribution for the population average �s in

this model, owing to its symmetry: the total number of active neurons in the population is N�s,

and there are N
N�s

� �
equally probable ways in which this is possible, each with probability by
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Eq (9). Therefore,

Prð�sjhr; JrÞ ¼
1

Zrðhr; JrÞ
N
N�s

� �

exp hrN�s þ 1
2
JrN�s ðN�s � 1Þ

h i
;

Zrðhr; JrÞ ≔
X

�s

N
N�s

� �

exp hrN�s þ 1
2
Jr N�s ðN�s � 1Þ

h i
:

ð11Þ

This probability distribution Prð�sÞ can, in turn, also be obtained applying a maximum-rela-

tive-entropy principle [31, 83], i.e. minimizing the relative entropy (or discrimination infor-

mation)

HðP; P0Þ ≔
X

�s

Pð�sÞ ln
Pð�sÞ
P0ð�sÞ

ð12Þ

of Pð�sÞ with respect to the reference distribution P0ð�sÞ ¼ 2� N N
N�s

� �
while constraining its first

two moments, or equivalently its first two factorial moments [87] ðEðN�sÞ;EðN�s ðN�s � 1Þ=2ÞÞ.

It is easy to see that in this model, by symmetry, we also have

Er sið Þ ¼ Er �sð Þ; Er sisj
� �

¼ Er
N�s ðN�s � 1Þ

N ðN � 1Þ

� �

; ð13Þ

cij ¼ �c ¼ Er
N�sðN�s � 1Þ

NðN � 1Þ

� �

� Erð�sÞ
2
; rij ¼ �r ¼

�c
Erð�sÞ � Erð�sÞ

2
; ð14Þ

and Er �sð Þ;Er
N�s ðN�s � 1Þ

N ðN� 1Þ

� �� �
, ðErð�sÞ;�cÞ, ðErð�sÞ; �rÞ are equivalent sets of constraints (�c and �r by

themselves are not convex).

This reduced maximum-entropy model is mathematically very convenient because the

Lagrange multipliers hr, Jr can be easily found numerically (with standard convex-optimization

methods like downhill simplex, direction set, conjugate gradient, etc. [56, ch. 10]) with high

precision even for large (e.g. thousands) population sizes N.

The pairwise and reduced models are very similar to the Gaussian ensemble of statistical

mechanics [88–90, and refs therein], in which the mean and variance of a system’s energy are

constrained; it is intermediate in properties between the canonical and microcanonical

ensembles.

The maximum-entropy models reviewed above use time-averaged data. Their probabilities

are therefore time-invariant; they are stationary statistical models.

Glauber dynamics and Boltzmann learning. The normalization Zp(h, J) appearing in the

probability distribution Eq (3) requires the summation over 2N states, typically in the range of

N� 100. This calculation may require prohibitive amounts of time; we need a way to calculate

the distribution that avoids the computation of the normalization. The probability Pp(s|h, J)
Eq (3) is identical in form to the stationary distribution of a Markov chain s(t) 7! s(t + 1), the

so-called asynchronous Glauber dynamics [63]. If this dynamics is ergodic, after an initial

transient it generates states with a relative frequency distribution approximately equal to the

stationary one. In this context the symmetric Lagrange multipliers J are sometimes also

referred to as “couplings”, in analogy to synaptic interactions between the units. The Lagrange

multipliers h are referred to as “biases” and may be interpreted as either a threshold or external

input controlling the base activity of individual neurons. The temporal sequence of states pro-

duced by the Glauber dynamics is predominantly controlled by the time constant of the update

rule and in general does not reflect the temporal evolution of the neuronal population activity.

Bistability, non-ergodicity, and inhibition in pairwise maximum-
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If we assume that our uncertainty about the evolution of the population activity can be mod-

elled by the Glauber dynamics of a binary network, we can employ the Glauber dynamics, with

h, J parameters determined by the constraints Eq (5), to generate surrogate data that would

allow us to implement a null-hypothesis for a statistical test, that includes the average activities

and pairwise correlations as observed in the data. This procedure requires that the dynamics

should be ergodic, sampling the entire state space. Otherwise, time averages obtained from the

surrogate would not coincide with those of our experimentally observed data.

The Glauber dynamics is used as the sampling step in Boltzmann learning [64], as men-

tioned in the “Introduction”, to find the parameters h(m, g) and J(m, g) of the maximum

entropy distribution Eq (3) having mean activities m and raw pairwise correlations g. Starting

with some values of the multipliers bh and bJ , the distribution is sampled by the Glauber dynam-

ics and the its averages of the single activity bm and the coupled activity bg are found for the cur-

rent values of the multipliers. The latter are then adjusted in relation to the mismatch jbm � mj,
jbg � gj between the sampled averages and the required values from the experimental data. A

new sampling is then performed, and so on until the mismatch lies below a prescribed

accuracy.

The problem: Bimodality, bistability, non-ergodicity

We first show how the bimodality problem subtly appears with a set of experimental data, then

explore its significance for larger population sizes and other samples of experimental data of

brain activity.

Experimental data: Preliminary approximations. The data, provided by A. Riehle and

T. Brochier (INT, CNRS-AMU Marseille, France), consist of the activity of a population of

N = 159 single neurons recorded from motor cortex of macaque monkey for 15 minutes, using

a 100-electrode “Utah” array as described in [60], but with a different behavioural design: here

the monkey was awake and alert, but did not perform any task during the recording. This

behavioural protocol is chosen for retrieving “resting” (or “ongoing”) state [91] data to charac-

terize the “ground” state, in contrast to a task or functional state.

Fig 1A shows a raster plot (2s out of 15min for better visibility) of the activities s(t) of all

recorded neurons. The population-averaged activity �sðtÞ for this period is shown underneath.

The distributions of the time-averaged single and coupled activitiesmi, gij, and the correspond-

ing empirical covariances cijmeasured in the full data set of 15 min are shown in panels B, C,

D. The population averages of these time-averaged quantities are

�m ¼ 0:0499; �g ¼ 0:00261; �c ¼ 0:000135; �r ¼ 0:00319: ð15Þ

As discussed in the previous section, the pairwise maximum-entropy model is a stationary

statistical model. If we intended to analyse the dataset above with this model for a specific pur-

pose—for example, characterizing a “ground state” of behavioural activity—then we would

have to assess whether a stationary model would really suit these particular data and purpose.

It would not be suitable, for example, to model transient aspects of neural activity. Our goal,

however, is rather to analyse the general presence of bimodality in the model for data with

ranges and orders of magnitude typical of recorded brain activity. In section “Bimodality of
pairwise models for massively parallel data” we will see that our conclusions regarding bimodal-

ity are valid even if the population average �m is doubled or halved and if the Pearson correla-

tion �r becomes ten times smaller or larger; thus amply valid within any non-stationarity

corrections [93]. Moreover, stationary maximum-entropy models have also been used with

highly fluctuating data, e.g. from retinal cells [e.g. 35, 40, 43, 94], with the purpose of analysing
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some of their information-theoretic properties rather than of modelling the data. For these rea-

sons, and also for brevity, we do not address stationarity analyses and corrections in the pres-

ent work.

We now need to find the parameters h(m, g) and J(m, g) of the maximum entropy distribu-

tion Eq (3) so that the mean activities m and the raw pairwise correlations g correspond to

those measured in the data shown in Fig 1B and 1C. We try to find these parameters via Boltz-

mann learning with a Glauber dynamics, as explained in “Glauber dynamics and Boltzmann
learning”.

We choose the sampling phase of the Boltzmann learning to have 106 timesteps; an example

is shown in Fig 2A. This number of timesteps is large compared to Roudi et al. [45] (200 time-

steps) or Broderick et al. [95] (400 timesteps). The preliminary approximations ðbhi;bJ ijÞ of the

Lagrange multipliers obtained in this way are shown in Fig 2D. The final single and coupled

activities are shown in Fig 2C, compared to the experimental data. The first and second

moments are highly correlated with the experimental ones and seem to describe the data well.

The preliminary approximation of the population-average probability distribution is shown in

red in Fig 2B. Its tail disagrees with that of the empirical frequency distribution (dashed); but,

Fig 1. Experimental data and their empirical first- and second-order statistics. (A) Example raster display (snippet of 2s from the total

data of 15 min) of N = 159 parallel spike recordings of macaque monkey during a state of “ongoing activity”. The experimental data are

recorded with a 100-electrode “Utah” array (Blackrock Microsystems, Salt Lake City, UT, USA) with 400 μm interelectrode distance,

covering an area of 4 × 4 mm2 (session: s131214-002). The total activityN�sðtÞ shows the number of active neurons within each time bin t of

width Δ = 3 ms. (B) Population distribution of the time-averaged activities mi (in spikes/Δ) of each of the neurons i, Eq (1). The vertical line

marks the population average �m ¼ 0:0499. (C) Population distribution of the time-averaged raw correlations (coupled activities) gij, Eq (2).

The vertical line marks the population average, �g ≔ 2
N ðN� 1Þ

P
i<jgij ¼ 0:00261. (D) Population distribution of the covariances cij = gij −mimj.

The vertical line marks the slightly positive population average, �c ≔ 2
N ðN� 1Þ

P
i<jcij ¼ 0:000135. Histograms bins in B, C, D are computed with

Knuth’s rule [92] and calculated over the full 15-minute long recording. Data courtesy by A. Riehle and T. Brochier.

https://doi.org/10.1371/journal.pcbi.1005762.g001
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before discussing about curve-fitting properties, we want to make sure that our initial approxi-

mations are correct. In fact, we shall now see that these preliminary approximations are not
correct in this case.

Appearance of bimodality. The preliminary results from Boltzmann learning do not

show any inconsistency at this point. But now we sample the distribution for a much longer

time: 5 × 107 steps, to verify whether these approximations have truly converged. The result is

shown in Fig 3A. We find that after roughly 2 × 106 steps the whole population jumps to a high-

activity regime and remains there until the end of the sampling. We have thus discovered that:

• our preliminary approximations of the Lagrange multipliers are wrong; their mismatch is

shown in Fig 3C–3D;

• our preliminary approximation of the pairwise distribution, Fig 2B, is therefore wrong in

two ways: it does not correspond to the (wrong) approximations of the Lagrange multipliers,

and is not a pairwise maximum-entropy distribution;

• the Glauber dynamics has an additional metastable high-activity regime.

It is legitimate to wonder whether there are other metastable regimes. To test this possibility

we start the dynamics with different numbers of initially active neurons. Two metastable

regimes are observed (see Fig 3B): one at high activity and one at low activity. This means that

Fig 2. Preliminary results from Boltzmann learning. (A) Evolution of the total-population activityN�sðtÞ of N = 159 neurons produced by

the Glauber dynamics (implemented in NEST [96]; see section “Simulation of Glauber dynamics with NEST”) with 106 steps, during the

sampling phase of the last Boltzmann-learning iteration. (B) Red, solid: Preliminary approximation of the probability distribution of the

population-averaged activity, obtained via Boltzmann learning. Blue, dashed: empirical distribution of the population-averaged activity from

the dataset shown in A. (C) Preliminary values of the time averages mi and gij obtained from Boltzmann learning described in (A), versus the

experimental ones shown in Fig 1. (D) Preliminary approximations of the population distributions of the Lagrange multipliers bhi and bJij
(associated with the averages mi and gij) obtained via Boltzmann learning. Histogram bins in D are computed with Knuth’s rule [92].

https://doi.org/10.1371/journal.pcbi.1005762.g002
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the distribution associated with the initial, wrong approximations of the Lagrange multipliers

of Fig 2D is bimodal, not unimodal as Fig 2B seemed to show.

Note that choosing as initial condition for the sampling procedure a state in the low-activity

regime will not prevent the Glauber dynamics from entering the high activity state. As shown

in Fig 3B, the system may still spontaneously transition into the high activity regime with a

small but not negligible probability.

What do these facts imply? Let us recall that our primary goal is to model the data with an

inhomogeneous pairwise maximum-entropy distribution. Boltzmann learning is just a proce-

dure to find this distribution. This procedure explores the space of distributions in a particular

way to find the correct one. What we just found says that this procedure entered a region of

bimodal distributions in such space and got stuck there, without finding the correct distribu-

tion yet.

We must reflect on three main issues:

1. Boltzmann learning becomes impractically slow when it enters the bimodal region, because

the Glauber dynamics that is part of this procedure becomes almost non-ergodic. Therefore

it is an inefficient method to find the pairwise maximum-entropy distribution. Non-ergo-

dicity is a known phenomenon in Monte Carlo methods; its solution requires longer sam-

pling times or algorithms different from Glauber sampling [61, 62, 97, 98]. This problem

also appears, for example, in the calculation of extensive parameters in finite-size statistical

Fig 3. Longer sampling: Bistability. (A) Evolution of the total activityN�sðtÞ produced by Glauber dynamics, as in Fig 2A,

but with 5 × 107 steps. The dashed grey line marks the end of the previous shorter sampling of Fig 2A. (B) Evolutions of the

total-population activityN�sðtÞ obtained from several instances of Glauber dynamics. Each instance starts with a different

value of the initial total activityN�sð0Þ, i.e. withN�sð0Þ initially active neurons (chosen at random), and is represented by a

different red shade, fromN�sð0Þ ¼ 0 (light red) toN�sð0Þ ¼ N (dark red). Note the two convergence basins, one atN�s � 100

and one atN�s � 15. (C, D) New values of the time averages mi and gij versus the experimental ones. These new values are

obtained from the longer Glauber dynamics described in (A) using the values of the Lagrange multipliers bhi ; bJij shown in Fig

2D, obtained from the previous Boltzmann learning. The plots clearly show that the values of bhi ; bJij found with the

Boltzmann learning are not the ones yielding the constraints mi, gij.

https://doi.org/10.1371/journal.pcbi.1005762.g003
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mechanics in phase-transition regimes [99]. Note that bistability is not an effect of longer

sampling; rather, longer sampling becomes a necessity because of bistability. This bistability

is an inherent mathematical phenomenon caused by the positivity of the average correla-

tions together with the large number N of units, as shown in sections “Bimodality ranges
and population size” and “Bimodality of the inhomogeneous model for large N”.

We could then try to use alternative procedures to find our desired distribution. The Thou-

less-Anderson-Palmer approximation [66, 67] and the Sessak-Monasson approximation

[68, 69], for example, have been successfully used in the literature for this purpose. But

unfortunately we find that these two approximations do not give the correct distribution

either: properly sampled, the distributions they yield do not match the correlations and

means of our data, just as in Fig 3C–3D. Evidently our data lie outside the domains of valid-

ity of these two approximations. Notably, the incorrect distributions given by these two

approximations are also bimodal.

2. There may be one more problem ahead, though. Never mind that the procedures we know

do not work; suppose we find a procedure that gives us the inhomogeneous pairwise distri-

bution we are seeking. What should we do if this distribution turns out to be bimodal with

a second mode at unrealistically high activities? Its Glauber dynamics would be bistable,

yielding sustained periods of high activity, which would not be useful to generate meaning-

ful, realistic surrogate data. Would we still be willing to use this maximum-entropy statisti-

cal model, or should we reject it altogether? And is the appearance of a bimodal

distribution only peculiar to our data, or a more widespread feature of brain-activity data?

3. Besides, it is a pity that our initial approximation of the maximum-entropy distribution, Fig

2B, was incorrect. We had found some probability distribution, but it was not a pairwise

maximum-entropy distribution; yet that distribution was modelling our data in an interest-

ing way—and such modelling is our priority. This situation can be confusing, so let us

explain it with an analogy. Imagine that we have some datapoints and we say “we want to fit

the points with a parabola”. An incorrect fitting algorithm, however, gives us a curve that is

not parabola. If this curve covers the datapoints in an interesting way, we may want to

investigate what kind of curve it is. It could turn out to be a hyperbole, for example. We may

then want to broaden our point of view and say “we want to fit the points with a quadric”,

and use that curve. (We should still fix the fitting algorithm, though.) In our case, can we

find out more about the probability distribution of Fig 2B? Could it also be a member of an

extended maximum-entropy family for example?

We will shortly show that there is one solution that addresses these three issues all at

once. We think, in fact, that it also addresses a fourth issue of maximum-entropy models, to

be discussed later. We first analyse issues 2. and 3. in more detail; issue 1. above is subordi-

nate to them.

Is the correct pairwise model bimodal?. We would like to know whether the correct

maximum-entropy distribution, which we have not found yet, is also bimodal like its incorrect

approximation.

We make an educated guess by examining the analytically tractable reduced maximum-

entropy model Pr, Eq (9). Using the population-averaged single and coupled activities as con-

straints, ErðsiÞ ¼ �m and ErðsisjÞ ¼ �g from Eq (15), we numerically find the Lagrange multipliers

of the reduced model:

hr ¼ � 3:259; Jr ¼ 0:03859: ð16Þ
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Note that in this case there is no sampling involved: the distribution can be calculated ana-

lytically, and the values Eq (16) are correct within the numerical precision of the maximization

procedure (interior-point method [56, chap. 10]). The values of the expected single and couple

activities, re-obtained by explicit summation (not sampling) from the corresponding reduced

maximum-entropy distribution, agree with the values Eq (15) to seven significant figures.

The resulting reduced maximum-entropy distribution for the population-averaged activity,

Prð�sjhr; JrÞ, is shown in Fig 4A, together with the experimental frequency distribution of our

data. Its corresponding Glauber dynamics with two metastable regimes is shown in Fig 4B. It

shows a second maximum at roughly 90% activity.

A mathematically exact analysis of smaller subsets of our population with the inhomoge-

neous maximum-entropy model, and an analysis of the full population and large subsets of it

with a reduced maximum-entropy model having higher-order constraints EðN�sÞ, EððN�sÞÞ2,

E N�s ðN�s � 1Þ
N ðN� 1Þ

�
N�s ðN�s � 1Þ

N ðN� 1Þ

� �2
 !

(the latter corresponding to the variance of the second

moments), show that if a reduced maximum-entropy model is bimodal, the full inhomoge-

neous model is also bimodal, with a heightened second mode shifted towards lower activities

with respect to the reduced model.

The bimodality encountered in the Boltzman learning, the bimodality of the reduced maxi-

mum-entropy model, the bimodality of the full maximum-entropy model for small popula-

tions, and finally the bimodality for the reduced model with higher-order constraints, together

constitute strong evidence that the correct pairwise maximum-entropy distribution for our

data is bimodal. In section “Bimodality of the inhomogeneous model for large N” we prove that

this must be true for large N, even if it were not true for our specific population size N = 159.

Bimodality ranges and population size. Next we want to address whether it is common

or rare that the pairwise maximum-entropy method yields bimodal distributions for neuronal

brain-activity data. For this purpose we first estimate the ranges of firing rates and correlations

for which maximum-entropy yields a bimodal distribution; then we check whether typical

experimental values fall within these ranges. We are particularly interested in how bimodality

depends on the recorded population size N.

We again make an educated guess using the reduced maximum-entropy model, with distri-

bution for the population average �s, Prð�sjhr; JrÞ, Eq (11). The distribution has two maxima if it

has one minimum for some value �sm, 0 < �sm < 1. An elementary study of the convexity prop-

erties (second derivative) of this distribution shows that it has one minimum at 0 < �sm < 1 if

dPrð�sjhr; JrÞ
d�s

j�s¼�sm
¼ 0;

d2Prð�sjhr; JrÞ
d�s2

j�s¼�sm
> 0; 0 < �sm < 1; ð17Þ

These conditions can be solved analytically and give the ranges of the multipliers (hr, Jr) for

which bimodality occurs, parametrically in (�sm, Jr):

0 < �sm < 1;

Jr > C
0
½1þ ð1 � �smÞN� þC

0
ð1þ �smNÞ;

hrð�sm; JrÞ ¼ Jr=2 � �smN Jr � C½1þ ð1 � �smÞN� þCð1þ �smNÞ;

8
><

>:
ð18Þ

where C(x) ≔ d ln Γ(x)/dx, Γ being the Gamma function [100, chs 43–44]. We express the

population-averaged activity Erð�sÞ and the Pearson correlation �r, typically used in the litera-

ture, in terms of (hr, Jr) using the definitions Eq (14) and the probability Eq (11). In this way

we finally obtain the bimodality range for ðErð�sÞ; �rÞ, parametrically in (�sm, Jr): the results are

shown in Fig 5A for various values of the number of neurons N.
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For each N we have a curve in the plane Erð�sÞ,�r. Values of ðErð�sÞ; �rÞ above such curves

yield a bimodal pairwise maximum-entropy distribution in the homogeneous case, for the cor-

responding population size N. The plot notably shows that the range of constraints yielding

bimodality increases with N. Fig 5B displays the probability distribution of the population-

averaged activity for the constraints from our dataset Eq (15) but different values of N. When

N≲ 150 the distribution has only one maximum at low activity, �s � 0:0497, and when N≳
150 a second probability maximum at high activity, �s � 0:9502, appears. The probability at

this second maximum increases sharply until N� 200 and thereafter maintains an approxi-

mately stable value, roughly 6000 times smaller than the low-activity maximum. The mini-

mum between the two modes becomes deeper and deeper as we increase N above 200.

As mentioned in the previous section, exact studies with small samples and studies with

large samples and a reduced model with higher-order constraints indicate that the high-activ-

ity maximum in the inhomogeneous case is even larger (roughly 2000 times smaller than the

low-activity one when N = 1000) and shifted towards lower activities (�s � 0:25 when

N = 1000).

This can also be seen by adding a Gaussian jitter to the multipliers of the reduced case hi =
hr, Jij = Jr, thereby making the model inhomogeneous. The results for small and large jitter are

shown in Fig 5C–5D, respectively. The basin of attraction of the second metastable regime is

shifted to lower activities, and transitions between the two metastable regimes become more

likely for larger jitters. This means that inhomogeneity makes the minimum in between the

two modes shallower.

The population-averaged activity and Pearson correlation of our data (violet “3 ms” point

in Fig 5A) fall within the bimodality range.

Bimodality of pairwise models for massively parallel data. Having found the bimodality

ranges of firing rates and correlations in section “Bimodality ranges and population size”, we

now ascertain whether our dataset is a typical representative leading to bimodal pairwise distri-

butions, or an outlier. We take as reference the data summarized in Table 1 of Cohen & Kohn

[37], which reports firing rates and spike-count correlations rSC for several experimental

recordings of brain activity. The reported firing rates correspond to population-averaged

Fig 4. Reduced maximum-entropy model. (A) Red, solid: Probability distribution for the population-averaged activity, Prð�sÞ given by the

reduced model for our dataset Eq (15); note the two probability maxima. Blue, dashed: empirical frequency distribution of the population-

averaged activity from our dataset. (B) Population-averaged activities �sðtÞ obtained from several instances of the Glauber dynamics

associated with the reduced model, with homogeneous couplings, Jij = Jr, and biases, hi = hr, of Eq (16). As in Fig 3, each instance starts

with an initial population activity s(0) having different values of population average �sð0Þ, and is represented by a different red shaded curve.

The initial values range fromN�sð0Þ ¼ 0 (light red) toN�sð0Þ ¼ N (dark red).

https://doi.org/10.1371/journal.pcbi.1005762.g004
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activities �m ranging between 0.02 and 0.25 if we use 3 ms time bins; thus our data are well

within this range.

The values reported for the correlations rSC in [37] are given for the spike counts measured

in large time intervals: several hundred of milliseconds. We therefore need a coarse estimate of

the Pearson correlation coefficient ρ that would be measured on a fine temporal scale of 3 ms

in the same experiment. Both rSC and ρ are particular cases of the Pearson correlation coeffi-

cient rCCG of spike counts in a window τ, as introduced by Bair et al. [101, App. A]:

rCCG ijðtÞ ≔
EðniðtÞ njðtÞÞ � EðniðtÞÞEðnjðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½EðniðtÞ
2
Þ � EðniðtÞÞ

2
� ½EðnjðtÞ

2
Þ � EðnjðtÞÞ

2
�

q ;

where niðtÞ ≔
Xt

t¼1

siðtÞ;

ð19Þ

Fig 5. Bimodality ranges for the reduced model and effects of inhomogeneity. (A) The reduced maximum-entropy model Eq (9)

yields a distribution Prð�sÞ that is either unimodal or bimodal, depending on the number of neurons N and the values of the experimental

constraints ðErð�sÞ; �rÞ. Each curve in the plot corresponds to a particular N (see legend) and separates the values ðErð�sÞ; �rÞ yielding a

unimodal distribution, below the curve, from those yielding a bimodal one, above the curve. The curves are symmetric with respect to

Erð�sÞ ¼ 0:5 (ranges Erð�sÞ > 0:4 not shown). Note how the range of constraints yielding bimodality increases with N. Coloured dots show the

experimental constraints from our dataset for different time-binnings with widths Δ = 1 ms, Δ = 3 ms, Δ = 5 ms, Δ = 10 ms: all these binnings

yield a bimodal distribution. (B) Probability distributions of the reduced model for the population-averaged activity, Prð�sjNÞ, obtained using

the constraints Eq (15) from our data set (3 ms purple dot in panel A) and different N (same colour legend as panel A). (C) Population-

averaged activities �sðtÞ from several instances of Glauber dynamics, all with the same normally-distributed couplings Jij and biases hi, with

means as in Eq (16) and Fig 4B, and standard deviations σ(Jij) = 0.009, σ(hi) = 0.8. Each instance starts with an initial population activity s

(0) having different values of the population average �sð0Þ, and is represented by a different red shade, fromN�sð0Þ ¼ 0 (light red) toN�sð0Þ ¼
N (dark red). Note how the basins of attraction of the two metastable regimes are wider than in the homogeneous case of Fig 4B. (D) The

same as panel C, but with larger standard deviations σ(Jij) = 0.012, σ(hi) = 1.08; the jumps between the two metastable regimes become

more frequent than in Fig 4B, indicating that the minimum between the modes becomes shallower as the inhomogeneity increases.

https://doi.org/10.1371/journal.pcbi.1005762.g005
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i.e. νi(τ) is the number of spikes of neuron i in the time window τΔ. Here si(t) are the binary rep-

resentations of the spike trains binned with bin width Δ, in line with section “Pairwise maximum-
entropy model”. This metric also equals the area between times −τΔ and τΔ under the cross-corre-

logram of neurons i and j (stationarity is assumed), calculated on the fine temporal time scale Δ.

The spike count correlation rSC corresponds to τ = n� T/Δ, and our Pearson correlation ρ to

τ = 1. Several studies [we analysed: 101–105] report either measured values of rCCG(τ) for differ-

ent windows τ, or measured cross-correlograms. We studied, one by one, all the measures

reported in the cited studies and numerically found that each of them satisfies ρ≳ rSC/20. We

decide to take the lower bound �r ¼ rSC=20 as a coarse estimate of ρ given rSC, because it leads to

points as far away from bimodality as possible, i.e. because it is biased against our conjecture.

Under these approximations—and notwithstanding the choice of estimates that keeps the

data as far away from bimodality as possible—the largest part of the data summarized by

Cohen & Kohn does fall in the bimodality region of Fig 5A for N = 250, and almost all data lies

in the bimodality region for N = 500; see Fig 6. These data points have only an indicative value,

but suggest that our dataset is not an outlier for the bimodality problem. If those data had been

recorded from a population of 500 neurons, they would have yielded a bimodal pairwise maxi-

mum-entropy model because, as shown in section “Bimodality ranges and population size”, the

more neurons we are able to record, the more likely the bimodality occurs. Thus the bimodal-

ity problem and its consequences need to be taken seriously. Our next question is then: Is

there any way to eliminate the bimodality problem?

Analysis of the erroneous preliminary approximation of the distribution. In the last

three sections we have partly addressed the second issue raised in section “Appearance of bimo-
dality”: the distribution given by the pairwise maximum-entropy method is bound to be

bimodal, not only for our data, but also for typical neuronal recordings of a couple of hundreds

neurons or more.

Fig 6. Bimodality for experimental data from neuroscientific literature. Mean activities and correlations ðErð�sÞ; �rÞ inferred

from experimental data reported in Cohen & Kohn [37, Table 1], plotted upon the curves separating bimodal from unimodal

maximum-entropy distributions of Fig 5A. The plot suggests that typical experimental neural recordings of 250 neurons and

above are likely to lead to bimodal maximum-entropy pairwise distributions.

https://doi.org/10.1371/journal.pcbi.1005762.g006
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We now address the third issue: to find out more about the first erroneous approximation

of the probability distribution, shown in Fig 2B. It is important to remember that it is not the

correct pairwise maximum-entropy distribution, and the initial erroneous approximations

bh, bJ of the multipliers do notmatch the data. The approximation was erroneous because the

sampling phase of the Boltzmann-learning algorithm was too brief. The time required to

explore the full distribution is so long that the dynamics is non-ergodic for computational pur-

poses. This non-ergodicity effectively truncates the sampling at states s for which �s ≲ y, where

θ is the population-averaged activity at the trough between the two metastable regimes. This

means that if the wrong multipliers bh, bJ are used in a “truncated” distribution

Ptðsjbh;bJ ; yÞ /
exp ð

P
i
bhisi þ

P
i<j
bJ ijsisjÞ; �s ⩽ y;

0; �s > y;

8
<

:
ð20Þ

then the expectations of this distribution are close to the experimental time averages for the

single and coupled activities: Et(si) =mi, Et(si sj) = gij. This truncated distribution, though, is

obviously not a pairwise maximum-entropy distribution. It is an interesting distribution nev-

ertheless, as Fig 2B shows. Could it be obtained or approximated with the maximum-entropy

method in some other way?

Solution: An inhibited maximum-entropy model and Glauber dynamics

Let us briefly summarize our results so far and the reason why a maximum-entropy model

yielding a bimodal distribution in the population-averaged activity is problematic:

• For commonly observed statistics of neuronal data, the pairwise maximum-entropy method

yields a distribution with two distinct modes (bimodality), one of which at high activities—

unrealistic in view of present neuroscientific data. The bimodality is bound to happen for

large N as soon as the measured correlations are slightly positive. Moreover, the Glauber

dynamics based on the pairwise model jumps between two metastable regimes and cannot

be used to generate realistic surrogate data.

• The Boltzmann-learning procedure based on Glauber dynamics becomes practically non-

ergodic and the Lagrange multipliers of the pairwise model are difficult or impossible to

find. Standard analytic approximations fail as well.

• The initial erroneous approximation of the pairwise maximum-entropy distribution,

obtained with a too short Boltzmann learning, shows an interesting fit with the data never-

theless. It would be interesting to know if it can be obtained or approximated with a general-

ized maximum-entropy method.

We will propose a solution that addresses all three issues at once. This solution pivots on the

idea of inhibition and can be grasped with an intuitive explanation of how the bimodality arises.

Intuitive understanding of the bimodality: Mean-field picture. From the point of view

of a network evolving with a Glauber dynamics with couplings J and biases h, the bimodality

and bistability appear because the couplings J are on average positive and make the network

dominantly excitatory. The positivity of the couplings appears because the average correlation

�c between the neurons, empirically measured, is positive (Figs 1D and 7A). This phenomenon

is not unknown: bimodalities in the distribution of extensive quantities have a similar explana-

tion in the statistical mechanics of finite-size systems [99, 106–108].

A naive mean-field analysis also confirms this. In such an approximation we imagine that

each neuron is coupled to a field representing the mean activities of all other neurons [65; 109,
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ch. 6]. From the point of view of entropy maximization, we are replacing the maximum-

entropy distribution with one representing independent activities, having minimal Kullback-

Leibler divergence from the original one [66, chs 2, 16, 17]. Given the couplings J and biases h,

the mean activities m must satisfy N self-consistency equations

1

1þ exp ð
Pj6¼i
j Jijmj þ hiÞ

¼ mi: ð21Þ

In the homogeneous case they reduce to the equation f1þ exp ½ðN � 1ÞJr �m þ hr�g
� 1
¼ �m,

corresponding to the intersection of two functions of �m: the diagonal line �m 7! �m, and the

curve �m 7! f1þ exp ½ðN � 1ÞJr �m þ hr�g
� 1

that depends parametrically on (hr, Jr); see Fig 7B.

For the Lagrange multipliers of our data, these curves intersect at two different values of �m,

meaning that there are two solutions to the self-consistency equation, corresponding to two

different mean activities. These approximately correspond to the maxima of the probability

distribution for the population average in Fig 4A.

Importance of inhibition: Modified Glauber dynamics. In the neuronal network

dynamics just analysed, with positive correlations on average, the second peak of high activity

can be suppressed introducing an effective negative feedback loop. Such inhibitory mechanism

can be represented by an additional neuronal unit I, having positive incoming couplings JIk>
0 and negative outgoing couplings JkI< 0 with all other units k. This unit is therefore activated

if the total activity of the other units is high, and once activated it provides negative input back

to all other units. This situation is illustrated in Fig 8A. Such a stabilizing mechanism acts

much in the same way as inhibition stabilizes the low-activity state in neuronal networks [110,

111]; it has also been used in the simulations by Bohte et al. [34]. The asymmetry of this mech-

anism is in contradiction with the symmetry of the couplings Jij of the Glauber dynamics, how-

ever. We want to break this symmetry and add an asymmetric inhibitory feedback to the

Glauber dynamics to avoid the bimodality of the probability distribution.

We preliminarily implement this idea in our Glauber dynamics, to observe its conse-

quences, using first the incorrect approximations ðbh;bJÞ of the multipliers that yielded a

bimodal inhomogeneous pairwise distribution, and then the (correct) multipliers hi = hr, Jij =
Jr, Eq (16), of the reduced pairwise model. We connect all N neurons to a single inhibitory

Fig 7. Mean-field picture. (A) Illustration of a self-coupled symmetric network that is self-excitatory on average. Arrow-headed blue lines

(! ) represent excitatory couplings; circle-headed red lines (⊸) represent inhibitory couplings. (B) Self-consistency solution of the naive

mean-field equation, illustrated for different Jr. Larger Jr lead to two additional intersections, corresponding to an unstable and a stable

solution. The red curve corresponds to the Jr calculated from our experimental data Eq (16).

https://doi.org/10.1371/journal.pcbi.1005762.g007
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neuron that instantaneously activates whenever their average activity exceeds a threshold θ 2
{0, 1/N, 2/N, . . ., (N − 1)/N, 1}. Upon activation the inhibitory neuron inhibits the other N neu-

rons (see Fig 8A) via N identical negative couplings JI < 0. The results from the simulation of

the inhibited Glauber dynamics are shown in Fig 8; in all cases the inhibitory coupling was JI =

−24.7 and the inhibition threshold θ = 0.3.

The algorithm for sampling from this “inhibited” Glauber dynamics is explained in section

“Inhibited Glauber dynamics”. It can be seen that the additional inhibitory neuron eliminates

the bistability, leaving only the stable low-activity regime. The resulting homogeneous and

inhomogeneous stationary distributions (in the inhomogeneous case Jij and hi are normally

distributed as in Fig 5C) are either unimodal or have a second mode that is completely negligi-

ble, being tens or hundreds of orders of magnitude smaller than the first mode.

Fig 8. Asymmetric inhibition and elimination of bimodality and non-ergodicity. (A) Illustration of self-coupled network with additional

asymmetric inhibitory feedback. Each neuron receives inhibitory input JI < 0 from the additional neuron whenever the population-average �s
becomes greater than the inhibition threshold θ. (B) Population-averaged activities �sðtÞ from several instances of the inhibited Glauber

dynamics, with JI = −24.7, θ = 0.3, and homogeneous Jij = Jr, hi = hr of Eq (16), as used for Fig 4B. Each instance starts with an initial

population activity s(0) having different values of the population average �sð0Þ, and is represented by a different grey shade, fromN�sð0Þ ¼ 0

(light grey) toN�sð0Þ ¼ N (black). Note the disappearance, thanks to inhibition, of the bistability that was evident in the “uninhibited” case of

Fig 4B. (C) Analogous to panel B, with JI = −24.7, θ = 0.3, but inhomogeneous normally distributed couplings and biases as in the uninhibited

case of Fig 5C. The bistability again disappears thanks to inhibition. (D) Comparison of a longer (5 × 106 timesteps) Glauber sampling in the

inhibited (black, JI = −24.7, θ = 0.3) and uninhibited (red) case, using the couplings and biases of Fig 2D obtained from our first Boltzmann

learning. (E) Time averages mi and gij obtained from Boltzmann learning for the inhibited model Pi, versus experimental ones. (F) Probability

distribution of the population-averaged activity Pið�sÞ given by the inhibited model Eq (22) for our dataset Eq (15), compared with the one

previously given by the reduced model Prð�sÞ, Fig 4A.

https://doi.org/10.1371/journal.pcbi.1005762.g008
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The inhibited Glauber dynamics can suppress the bistability for any network size N, with

an appropriate choice of the inhibitory coupling JI < 0 and threshold θ.
Continuing our exploration, we check what happens if we use the inhibited Glauber

dynamics in the sampling phase of Boltzmann learning for our initial problem, when we tried

to find a stationary distribution having means and correlations shown in Fig 1B–1D. As

shown in Fig 8E, the addition of the inhibitory neuron (again with JI = −24.7, θ = 0.3) elimi-

nates the second metastable state that appeared after 2 × 106 steps, cf. Fig 3. The resulting cou-

plings and biases of the final stationary distribution are distributed as in Fig 2D—but note that

this time the Boltzmann learning has converged, hence these are its correct final values.

However, it must be stressed that the stationary distribution thus found, using the inhibited

Glauber dynamics, is not a pairwise maximum-entropy distribution, because the latter is the

stationary distribution of the original Glauber dynamics, not of the modified one. If we use the

inhibited dynamics in Boltzmann learning, we are abandoning the standard pairwise maxi-

mum-entropy model.

There is nevertheless a positive result: in the next section we show that the stationary distri-

bution of the inhibited Glauber dynamics belongs to a generalized maximum-entropy family.

Inhibited maximum-entropy model. The pairwise maximum-entropy distribution Eq

(3) is the stationary distribution of the Glauber dynamics with symmetric couplings. It is not

the stationary distribution of the inhibited Glauber dynamics. But the following fact holds: The
stationary distribution of the inhibited Glauber dynamics (Fig 8) belongs to the maximum-
entropy family. Its analytic expression is

Piðsjh; J; JI; yÞ ¼
1

Ziðh; J; JI; yÞ
�

exp ½
X

i

hisi þ
X

i>j

Jijsisj þ JIN Gð�s � yÞ�;

Ziðh; J; JI; yÞ ≔
X

s

exp ½
X

i

hisi þ
X

i>j

Jijsisj þ JIN Gð�s � yÞ�;

Gð�s � yÞ ≔ ð�s � yÞHð�s � yÞ;

ð22Þ

where JI is the (negative, in our case) coupling strength from the inhibitory neuron to the

other neurons, θ is the activation threshold of the inhibitory neuron, andH is the Heaviside

step function. We call Eq (22) the inhibited pairwise maximum-entropy model. The proof that it

is the stationary distribution of the inhibited Glauber dynamics is given in section “Inhibited
Glauber dynamics”.

This maximum-entropy model is characterized by the new term JIN Gð�s � yÞ in the expo-

nential, which we call “inhibition term”. The function Gð�s � yÞ is plotted in Fig 9 together

with its exponential. We show in section “Expansion of the inhibition term in terms of higher-
order coupled activities” that it can also be written as a linear combination of population-aver-

aged K-tuple activities, si1 si2 � � � siK , for K equal to Nθ + 1 and larger:

N Gð�s � yÞ ¼
XN

K¼Nyþ1

� Ny

K � Ny � 1

 !
X

i1<i2<���<iK

si1 si2 � � � siK

 !

; ð23Þ

the coefficients being generalized binomial coefficients [100, ch. 6; see also 112], which have

alternating signs. For example, if N = 5 and θ = 3/5,

NG ð�s � yÞ ¼ ðs2s3s4s5 þ s1s3s4s5 þ s1s2s4s5 þ s1s2s3s5 þ s1s2s3s4Þ � 3s1s2s3s4s5: ð24Þ
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This function differs from the additional function appearing in the maximum-entropy

model by Tkačik et al. [50, 94, 113], which consists in N + 1 constraints enforcing the observed

frequency distribution of the population average �s. For large data samples the constraints used

in those works typically equal 0 for larger values of �s; for reasons discussed in section “Range of
applicability of maximum-entropy models”, the use of such extreme constraints may not be jus-

tified or meaningful.

The inhibited distribution Pi(s) belongs to the maximum-entropy family in two different

ways, the first preferable to the second:

1. It can be obtained by application of the maximum-relative-entropy (minimum-discrimina-

tion-information) principle [31, 83], with the pairwise constraints Eq (5), with respect to

the reference distribution

P0ðsjJI; yÞ / exp ½JIN Gð�s � yÞ�; Ny 2 f0; 1; 2; . . . ;N � 1;Ng; ð25Þ

also called “reference measure”, which assigns decreasing probabilities to states with aver-

age activities above θ; see Fig 9B. This relative-maximum-entropy model can be interpreted

as arising from a more detailed model in which we know that external inhibitory units

make activities above the threshold θ increasingly improbable, like Bohte et al.’s model [34]

for example. We discuss this in the “Discussion”. In this interpretation the parameters JI and

θ are chosen a priori.

2. Alternatively, it results from the application of the “bare” maximum-entropy principle

given the pairwise constraints Eq (5) and an additional constraint for the expectation of

N Gð�s � yÞ:

EiðN Gð�s � yÞÞ ¼
XN

N�s¼Ny

ðN�s � NyÞ Pið�sÞ

¼
XN

K¼Ny

� Ny

� K þ 1

� �

Ei

X

i1<i2<���<iK

si1 si2 � � � siK

 !

:

ð26Þ

This is a constraint on what could be called the “tail first moment” of the distribution for

the population-averaged activity Pið�sÞ: it determines whether the right tail of Pið�sÞ has a

small (JI < 0) or heavy (JI > 0) probability. It can also be seen as a constraint on the Nθ-th

Fig 9. Reference measure. The functionGð�s � yÞ and its exponential for JI < 0.

https://doi.org/10.1371/journal.pcbi.1005762.g009
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and higher moments, owing to Eq (23). In this interpretation the parameter JI is the

Lagrange multiplier associated with this constraint, hence it is determined by the data; the

parameter θ is chosen a priori. Note, however, that experimental data are likely to give a

vanishing time average of N Gð�s � yÞ, so that JI = −1. This interpretation has therefore to

be used with care, for the reasons discussed in section “Range of applicability of maximum-
entropy models”.

Two features of the inhibited maximum-entropy model Eq (22) are worth remarking upon:

1. The family of inhibited distributions Pi includes the pairwise family Pp, Eq (3), as the partic-

ular case JI = 0. Note that if JI 6¼ 0 the inhibited and uninhibited models with identical

Lagrange multipliers (h, J) have different expectations for single and coupled activities:

Eiðsijh; J; JI; yÞ 6¼ Epðsijh; JÞ;

Eiðsisjjh; J; JI; yÞ 6¼ Epðsisjjh; JÞ;
ð27Þ

and therefore different covariances and correlations.

2. If the inhibitory parameter JI is very large and negative, all activities s such that �s > y are

assigned a negligible probability by the inhibited model. We therefore have the approxima-

tion (technically, pointwise convergence as JI ! −1)

Piðsjh; J; JI; yÞ /
exp ð

P
i hisi þ

P
i<j JijsisjÞ; �s ⩽ y;

0; �s > y;

(

JI � 0; ð28Þ

where C is an appropriate normalization constant.

But the last expression is identical to Eq (20). Thus, the inhibited maximum-entropy distribu-
tion Pi is approximately equal to the truncated distribution Pt—the incorrect one Eq (20) obtained

with our initial Boltzmann learning—having the same multipliers (h, J) and threshold θ:

Piðsjh; J; JI; yÞ � Ptðsjh; J; yÞ; JI � 0; ð29Þ

and their expectations are also approximately equal. We have therefore addressed the third issue

discussed in section “Appearance of bimodality”: the initial, incorrect but interesting approxima-

tion can actually be rescued, as we now explain.

Summary: Application of the inhibited maximum-relative-entropy model. Let us find

a probability distribution for our data using the maximum-relative-entropy method, with

reference measure Eq (25), JI = −24.7, θ = 0.3, given the single and pairwise constraints Eq

(5) summarized in Fig 1C and 1D. To find the Lagrange multipliers (h, J) and the distribu-

tion Eq (22) we use the Boltzmann learning procedure with 5 × 106 timesteps. For the sam-

pling phase we must use the inhibited Glauber dynamics, because its stationary distribution

is Eq (22). As proven earlier (Fig 8) no bistability arises, so we do not need to worry about

wrong approximations from undersampling; in fact, a much smaller number of timesteps

would suffice.

The resulting multipliers and distribution are not shown because their plots are indistin-

guishable to the naked eye from the homologous ones in Fig 2B–2D. We have thus found that

the interesting distribution shown in red in Fig 2B, although not a pairwise maximum-entropy

distribution, still belongs to an enlarged maximum-entropy family: it is an inhibited, inhomo-
geneous, pairwise maximum-relative-entropy distribution.
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The inhibited maximum-relative-entropy model therefore solves all there issues presented

in section “Appearance of bimodality”:

1. The multipliers and distribution of this model can efficiently be found via Boltzmann learn-

ing with the typical number of timesteps used in the literature (200–400 [45, 95]), because

its Glauber dynamics is not affected by bistability (Fig 8).

2. This model produces a distribution that has no unrealistic modes at high activities.

3. This distribution has interesting features and fitting properties (Fig 2B).

We can ask whether the solution of these three issues by the inhibited model is enough to

warrant its use. In particular, does the use of the reference measure (Eq (25)) make sense from

a neurobiological standpoint? In the following “Discussion” we argue that it does, and that it

solves in fact a fourth issue of standard (i.e. uniform-measure) maximum-entropy models for

neuronal networks.

Discussion

Summary

In this work we have shown that pairwise maximum-entropy models, widely used as refer-

ences distributions in the statistical description of the joint activity of hundreds of neurons,

are poised to suffer from three interrelated problems when constrained with mean activities

and pairwise correlations typically found in cortex:

1. Boltzmann-learning [64, 114] based on asynchronous Glauber dynamics [61, 63, chap. 29],

used to find the Lagrange multipliers and distributions of these models, becomes practically

non-ergodic (Fig 3), already for population sizes of roughly 50 neurons. The distribution is

therefore difficult or impossible to find. Approximate methods like mean-field [65, 66],

Thouless-Anderson-Palmer [66, 67], Sessak-Monasson [69, and refs therein] also break

down in this case. This problem is known in the statistical mechanics of finite-size systems

[99]. This non-ergodicity can go undetected; see “Detection and further study of bimodality”
below.

2. Pairwise models are bound to give a bimodal probability distribution as soon as a critical

number of units is exceeded. We have provided experimental evidence for this claim in sec-

tion “The problem: Bimodality, bistability, non-ergodicity”. The first mode is observed in the

data. But the model also predicts a second, unobservedmode at very high activities, with up

to 90% of the population simultaneously active for long times. The probability of the second

mode increases with population size. The Glauber dynamics based on this model jumps

between two metastable regimes, remaining in each for long times (owing to its asynchro-

nous update) and cannot be used to generate realistic surrogate data. As discussed in “Is the
correct pairwise model bimodal?”, inclusion of third- or fourth-order correlations does not

seem to cure this problem.

3. Interesting distributions that may be found as initial approximations of pairwise distribu-

tions (e.g. Fig 2B, red) may turn out to be incorrect owing to the first and second problems

above. They have to be discarded for methodological reasons despite their interesting

properties.

We have given an intuitive explanation of the common cause of these issues: positive pair-

wise correlations imply positive Lagrange multipliers between pairs of neuron, corresponding

to a symmetric network that is excitatory on average. For typical values of correlations
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observed in neuroscientific experiments, this network can therefore possess two metastable

dynamic regimes, given sufficiently many units. The mechanism is identical to the ferromag-

netic transition in the Ising model, as explained in “Bimodality of the inhomogeneous model for
large N”. An analogous bimodality appears in the statistical mechanics of finite-size systems

[e.g. 108, 115, and refs therein]—but it is experimentally expected and verified there, unlike

our neurobiological case.

Although we did not study maximum-entropy models typically used in other fields, like

structural biology and genetic networks [116–118], social behavior in mammals [119, 120],

natural image statistics [121, 122], and economics [123], the problems we have addressed are

generic and emerge as soon as we study a large network with positive pairwise correlations on

average; hence they might be of relevance to these fields.

In this work we have also suggested a remedy, based on the explanation above: the intuitive

idea is to add a minimal asymmetric inhibition to the network, in the guise of an additional,

asymmetrically coupled inhibitory neuron (Fig 8A) [cf. 34, p. 175]. This leads to an “inhibited”

Glauber dynamics that is free from bistable regimes and has a unimodal stationary distribution

Pi(s), Eq (22). This dynamics depends on an inhibition-coupling parameter JI and a threshold

parameter θ.
Most important, we have shown that this new stationary distribution Pi(s) belongs to the

maximum-entropy family: it can be obtained with the maximum-relative-entropy method with

respect to a reference measure, Eq (25) (Fig 9), that represents the neurobiologically natural

presence of inhibition in the network. We call this model an “inhibited” pairwise maximum-

entropy model.

The inhibited pairwise model solves all three problems above:

1. It can be found by Boltzmann learning with standard sampling times. In the present work

we have not investigated whether analytic approximations like the Thouless-Anderson-

Palmer or Sessak-Monasson ones can be adjusted to be applied to this model; but see point

3. below.

2. Its distribution does not have unrealistic modes at high average activities. The model allows

us to decide how much any high-activity modes should be suppressed (parameter JI) and

the activity above which such modes are neurobiologically unrealistic (parameter θ).

3. It yields distributions similar to the interesting ones that should otherwise be abandoned on

methodological grounds (wrong standard pairwise distributions). In this regard, if interest-

ing distributions found in the literature turn out to be incorrect owing to undersampling,

they could be “rescued” if reinterpreted as distributions of the inhibited model; see “Detec-
tion and further study of bimodality” below.

Detection and further study of bimodality

We wish to stress that the presence of bimodality and non-ergodicity can easily go unnoticed.

Sampling from a bimodal distribution, the probability to switch to the second mode may be so

small that it occurs over more sampling steps larger than those typically used in the literature,

and the high mode is not visited during Boltzmann learning or surrogate generation. We then

face a subtle situation: The obtained distribution is not a pairwise maximum-entropy distribu-

tion Eq (3)—the Lagrange multipliers are incorrect—yet a consistency check (also affected by

undersampling) may wrongly seem to validate it, and also analytic approximations (outside of

their convergence domain) may wrongly validate it.

The distribution found in this circumstance is not a standard pairwise distribution, but our

inhibited maximum entropy distribution Eq (22), for appropriately chosen JI and θ.

Bistability, non-ergodicity, and inhibition in pairwise maximum-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005762 October 2, 2017 25 / 44

https://doi.org/10.1371/journal.pcbi.1005762


In this regard we urge researchers who have calculated pairwise (and even higher-order)

maximum-entropy distributions for more than 50 neurons using short Boltzmann-learning

procedures, to check for the possible presence of higher metastable regimes. The presence of

bimodality and non-ergodicity can be checked, for example, by starting the sampling from dif-

ferent initial conditions, at low and high activities, looking out for bistable regimes [cf. 62, S

2.1.3]. Another way out of this problem is to use other sampling techniques or Markov chains

different from the Glauber one [61, 62, 97, 98]. Alternatively, one may use the inhibited model

Eq (22) with the standard approaches.

In the presence of inhomogeneous and randomly chosen parameters and large network

sizes, the standard pairwise maximum-entropy distribution is mathematically identical with

the Boltzmann distribution of the Sherrington & Kirkpatrick infinite-range spin glass [124,

125]. A more systematic analysis of the effect of inhomogeneity on the appearance of the sec-

ond mode could therefore employ methods developed for spin glasses [126], which could pro-

duce approximate expressions for the inverse problem: the determination of Lagrange

multipliers from the data. One may think of modifying the Thouless-Anderson-Palmer (TAP)

mean-field approach [67, 127], generalizations of which exist for the asymmetric non-equilib-

rium case [93] appearing here due to the inhibitory unit. An appropriate modification of the

ideas of Sessak and Monasson [68, 69] could also be an alternative. Another possibility is the

use of cumulant expansions [17, 128], which unlike TAP-based approaches have the advantage

of being valid also in regimes of strong coupling; recent extensions allow us to obtain the statis-

tics at the level of individual units [129].

Bimodality in other models

In this work we have not investigated other models, like general linear models or kinetic Ising

models for example. Considering the fundamental mechanism by which the bimodality arises,

we expect similar problems in other models. The reasoning backing this hypothesis is this:

Pairwise correlations in cortical areas are on average positive but very weak. In this limit we

expect that these correlations require slightly positive “excitatory” couplings between units in

most other models; an independent-pair approximation also suggests this [127]. As a result of

this rough approximation determined at the level of individual pairs, we expect the couplings

to be independent of the number of units of a dynamic or statistical model. With increasing

number of units in the model the overall “excitatory feedback”
PN
j Jij will increase, and a sim-

ple mean-field analysis makes us expect the appearance of a second mode at a certain critical

number, what in statistical mechanics is called a ferromagnetic transition; cf. Fig 7B. We expect

similar ferromagnetic transitions to happen in a wide class of statistical models that only repre-

sent the observed, on average positively correlated units. Similar transitions are also reported

in Bohte et al. [34] for a biological—as opposed to statistical—neuron model composed of

excitatory neurons only. In fact, they had to introduce one inhibitory neuron in their model to

avoid such transitions, which is also the idea behind our inhibitory term.

The bimodality problem could be cured by allowing for asymmetric connections, enabling

the implementation of possibly hidden inhibitory units that stabilize the activity. For example,

kinetic Ising models [130–132], which are maximum-entropy models over the possible histo-

ries of network activity [133–135], can have positive correlations among excitatory units in the

asynchronous irregular regime, while their dynamics is stabilized by inhibitory feedback [see

e.g. 136, Fig 3A]. Scaling of network properties with the number of units N is often studied in

this context. In the asynchronous regime, mean pairwise correlations decrease as N−1 [18, 22,

110, 136]. This scaling is the result of a fictive experiment, typically used to derive a theoretical

results in the N ! 1 limit—any biological neuronal network has of course a certain fixed size
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N. The mean correlation measured in a sample of sizeM, with 1�M� N, is by sampling the-

ory expected to be roughly equal to the mean correlation of the full network, and does not vary

much withM; only the variance around this expectation declines to 0 asM approaches N.

Meaning and advantages of the inhibited model and its reference

measure

The inhibited maximum-entropy model Pi, Eq (22), solves the problems discussed above; but

we may ask if this is enough to motivate its use. We consider it an interesting model for at least

two reasons. First, it actually is a class of models rather than a single specific model. In the

present work we have focused on its use with pairwise constraints because these are still widely

discussed in the literature. But the inhibition reference measure Eq (25) can be used with

higher-order constraints or other kinds of constraints as well. We leave to future works the

analysis of this possibility. Second, there are neurobiological reasons why the reference mea-

sure Eq (25) can be methodologically more appropriate than the uniform measure of the stan-

dard maximum-entropy method. Let us argue this point in more depth.

Standard (i.e. uniform reference measure) maximum-entropy distributions are often rec-

ommended as “maximally noncommittal” [137]. But this adjective needs qualification. Jaynes

precised: ‘“maximally noncommittal” by a certain criterion’—that the possible events or states

be deemed to have a priori equal probabilities before any constraints are enforced [31]. When

the initial probabilities are not deemed equal, for physical or biological reasons for example,

reference measures appear. An important example of reference measure is the “density of

states” that multiplies the Boltzmann factor e − E/(kT) in statistical mechanics [e.g. 138, ch. 16]:

we cannot judge energy levels to be a priori equally probable because each one comprises a dif-

ferent amount of degrees of freedom. The proper choice of this reference measure is so essen-

tial as to be the first manifest difference between classical and quantum statistical mechanics,

from “classical counting” to “quantum counting” of phase-space cells [138, ch. 16]. Owing to

quantized energy exchanges, a quantum density of states is necessary in statistical mechanics;

likewise we could say that owing to inhibitory feedback an inhibitory reference measure is nec-

essary in the statistical mechanics of neuronal networks. The uniform reference measure of

standard maximum-entropy expresses that network units have a priori equally probable {0, 1}

states. But these units are neurons, whose states are not a priori equally likely. The measure of

the inhibited model Pi reflects this a priori asymmetry in a simplified way. There are surely

other reference measures that reflect this asymmetry in a more elaborated way, but the one we

have found is likely one of the simplest; cf. Bohte et al.’s [34] inhibitory solution.

The choice of an appropriate reference measure is critically important in neuroscientific

inferences also for another reason. When maximum-entropy is used to generate an initial dis-

tribution to be updated by Bayes’s theorem, the choice of reference measure is not critical,

because a poor choice gets anyway updated and corrected as new data accumulate. Not so

when maximum-entropy is used to generate a sort of reference distribution that will not be
updated, as is often done in neuroscience: an unnaturally chosen reference measure will then

bias and taint all conclusions derived from comparisons with the maximum-entropy

distribution.

The inhibited pairwise model can therefore be quite useful in all applications of the maxi-

mum-entropy model mentioned in “Introduction”. For example, it can serve as a realistic

hypothesis against which to check or measure the prominence of correlations in simulated or

recorded neural activities, to separate the low baseline level of correlation from the potentially

behaviourally relevant departures thereof. The surprise measure to effect such separation

would, according to the inhibited model, take into account the presence of inhibition and the

Bistability, non-ergodicity, and inhibition in pairwise maximum-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005762 October 2, 2017 27 / 44

https://doi.org/10.1371/journal.pcbi.1005762


overall low level of activity that are natural in the cortex. The inhibited model can also be used

for the generation of surrogate data which include the natural effect of inhibition besides the

observed level of pairwise activity. It can also be useful in the study of the predictive sufficiency

of pairwise correlations as opposed to higher-order moments, for example for distribution

tails [e.g. 34–36, 38–44]; and in the characterization of dynamical regimes of neuronal activity

[36, 49–51].

Choice of inhibition parameters

The inhibition reference measure Eq (25) contains the threshold θ and the inhibitory coupling

JI as parameters. The choice of their values depends on the point of view adopted about the

measure. Three venues seem possible: (1) One might think of choosing (θ, JI) to better fit the

specific dataset under study, but this would counter the maximum-entropy spirit: the thresh-

old cannot be a constraint, and the inhibitory coupling would acquire infinite values, as

explained in section “Inhibited maximum-entropy model”. Moreover for our dataset this strat-

egy would only give a worse fit (cf. Fig 2B) because the inhibition term flattens the distribution

tails. (2) One might only want to get rid of the bistability of the Glauber dynamics and the

bimodality of the distribution. In this case the precise choice of (θ, JI) is not critical within cer-

tain bounds. The inhibition coupling JI < 0 must be negative and sufficiently large to suppress

activity once the population-averaged activity reaches θ. The self-consistency condition Eq

(21) then gives ½1þ exp ð
Pj6¼i
j Jijmj þ hi þ JIÞ�

� 1 ⪡ y for all i. The threshold θ can be safely set

to any value between the highest observed population activity �s and the second fixed point of

the self-consistency equation Eq (21), which is indicative of the second mode and is beyond

�s > 1=2 (see Fig 7B) for the typically low mean activities observed in the cortex. (3) A method-

ologically sounder possibility, in view of the remarks about maximum-entropy measures given

above, is to choose (θ, JI) from general neurobiological arguments and observations. This was

implicitly done in Bohte & al.’s neuron model [34] for example, but unfortunately they did not

publish the values they chose. We leave the discussion of the neurobiological choice of these

parameters to future investigations.

Relations to other work

Our inibition term JIN Gð�s � yÞ, Eq (22), formally includes Shimazaki et al.’s “simultaneous

silence” constraint [44] as the limit JI ! −1, θ = 1/N. Because of this limit their model has a

sharp jump in probability at �s ¼ 1=N : their constraint uniformly removes probability for

�s > 1=N and assigns it to the single point �s ¼ 0. In contrast, our inhibited model Pi presents

a kink but no jump for �s ¼ y, with a discontinuity in the derivative proportional to JI. But

besides this mathematical relationship, our inhibition term and the “simultaneous silence”

constraint have different motivations and uses. As discussed at length above and in section

“Inhibited maximum-entropy model”, our term is best interpreted as a reference measure

expressing the effects of inhibition, providing a biologically more suitable starting point [cf.

34] for maximum-entropy, rather than a constraint. Its goal is not to improve the goodness-

of-fit for activities well below threshold, in contrast to earlier works [e.g. 35, 40, 50, 78, 80]

and to the “simultaneous silence” constraint [44]. The goodness-of-fit is determined by the

constraints alone. In this regard we do not present any improvement of the fit compared to a

pure pairwise model. Future work could explore combinations of the here proposed refer-

ence measure and additional constraints that improve the fitness of the model.
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Materials and methods

Range of applicability of maximum-entropy models

Maximum-entropy models are an approximate limit case of probability models by exchange-
ability [139–141], or sufficiency [141, 142, §§4.2–5]. This approximation holds if the constraints

are empirical averages (e.g. time averages in our case) over enough many data compared with

the number of points in the sample space. How much is “enough” depends on where the

empirical averages lie within their physically allowed ranges: If they are well within their ranges,

then a number of data values large but still smaller than the number of sample-space points

may be enough. If the empirical averages are close or equal to their physically allowed extreme

values, then the number of data values should be much larger than the number of sample-space

points. If these conditions are not met the maximum-entropy method gives unreasonable or

plainly wrong results, as can be ascertained by comparison with the non-approximated Bayes-

ian model. Simple examples of these limitations are illustrated in [140, 141] together with the

more reasonable predictions of the non-approximated Bayesian models [see also 61, p. 308].

A very large positive or negative Lagrange multiplier usually signals that the maximum-

entropy method is inadequate, because the constraint corresponding to the multiplier is

approaching its minimal or maximal allowed values. Consider our case, discussed in section

“The problem: Bimodality, bistability, non-ergodicity”. The constraints are time-averages over

roughly 300000 data points, and the sample space—the possible network states—has 2N =

2159� 7 × 1047 points. Suppose that we want to use as constraints the N + 1 observed frequen-

cies of the total activity N�s [cf. 50, 94, 113]. Each frequency is bounded between 0 and 1. In our

data the values N�s ¼ 24 and N�s ¼ 28 have non-zero frequencies, but the intermediate values

N�s 2 f25; 26; 27g have zero frequencies—the minimum possible value. The Lagrange multi-

pliers for the latter three frequencies would be −1. The maximum-entropy model would

therefore predict that it is possible for the network to have 24 or 28 simultaneuosly active neu-
rons, but impossible for it to have 25, 26, or 27 active neurons–not even in future recordings, if

we interpret the model that way. Such a prediction is unreasonable, not to say a little silly.

Under the assumption that each neuron is as likely as not to be active in each time bin, the

probability that in 300000 time bins we observe all possible values of the total activity

N�s 2 f0; . . . ; 159g—each at least once—is of the order 10−1463. This means that it is practi-

cally certain that some values of N�s will not appear in our recording; not because of physical

impossibility, but because of the exceedingly small number of observations compared with

that of possible events. It is unreasonable to think that the three values 25, 26, 27 could not

appear in a longer recording, yet the values 24 and 28 could. As signalled by the large value of

the Lagrange multipliers, the conditions for the validity of the maximum-entropy limit are not

satisfied in this case, and the method breaks down. The validity of the inhomogeneous pairwise

model is similarly questionable if there are neuron pairs with zero coupled activity, gij = 0;

some corrections to the method are necessary in that case.

The limitations of the maximum-entropy method are well-known [143] in the field of

image reconstruction of astronomical sources, where this method has probably most success-

fully been applied for the longest time. In this field the maximum-entropy principle is today

used differently: to generate a distribution on the space of prior distributions, rather than a

prior itself [144, 145].

Glauber dynamics

Here we show that there is a temporal process that is able to sample from the the distribution

Pp(s|h, J) Eq (3). This temporal dynamics is called Glauber dynamics. It is an example of a
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Markov chain on the space of binary neurons {0, 1}N [63]. At each time step a neuron si is cho-

sen randomly and updated with the update rule

si  1 with probability FiðsÞ ¼ gð
Xk6¼i

k

Jiksk þ hiÞ and 0 else ð30Þ

gðxÞ ¼
1

1þ exp ð� xÞ
; ð31Þ

where the coupling is assumed to be symmetric, Jij = Jji, and self-coupling is absent, Jii = 0. The

transition operator of the Markov chain, κ, only connects states that differ by at most one neu-

ron, so for the transition of neuron i we can write, if siþ ¼ ðs1; . . . ; 1|{z}
i� th

; . . . ; sNÞ and

si� ¼ ðs1; . . . ; 0|{z}
i� th

; . . . ; sNÞ,

kðsiþjsi� Þ ¼ Fiðsi� Þ

kðsi� jsiþÞ ¼ 1 � FiðsiþÞ:
ð32Þ

The pairwise maximum-entropy distribution Pp(s|h, J) is stationary under the Markov

dynamics above. The proof can be obtained as the JI = 0 case of the proof, given below, for the

inhibited pairwise maximum-entropy model.

Inhibited Glauber dynamics and its stationary maximum-entropy

distribution

Inhibited Glauber dynamics. In the “inhibited” Glauber dynamics, the network ofN neu-

rons with states si(t) has an additional neuron with state sI(t). The dynamics is determined by

the following algorithm starting at time step t with states s = s(t), sI = sI(t):

1. One of theN units is chosen, each unit having probability 1/N of being the chosen one. Sup-

pose i is the selected unit.

2. The chosen unit i is updated to the state s0i ≔ siðt þ 1Þ with probability

pðs0ijs; sIÞ ¼ ð1þ exp ½ð1 � 2s0iÞFiðs; sIÞ�Þ
� 1

¼

½1þ eFiðs;sIÞ�� 1
; for s0i ¼ 0;

½1þ e� Fiðs;sIÞ�� 1
; for s0i ¼ 1;

8
><

>:

with Fiðs; sIÞ ≔ hi þ
Xk6¼i

k

Jiksk þ JIsI:

Note the additional coupling from the neuron sI, with strength JI. This strength can have

any sign, but we are interested in the JI ⩽ 0 case; we therefore call sI the “inhibitory neuron”.

3. The inhibitory neuron is deterministically updated to the state s0I ≔ sIðt þ 1Þ given by

s0I ¼ Hð
X

k

sk=N � yÞ; ð33Þ

corresponding to a Kronecker-delta conditional probability

pðs0Ijs; sIÞ ¼ pðs
0
IjsÞ ¼ d ½s0I � Hð

P
k sk=N � yÞ�: ð34Þ

Bistability, non-ergodicity, and inhibition in pairwise maximum-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005762 October 2, 2017 30 / 44

https://doi.org/10.1371/journal.pcbi.1005762


In other words, the inhibitory neuron becomes active if the population-averaged activity of

the other neurons is equal to or exceeds the threshold θ.
4. The time is stepped forward, t + 1 ! t, and the process repeats from step 1.

The original Glauber dynamics, described in the previous section, is recovered when JI = 0,

which corresponds to decoupling the inhibitory neuron sI.
The total transition probability can be written as

pðs0; s0Ijs; sIÞ ¼
1

N
d s0I � H

X

k
sk=N � y

� �h i
�

X

i

½ð1þ exp ½ð1 � 2s0iÞFiðs; sIÞ�Þ
� 1
Yk6¼i

k

dðs0k � skÞ�; ð35Þ

the product of Kronecker deltas in the last term ensures that at most one of the N neurons

changes state at each timestep.

The transition probabilities for the chosen neuron si and the inhibitory neuron sI are inde-

pendent, conditional on the state of the network at the previous timestep:

pðs0; s0Ijs; sIÞ ¼ pðs
0jsÞ pðs0IjsÞ;

so the transition probability for the N neurons only can be written as

pðs0jsÞ ¼
1

N

X

i

ð1þ exp ½ð1 � 2s0iÞFiðsÞ�Þ
� 1
Yk6¼i

k

dðs0k � skÞ

" #

; ð36Þ

with FiðsÞ ≔ hi þ
Xk6¼i

k

Jiksk þ JI Hð
X

k
sk=N � yÞ�: ð37Þ

This formula also shows that the transition probability for the network can alternatively be

derived without explicitly introducing an inhibitory unit: starting from the modified activation

function

pðsijsÞ ¼ f1þ exp ½ð1 � 2siÞ FiðsÞ�g
� 1

with Fi defined by Eq (39), the transition probability Eq (36) for the network follows from the

additional requirement that only a single unit changes state within a single update.

Proof that the inhibited maximum-entropy model is the stationary distribution of the

inhibited Glauber dynamics. The modified maximum-entropy distribution Pi, Eq (22), is

the stationary distribution of a slightly modified version of the above dynamics, with the

update rule

s0I ¼ H
Xk6¼i

k

sk=N � y

 !

; ð38Þ

and the use of N inhibitory neurons, one for each of the original N units. This dynamics has a

slightly different transition probability, with activation function

FiðsÞ ≔ hi þ
Xk6¼i

k

Jiksk þ JI Hð
Xk6¼i

k
sk=N � yÞ� ð39Þ

instead of Eq (37). Note that the two dynamics are very similar for large enough N. To prove
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the stationarity of inhibited maximum-entropy distribution Pi, we show that Pi satisfies the

detailed-balance equality

pðs0jsÞPiðsÞ ¼ pðsjs0ÞPiðs0Þ or
pðs0jsÞ
pðsjs0Þ

¼
Piðs0Þ
PiðsÞ

; 8s; s0; ð40Þ

which is a sufficient condition for stationarity [146–148].

First note that if s0 and s differ in the state of more than one neuron, the transition probabil-

ity p(s0|s) vanishes and the detailed-balance above is trivially satisfied. Also the case s0 = s is triv-

ially satisfied. Only the case in which s0 and s differ in the state of one unit, say si, remains to be

proven. Assume then that

s0i ¼ 1; si ¼ 0; 8k 6¼ i; s0k ¼ sk; ð41Þ

by symmetry, if the detailed balance is satisfied in the case above it will also be satisfied with

the values 0 and 1 interchanged.

Substituting the transition probability Eqs (36) and (39) in the left-hand side of the fraction

form of the detailed balance Eq (40), and noting that Fi(s0) = Fi(s), we have

pðs0jsÞ
pðsjs0Þ

¼ exp ½� FiðsÞ�
� 1

¼ exp hi þ
Xk6¼i

k

Jiksk þ JI Hð
Xk6¼i

k
sk=N � yÞ

" #

:

ð42Þ

Using the expression for the inhibited model Pi, Eq (22), in the right-hand side of the frac-

tion form of the detailed balance Eq (40), we have

Pðs0Þ
PðsÞ

¼ exp
X

k6¼i

hksk þ hi � 1

"(

þ
1

2

Xk6¼m

k;m6¼i

Jmksmsk þ
X

k6¼i

Jmism � 1

þ JIN G
Xk6¼i

k

sk
N
þ

1

N
� y

 !

�

�
X

k6¼i

hksk þ hi � 0

"

þ
1

2

Xk6¼m

k;m6¼i

Jmksmsk þ
X

k6¼i

Jmism � 0

þ JIN G
Xk6¼i

k

sk
N
þ

0

N
� y

 !#)

¼ exp hi þ
Xk6¼i

k

Jiksk þ JI Hð
Xk6¼i

k

sk=N � yÞ

" #

;

ð43Þ

where we have used the equality NG(x + 1/N) −NG(x) =H(x), valid if x ¼
Pk6¼i
k sk=N � y and
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Nθ 2 Z. Comparison of formulae Eqs (42) and (43) finally proves that the detailed balance is

satisfied also in the case Eq (41).

Simulation of Glauber dynamics with NEST

The neuron model ginzburg_neuron in NEST, a simulator for neural network models

[96], implements the Glauber dynamics, if the parameters of the gain function are chosen

appropriately. The gain function has the form

gginzburgðhÞ ¼ c1hþ
c2
2
ð1þ tanh ðc3ðh � yÞÞ: ð44Þ

With tanh ðxÞ ¼ ex � e� x
exþe� x, setting x = c3(h− θ), c1 = 0, c2 = 1, c3 ¼ 1

2
it takes the form

gginzburgðhÞ ¼
1

2

ex þ e� x þ ex � e� x

ex þ e� x
;

¼
1

1þ e� 2x
¼

1

1þ e� ðh� yÞ
;

ð45Þ

which is identical to Eq (31).

Bimodality of the inhomogeneous model for large N

The large N limit for the inhomogeneous pairwise model can be studied employing results

from spin glass theory [125]. The first point to realize is that for weak correlations the Lagrange

multipliers Jij are to dominant order determined only by the covariances between units i and j
and by their respective mean activities. This follows from eq. (7) of Roudi et al. 2009 [127],

which we expand in the limit of weak correlations (and hence only to linear order in Jij) as

� Jij þOðJ2ijÞ

Roudi et al: eq: 7

#
¼ ½C� 1�i6¼j ¼ ½fmkð1 � mkÞ dkl þ ck6¼lg�

� 1

ij

¼ fmkð1 � mkÞdklg
� 1

2 fdkl þ
ck6¼l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkð1 � mkÞmlð1 � mlÞ

p g

 !� 1

ij

fmlð1 � mlÞdklg
� 1

2

2

4

3

5

i6¼j

’ �
cij

mkð1 � mkÞmlð1 � mlÞ
þOðc2ijÞ;

where we used the geometric series from the second to the third line. Since considering larger

networks will not change the statistics of the cij (as long as we are within the local network of

N’ 103–104 neurons), the Lagrange multipliers Jij will, to leading order, follow the same

distribution. In particular their population mean �J ij ¼ 1

NðN� 1Þ

P
ij Jij !

N � 1m and their variance

dJ2ij ¼
1

NðN� 1Þ

P
ijðJij � �J ijÞ

2
!N � 1s2 converge to values μ and σ2 that are, to leading order, inde-

pendent of N.

We now consider the “energy” associated with the maximum-entropy model

EðsÞ ¼ �
1

2

X

ij

Jijsisj �
X

i

hisi:

For this expression to possess a well-defined N ! 1 limit, we need (see [125], eqs. 1.3a

and 1.3b) that m ¼ ~J 0=N and s2 ¼ ~J 2=N, with N-independent quantities denoted by a tilde.

We may therefore determine at which point we are in the phase diagram, shown in Fig 1 of
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[125]. So we obtain the scaling relations

~J 0 ¼ N m:

~J ¼
ffiffiffiffi
N
p

s:

We may now study what happens if we increase N. We therefore investigate how, for given

and N-independent values of μ and σ, we move through the phase diagram of the model (see

Fig 1 in [125]). The axes of this diagram are spanned by

~J 0

~J
¼

ffiffiffiffi
N
p m

s
;

kT
~J
¼

1
ffiffiffiffi
N
p

s
:

So increasing N we will move to the lower right in the phase diagram, ultimately crossing

the transition to ferromagnetic behaviour. This is the point at which the model becomes bis-

table. One may note that the position of this cross-over is not entirely correctly predicted by

the replica-symmetric theory of [125]. The true solution, found by Parisi [149] is slightly dis-

placed compared to the transition line in the diagram in Fig 1 of [125]. Still, as we are only

interested in the limit N ! 1, the result is the same and the model becomes bistable.

Expansion of the inhibition term in terms of higher-order coupled

activities

Higer-order correlations are represented by products of K distinct activities, like e.g. s1 s3 s4 s9,

with K 2 {0 . . ., N}, whose expectations are the raw K-th moments of the distribution. There

are N
K

� �
such products for each given K. For a network activity (s1, . . ., sN)2{0, 1}N, each of

those products amounts to either 0 or 1. More precisely, if the total activity is S, then S
K

� �
of

these products will equal 1 and the others will vanish; the binomial vanishes by definition if

K> S, so it covers this case as well.

In the reduced, homogeneous case we can meaningfully sum together all products with K
factors, because they have the same probability. Then, from what we said above, such sum

equals S
K

� �
when the total activity is S:

X

i1<i2<���<iK

si1si2 � � � siK ¼
S
K

� �

if
X

i

si ¼ S: ð46Þ

We want to rewrite the logarithm of the inhibition term NGð�s � yÞ ≔ N ð�s � yÞHð�s � yÞ

as a sum of such sums of K products, in order to interpret it as a combination of higher-order

correlations:

NGð�s � yÞ ¼
XN

K¼0

fK
X

i1<i2<���<iK

si1 si2 � � � siK

 !

¼
XN

K¼0

fK
N�s
K

� �

; ð47Þ

with θ-dependent coefficients fK. Let us find them.
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Rewrite NGð�s � yÞ as G(S −Θ), with S ≔ N�s 2 f0; . . . ;Ng andΘ≔Nθ. The (N + 1)-

tuple v of numbers

v� ≔ ðGð0 � YÞ;Gð1 � YÞ; . . . ;GðN � YÞÞ ¼ ð0; . . . ; 0|{z}
Yth

; 1; . . . ;N � YÞ

is a θ-dependent row-vector.

Expression Eq (47) can be interpreted as the matrix product fP of the row vector f–which

we want to find—by the (N + 1)-dimensional matrix P having element S
K

� �
in its (K + 1)th row

and (S + 1)th column. Such matrix is called a Pascalmatrix [150, 151]; for example, for N = 4,

ðPÞSK ¼

1 1 1 1 1

0 1 2 3 4

0 0 1 3 6

0 0 0 1 4

0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

Hence we have v = fP, and therefore f = vP−1. The inverse P−1 of a Pascal matrix has ele-

ments ðP� 1Þ
K
S ¼ ð� 1Þ

K� S K
S

� �
[150, 151]; for example, for N = 4,

ðP� 1Þ
K
S ¼

1 � 1 1 � 1 1

0 1 � 2 3 � 4

0 0 1 � 3 6

0 0 0 1 � 4

0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

By multipling the expressions of v and P−1 above we find that the row-vector f = vP−1 is,

explicitating its dependence onΘ,

fKðYÞ ¼

ð0 1 0 0 0 0 0 � � � Y ¼ 0

ð0 0 1 � 1 1 � 1 1 � � � Y ¼ 1

ð0 0 0 1 � 2 3 � 4 � � � Y ¼ 2

ð0 0 0 0 1 � 3 6 � � � � � �

ð0 0 0 0 0 1 � 4 � � �

� � �

K ¼ 0 K ¼ 1 K ¼ 2 � � �

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

:

This solution has a convenient feature: if we increase N by 1, the matrix (fK(Θ)) of the N-

dimensional solution acquires one new row and column, but the already existing entries

remain unchanged.
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We can thus write G(S −Θ) as
PN
K¼0
fKðYÞ S

K

� �
, with fK(Θ) given above. But fK(Θ) = 0 if

K⩽Θ, so we can also restrict the sum to K> Θ:

GðS � YÞ ¼
XN

K¼Yþ1

fKðYÞ
S
K

� �
: ð48Þ

Compare the matrix of values for fK(Θ) above with that for the generalized binomial coeffi-

cient [100, 112]:

� Y

K � Y � 1

 !

¼ ð� 1Þ
K� Y� 1 K � 2

K � Y � 1

� �

¼

1 0 0 0 0 0 � � � Y ¼ 0

1 � 1 1 � 1 1 � � � Y ¼ 1

1 � 2 3 � 4 � � � Y ¼ 2

1 � 3 6 � � � � � �

1 � 4 � � �

� � �

K ¼ 1 K ¼ 2 � � �

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

;

if K> Θ we have fKðYÞ ¼
� Y

K � Y � 1

 !

. We can therefore write Eq (48) more explicitly,

recalling that S � N�s,Θ� Nθ,GðS � YÞ � NGð�s � yÞ, and Eq (46), as:

NGð�s � yÞ ¼
XN

K¼Nyþ1

� Ny

K � Ny � 1

� �
N�s
K

� �
;

�
XN

K¼Nyþ1

� Ny

K � Ny � 1

� �
X

i1<i2<���<iK

si1 si2 � � � siK

 !

;

which is formula Eq (23).
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