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A Neuro-Musculo-Skeletal Model 
for Insects With Data-driven 
Optimization
Shihui Guo1, Juncong Lin   1, Toni Wöhrl2 & Minghong Liao1

Simulating the locomotion of insects is beneficial to many areas such as experimental biology, 
computer animation and robotics. This work proposes a neuro-musculo-skeletal model, which 
integrates the biological inspirations from real insects and reproduces the gait pattern on virtual 
insects. The neural system is a network of spiking neurons, whose spiking patterns are controlled by the 
input currents. The spiking pattern provides a uniform representation of sensory information, high-level 
commands and control strategy. The muscle models are designed following the characteristic Hill-type 
muscle with customized force-length and force-velocity relationships. The model parameters, including 
both the neural and muscular components, are optimized via an approach of evolutionary optimization, 
with the data captured from real insects. The results show that the simulated gait pattern, including 
joint trajectories, matches the experimental data collected from real ants walking in the free mode. The 
simulated character is capable of moving at different directions and traversing uneven terrains.

Insects are the largest group of species on the planet1. Their success is critically dependent on their mobility. 
Although insects are relatively small in terms of both body size and neural system, their capability of handling 
complex environment outperforms most artificial robots. Simulating the locomotion of virtual insects are of great 
interest to researchers from various fields including experimental biology, computer animation and robotics.

Experimental biologists used the simulation model to repeat experiments which otherwise would be impos-
sible to conduct on the vivo subjects, in order to illuminate the underlying principles of their locomotory mecha-
nisms. The early attempt is Walknet2, which simulated the movement of walking stick insects. The follow-up works 
extended the standard Walknet, which only simulated the gait in a procedurally-kinematic fashion, to advanced 
components including searching for foot placements3 and dynamics simulation4. Other studies simulated the gait 
pattern of cockroaches by incorporating rudimentary motor-neuron activation and agonist/antagonist Hill-type 
muscle pairs5–7 to analyze the gait stability of cockroach in standard and perturbed events. However, in this model 
the gait pattern is limited to the horizontal plane and excludes the effect of gravity. A neuron-mechanical model of 
a cockroach is further proposed to simulate the individual and population behaviours of real neurons8. However 
the parameters in this complex model is hand-tuned and do not allow fast-extending the skill repertoire of vir-
tual insects. Our work uses the evolutionary algorithm to automatically set the model parameters and avoids the 
process of manual efforts.

Researchers in the field of computer animation target at the problem of reproducing the mobile capability of 
real insects on their virtual representation. Virtual insects are widely used in graphical applications, including 
video games, movies and virtual/augmented reality etc. In contrast to the large collection of existing works in 
biped simulation, the field of insect simulation is less explored. Previously researchers set up a specialized sys-
tem of synchronized cameras to capture and synthesis insect motion9. However this method requires manual 
post-processing and specialized hardware. Researchers also tackled this problem by procedurally but kinemati-
cally modelling the gait of multi-legged creatures10. By carefully selecting the foot placement, this method is able 
to adapt to different terrains and recover from perturbations. Due to the lack of a fully actuated model, the motion 
synthesized in this way is not physically-plausible and cannot take full advantage of the information from the 
interaction with the environment. Previous methods11,12 modelled the controller of virtual insects as a network 
of nonlinear oscillators and tuned the parameters of the network via the optimization strategy of Covariance 
Matrix Adaptation (CMA). The network was designed to mimic the Central Pattern Generator, which was found 
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in real insects and in charge of their gait pattern. Researchers also modelled and animated virtual myriapoda by 
developing a hybrid animation system that combines kinematic and dynamic simulation13. While the body was 
driven by both rigid body simulation (for hard skeleton) and finite element method (for soft interlinks), the leg 
movements were synthesized in a kinematic fashion.

Robotics researchers used the simulation framework to speed up the process of robot design and control. A 
representative hexapod robot, RHex14, was designed to perform the double-tripod gait similar to the gait pattern 
observed in hexapod insects. This gait pattern allowed inherent locomotion stability. The open-loop controller 
was further improved by the introduction of Central Pattern Generator (CPG). The biological evidences show 
that the CPG is responsible for producing the basic gait pattern of real animals15. Bio-inspired robots, such as 
walking salamander16, swimming fish17 and flying bird18, are controlled by mimicking the machinery of CPG. 
More details can be found in the review paper on applications of CPG for locomotion control in animals and 
robots19. However, existing models of CPG are generally constructed as a network of nonlinear oscillators, rather 
than spiking neurons. The advantage of using nonlinear oscillator is the inherent convergence to limit cycle or 
point attraction for most oscillator models, thus capable of endogenously generating the gait pattern without 
the high-level commands. However, the challenge from oscillator-based networks is how to connect the sensory 
information/high-level commands with the low-level control strategy. Previous method11 used a precomputed 
look-up table. This inevitably creates a large discretized look-up table. In comparison, real organisms, includ-
ing insects, use spiking neurons for the general purposes of environmental sensory, information transmission, 
decision-making and muscle actuation. Such observation inspires this work to explore the solution of using spik-
ing neuron, as the alternative building block to nonlinear oscillator, to construct the neural system.

Building a simulation model to match its real equivalence is a non-trivial task. On one hand, a complex model 
may introduce too many parameters, which could be impossible to tune by hand. On the other hand, a simplified 
model may not capture the important details of the model and thus reduce the credibility and capability of the 
virtual model. In this work, we propose a neuro-musculo-skeletal model for virtual insects (using specifically the 
ant as an example) and an automatic solution to the problem of parameter optimization. More specifically:

•	 We propose a uniform encoding of sensory information, high-level commands and control strategy, with the 
spiking patterns of the neural system. Such an encoding paradigm provides the equivalent representation 
as real organism and shows the potential of using spiking neurons as the building block for accomplishing 
general tasks. The network also provides a continuous mapping from the sensory information/high-level 
commands to low-level control, in contrast to the discretized mapping in previous work11.

•	 We use the evolutionary algorithm to automatically find the optimal values for both the controller and muscle 
parameters. Given the high dimensions of the model state spaces, we resolve the challenge by dividing the 
optimization into a two-stage procedure. The first stage optimizes the parameters of controller and muscles 
for the standard gait of walking straight forward, while the second stage progressively extends the skill reper-
toire by considering curve trajectories and uneven terrain.

•	 We integrate the prior information (foot trajectories) of real ants during the optimization process via the 
evolution algorithm. The introduction of ground-truth data from real ants allows the quantitative comparison 
between the proposed model in this work and existing models11. The result shows that the trajectories gener-
ated from this model presents smaller deviations from the ground-truth data.

Method Overview
The simulation framework is composed of three parts: the spiking-neuron controller, the muscle actuation and 
the skeleton. The spiking-neuron controller receives the external inputs (sensory information and high-level 
commands) and sends out a series of spiking trains during each motion cycle and activates the muscle contrac-
tion. Each skeleton joint is connected with a pair of antagonistic muscles, generating the appropriate torques and 
resulting in the forward movements of the virtual insect. The parameters of the neuron controller and muscle 
actuation are updated with the technique of evolutionary algorithm, with the captured data of real insects. The 
overall algorithm of our method is presented in Fig. 1(a).

Figure 1.  (a) Algorithm flowchart. (b) Block diagram of neural system.
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Data availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).

Neuro-Musculo-Skeletal Model
Neuro-controller Model.  In real insects, spiking pattern of the neural system are used for the general pur-
poses of information transmission and processing. The controller in the proposed model is modelled as a network 
of spiking neurons. The unit model is based on the model proposed in the work by Izhikevich20. The model is 
endowed with both biologically plausibility of Hodgkin–Huxley-type dynamics and computational efficiency of 
integrate-and-fire neurons.

The equation for the spiking neuron model is:

′ = . + + − +v v v u I0 04 5 140 (1)2

′ = −u a bv u( ) (2)

with the auxiliary after-spike resetting:
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v represents the membrane potential of the neuron. u represents the activation of K+ ionic currents and inactiva-
tion of Na+ ionic currents, providing negative feedback to v. This model has four dimensionless parameters: a, b, 
c, d. The model is capable of generating multiple spiking patterns, including regular spiking, intrinsically spiking, 
chattering and so on. We here choose the most common type of spiking pattern (regular spiking) and its corre-
sponding parameters are: a = 0.02, b = 0.2, c =−65 mV, d = 8.

One novelty of this work is to provide a uniform encoding of both sensory information, high-level commands 
and control strategy. We choose specifically the slope angle as the example of the sensory information and the 
action of turning as the example of high-level commands. For the slope angle θs or the target orientation for next 
stride θt, the input currents I are defined as
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currents. Here both variables are set to 20 mA.
The input currents Isensor, Itarget are fed into an input layer of spiking neurons. The input layer is connected with 

a central layer of 16 spiking neurons, which are then fully-connected to the motor neuron. The output from the 
central layer is added with a bias component (denoted in blue in Fig. 1(b)), which generates the standard gait pat-
tern of walking straight forward. This constructs a neural network with spiking neurons (Fig. 1(b)). The synaptic 
connection weights between the neuron layers determine how the external information adjusts the control signals 
from the bias neurons and eventually modifies the standard gait pattern.

For the control strategy, each muscle is activated by a unit neuron model, which produces the overall spiking 
pattern of the neuron group activating the single muscle. Each joint is actuated by a pair of agonist/antagonist 
muscles, each of which is individually activated by one neuron controller. The separate control of individual mus-
cles mimics the distributed hierarchy of the neural control in real insect.

Muscular Model.  The typical Hill-type muscle model is introduced as the building block for the actuation 
system of the virtual insect21,22. To simulate a virtual muscle, we need to model the dynamics of activation and 
contraction.

The activation process converts the spiking trains from the neural system into the activation signal on the 
muscle. This is modelled as a first-order differential equation:

= − Δ ++a v a t a( ) (6)t t t t1

where at is the activation signal at time t, vt is the excitation from the motor neuron (Equation 2). Δt is the 
stepsize.

To simulate the contraction dynamics of a Hill-type muscle, we need to model two main features: the force—
length and force—velocity relationships. The force—length (FL) part models the function of both active and 
passive forces in terms of the muscle length, and the force—velocity (FV) part describes how the contraction force 
varies with respect to the muscle’s contraction velocity.
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where at is the activation signal from Equation 6. The variables Lce, Vce are the length and contraction velocity of 
the muscle. To simplify the model, we set Lce = 1 in the equation of Fv, which means that the change of muscle 
length is ignored when computing the force-velocity relationship. This assumption simplifies the model parame-
ters as: cV = cV0 + cV1, aV = aV0 + aV1 + aV2. The parameters Ω = (Fmax, β, ρ, ω, Vmax, cV, bV, aV) are muscle-specific 
and determine the overall performance of a muscle.

Existing works normally find the appropriate parameters using the collected data from vivo subjects23. 
However the experimental data are limited and may not be extended to different insects, or even different mus-
cles on a single insect. Given the difference of the neural system between real and virtual insects, it is not of sig-
nificance to follow the exact parameter values of real insects. Given the complicated model of nonlinear muscle, 
together with the parameters of neural system, we expect a high dimension of control space. It is challenging to 
reach an optimal solution for such optimization problem. In such circumstances, we propose the evolutionary 
algorithm to optimize the parameters of the controller and muscles simultaneously.

Skeletal Model.  During locomotion, an insect must solve essentially the same problem as a vertebrate 
although it has an external, rather than an internal skeleton. This is reflected in how the muscles are connected to 
the skeleton (Fig. 2). For the skeletal model, we follow the implementation from existing work11 and model the 
virtual insect as a hierarchy of connected rigid body.

The main body is constructed as a set of three rigid bodies: head, thorax and abdomen, connected by two joints 
(head-thorax and thorax-abdomen). Each leg is actuated with three selected DOF: trunk-coxa, trochanter-femur 
and femur-tibia. Movement about the single joints and the resulting stepping patterns are generated by the activ-
ity of antagonistic muscle pairs. In the stick insect, the three major muscle pairs of a leg are the protractor and 
retractor coxae, the levator and depressor trochanteris, and the flexor and extensor tibiae. The protractor and 
retractor move the coxa, and thereby the leg, forward and backward. The levator and depressor move the femur 
up and down. The flexor flexes, and the extensor extends the tibia about the femur-tibia joint.

Each body segment is modelled as cylinder with its length listed in Table 1. The radius of the cylinder is set to 
uniform (0.2 mm) across all leg segments. The data are extracted from the anatomy of real ants. During the loco-
motion cycle, legs in stance mode are dynamically actuated and legs in swing mode are kinematically animated. 
This is supported by biologically evidences that each leg only occupy a small proportion of body weight (5%) 
(Table 2), thus do not pose significant impact on overall body movements.

Figure 2.  Muscle attachment of the femur-tibia joint on a virtual ant.

Coxa Femur Tibia Tarsus

Front 0.25 2.49 2.33 2.37

Middle 0.25 2.82 2.74 3.13

Back 0.25 3.48 3.40 3.80

Table 1.  Length of body segments. Unit: millimeter (mm).

Dimension (mm) Mass (mg) Mass Proportion (%)

Head 2.67*2.20*0.50 5.23 21.75

Thorax 3.07*1.01*0.50 3.87 16.09

Abdomen 3.43*2.46*0.50 11.35 47.19

Front Leg 0.2*0.2*7.44 0.60 5.00

Middle Leg 0.2*0.2*8.94 0.50 4.12

Back Leg 0.2*0.2*10.93 0.70 5.82

Table 2.  Mass distribution of body segments. The dimensions of each part are the lengths along x, y, z axes.
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Real animal data.  Real animal data on ground reaction forces and kinematics were obtained from a previous 
study on the leg functions of desert ants Cataglyphis fortis24,25. The motion of the walking ants in an enclosed 
chamber was captured by a Photron Fastcam SA3 (San Diego, CA, USA) camera at a frequency of 500 Hz from 
the lateral and the dorsal view (Fig. 3). Their ground forces were recorded with a 4 × 4 mm force platform of 
resolvable forces Fx = 5.4 μN, Fy = 2.9 μN and Fz = 10.8 μN and natural frequencies of fx = 380 Hz, fy = 279 Hz and 
fz = 201 Hz26. The signals were amplified by a data acquisition system (MGCplus, Hottinger Baldwin Messtechnik, 
Darmstadt, Germany) and recorded with a sampling frequency of 1200 Hz. After each recording, the body mass 
was measured with an analytical balance of ±0.2 mg reproducibility (readout = ±0.1 mg, ABS 80-4, Kern & Sohn, 
Germany). A total of 274 trials with ground force measurements and video sequences were recorded for level 
locomotion. Trials in which the ants stopped, changed direction or touched the force platform with their gasters 
were excluded from the dataset. Subsequently, the first 15 records for each set of legs (front legs, middle legs, hind 
legs) were selected for data analysis resulting in 45 different strides. Besides the petiole, the head-thorax joint and 
the claws, the trajectories of the femur-tibia joint were additionally tracked for this study with Digitizing Tools 
2016071127 and MATLAB R20015b (The MathWorks, Natick, MA, USA). To further model the joint torques, 
body parts such as the head, the thorax–petiole-coxae, the gaster and the femur-tibia-tarsi (legs) were weighed 
and photographed for 15 randomly selected ants.

Optimization Algorithm
Previous paragraphs explain the hierarchy of our simulation framework. How to find the appropriate values for 
both the controller and muscle parameters is key to achieve stable performance of the locomotion. We here use 
the algorithm of Covariance Matrix Adaptation (CMA) to optimize the parameters. CMA is an evolutionary 
algorithm that is designed to solve nonlinear non-convex optimization problem. Existing works have applied this 
method to design the locomotion controller for virtual characters11,12,28.

The optimization is initialized with the mean vector m and the standard deviation vector σcma. For each new 
generation, λ offspring individuals are sampled with a normal distribution:

σ λ= + =Nx m C for i(0, ), 1, , (10)i 

The mean vector m represents the favourite solution from last generation. The covariance matrix C determines 
the shape of distribution ellipsoid. This covariance matrix is updated so that to increase the likelihood of success-
ful individuals.

All individuals are evaluated and ranked by a fitness function f(xi). μ individuals with the lowest fitness score 
are selected and named as the group of elites. The new mean of the next generation is updated from a weighted 
sum of these μ elites. The covariance matrix is updated similarly as a combination of covariance from previous 
generation. By iteratively repeating this process, the samples are expected to converge to the optimal solution.

In the model proposed in this work, the character has 3 DOFs (3 pairs of muscles) for each leg, and the dimen-
sions of the neuron and muscle parameters are 3 and 8 respectively for each neuron-muscle pair. The symmetry 
between left and right legs first reduces the dimensions of motor and muscle parameters to half. Together with 
the synaptic weights in the central neural system, the total dimension of parameters is 806. This far exceeds the 
dimensions of parameter space in existing works11,12,28 and the capability of the algorithm as declared by the 
author29. To optimize in the parameter space with such complexity, we resolve this challenge with a two-stage 
strategy with the algorithm of Covariance Matrix Adaptation (CMA). First, we optimize the input currents Is to 
the motor neurons and muscle parameters for the standard case of walking straight forward. Next, we optimize 
the offset currents from the central neurons, which are added to the standard case Is and generate the versatile 
motor skills including walking on curve trajectories and uneven terrains.

Objective Function for Stage I.  The design of the objective function is critical in selecting the elites out of 
the whole population and optimizing the parameters via generations of evolution. The objective functions at Stage 
I are designed to consider three goals simultaneously.

The first is to move forward at a predetermined velocity ν* of body center (a vector pointing straight forward):

Figure 3.  Video screenshots of real ant locomotion. The red curve denotes the trajectory of body center, the 
yellow triangle represents the supporting triangle formulated by touchdown positions of stance feet while the 
blue arrows denotes the force vectors at the stance foot. (a) dorsal view. (b) lateral view.
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where ν is the actual moving velocity of body center. The subscript k sums up all the simulation steps. The velocity 
is three dimensions (x, y, z) thus this objective function also penalizes the case when the body falls down or devi-
ates from the forward direction.

The second is to match the foot trajectory pf with the captured trajectory ⁎p f  from the real insect:

∑= −f p p( )
(12)t

k
f f

2⁎

By minimizing this objective component, we expect to reproduce the similar gait pattern as the real insects. Ants 
typically demonstrate the double-tripod gait11,30. The intra-leg coordination between joints on the same leg is 
achieved by matching the trajectory of the particular leg, while the inter-leg coordination between different legs 
is enforced by the spatial-temporal information embedded in the trajectories of all legs on real ants. The use of 
motion trajectories allows the compact representation of the desired gait pattern, as part of the optimization goal.

The third is to minimize the energy consumption of the neural system, that is to use as little current input I as 
possible:

∑=f I
(13)s

k

2

This objective is biologically valid since the individuals use less energy for neural control gains advantages during 
the process of evolution.

The final objective function is defined as:

ω ω ω= + +f f f f (14)s s v v t t

ωs = 1.0, ωv = 10.0, ωt = 0.5 are weights to balance the significance of three objective components. Our results are 
not sensitive to the exact values of these weights, so other values within the same order of magnitude may be used 
as well.

Objective Function for Stage II.  The goal for the optimization in Stage II is to find the optimal values of 
synaptic weights in order to adapt to a variety of scenarios, specifically coping with curve trajectories and uneven 
terrains.

To accomplish this goal, we generate Ns samples from 2D uniform distribution of two variables: 
[ , ]s max

s
max
sθ θ θ∈ − , θ θ θ∈ −[ , ]t max

t
max
t  and enforce an objective function focusing on the trajectories of body 

center and foot:

∑ ω ω= +f f f( )
(15)N

s s v v
s

By summing up the errors of all samples, we consider the fitness of the individual solution under general 
scenarios.

Results
Implementation.  The code is written in C++ and runs on a standard PC with four CPU cores at 3.4 GHz. 
The physics simulation is done with the Bullet31 physics engine with a simulation step of 5 ms. Our single-thread 
implementation runs in real time during the online simulation, while the optimization process runs with the 
technique of multi-thread, costing around 10 hours for Stage I and 22 hours for Stage II on the aforementioned 
hardware. In comparison to the discretized look-up table11, our work provides a continuous mapping with com-
parable timecost. Our method also avoids manually selecting the value of the substep width which critically deter-
mines the quality and time performance of the look-up table method11,32. During the optimization, the simulation 
for each individual is run for 100 seconds (or 100 locomotion cycles) for Stage I, or 10 seconds (or 10 locomotion 
cycles) for Stage II, or is terminated in advance if the body falls down (the height of body center falls below a 
threshold). Figure 4 gives a screenshot of the locomotion sequence of a virtual ant in a variety of scenarios.

Figure 4.  Screenshot of locomotion sequence of a virtual ant. (a) Walking straight forward. (b) Walking along a 
curve. (c) Walking on uneven terrain.
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Optimization.  The total dimensions of the parameter space is 11*18 = 198 for Stage I. For each genera-
tion, λ = 120 individuals are sampled from the elites and μ = 40 elites are selected out of the whole population. 
The values for the parameters for all neuron and muscle units are initialized as: I = 10 mV, Fmax = 1, β = 1.5, 
ρ = 2.0, ω = 3.0, Vmax = 5.0, cV = −7.0, bV = 0.67, aV = −1.668. The triggering timing of the neuron models are set 
as Ts = 0,Te = 0.5 for left front, right middle, left back legs, and Ts = 0.5, Te = 1.0 for right front, left middle, right 
back legs. The success of the optimization is confirmed with the decreasing value of the objective function (Fig. 5). 
The objective function converges quickly in the first 2000 generations and slowly afterwards.

The total dimensions of the parameter space is 2*16 + 16*36 = 608 for Stage II. The values for the weight 
parameters are constrained as [0, 1]. The optimal values for the muscle parameters in Stage I (standard case of 
walking forward) are used at this stage. In practice, we found that it is difficult for the solution to converge given 
the high dimensions of the parameter space. To ensure the successful convergence, we initially sample the candi-
dates from a narrower value range of [− max

sαθ , max
sαθ ] and [− max

tαθ , αθmax
t ], where α ∈ [0,1]. α starts from value of 

0 and progressively increase to 1, with a step of 0.2, so that the initial value stays sufficiently close to the optimal 
value. Figure 5(b) shows the optimization progress for Stage II. The result shows that when the exploration range 
is small (for cases when α = 0.2 or 0.4), the optimization converges fast and smooth, while for other cases the 
optimization requires more iterations to converge.

Spiking pattern and muscle activation.  Figure 6 plots the spiking pattern and muscle activation signals 
of the retractor neuron-muscle unit from the body-coxa joint on the left-sided and right-sided middle legs, when 
the character turns left. With the activation dynamics (Equation 6), the discrete spiking signal is converted into 
a continuous activation stimulus. The result shows that when the character turns left, the number of spike trains 
on the left-sided leg is greater than the one on the right-sided leg. This leads to a larger activation signal for the 
muscle actuation. The result also shows that the coordination between different legs is achieved by preferably 
adjusting the number of spike trains, instead of the amplitude of the spike.

Comparison of joint trajectory between the real and virtual ants.  One of the objective functions is 
to minimize the difference between the trajectory of the real and virtual insects. We here compare the joint angles 
at three DOFs on the middle leg for both the real and simulated subjects (Fig. 7). We found that the overall shape 
of the trajectory is consistent between the real and simulated cases. However in the result of real cases, the joint 
angles decrease to a minor extent before increasing incrementally. This is not observed in the simulated case, in 
particular for the body-coxa joint. This mismatch may be caused by the posture adjustment of real ants, or pos-
sibly by the hardware limitation (image resolution and framerate) of data collection. In the simulation case, the 
body-coxa joints move at a strict forward pattern in a single motion cycle.

Comparison of joint torque between the real and virtual ants.  Figure 8 plots the joint torques on the 
middle leg during the stance stage for both the simulated and real cases. The torque from the simulation cases are 
recorded as the torques applied on the joint constraints during the simulation step. The torque from the real cases 
are computed with the method of Virtual Model Control11. This method is based on Jacobian matrix, converting 
the ground force on the end-effector into the joint torques given the configuration of body hierarchy. The peak 
of the simulation torques arises in the first half of the stance stage for the body-coxa and femur-tibia joints, and 
in the middle of the stance stage for the coxa-femur leg. However, the muscle activation in the simulation case 
reaches its peak around the end of the stance stage, instead of the first half. This is possibly due to the fact that the 
joint rotation reaches its limit at the end of the stance stage, resulting in a small value of FL and FV (Equation 9) 
and thus a moderate value of joint torque. The torque profiles of real cases generally follow the shape of a para-
bolic curve and have the peak value around the middle of the stance stage. This is consistent with the ground force 
on the middle leg (Fig. 9(b)), which presents a similar parabolic curve shape.

Figure 9 plots the ground forces on the real ant in the Z (vertical up) direction during the stance stage. For the 
front leg, the force magnitude present small variations during the whole stance stage. For the middle leg, the force 

Figure 5.  Objective function value of best individual from each generation for optimization Stage I (a) and 
Stage II (b).
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Figure 6.  Spiking pattern and muscle activation of the neuron-muscle unit from the body-coxa joint on the 
left-sided and right-sided middle leg, when the character turns left. (a) Spiking pattern on the left leg.  
(b) Activation signal on the left leg. (c) Spiking pattern on the right leg. (d) Activation signal on the right leg.

Figure 7.  Joint angles on the middle leg captured from real insects during a locomotion cycle. Dashed lines are 
trajectories from real ants, solid line (in bold) is from virtual ant with Hill-type muscle and dashed line (in bold) 
is from virtual ant with PD servo.

Figure 8.  Joint torques on the middle leg during the stance stage in the mode of walking straight forward.

Figure 9.  Ground forces in the Z direction during the stance stage in the mode of walking straight forward.
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magnitude increases initially, remains stable and decreases when the stance stage comes to the end. This creates 
a parabolic curve of the force profile. For the back leg, it presents a distinct peak during the first half of the stance 
stage, which is in consistent with the torque results in the simulation case.

Discussion
Advantages of spiking neuron model.  Replicating the function of neural system in real organism is 
non-trivial, given the fact that the machinery underlying the observed behaviour is not fully understood32. 
Existing works have proposed different paradigms to model the behaviour neural system. For example, previous 
work uses a network of nonlinear oscillator to construct the Central Pattern Generator11. We believe the use of 
different models has its own pros and cons. The oscillator with inherent properties of limit cycle and attraction 
point could generate the basic pattern with no intervention from higher control system. The high-level neural 
system is encoded as a look-up table11, which is pre-computed and discretized. In comparison, the current work, 
which is based on spiking neuron models, provides a unified representation of neural system. The spiking pattern 
of the unit neurons can be used to seamlessly connect the procedures of sensory processing, high-level commands 
and low-level control strategy. Such a unified representation lays the foundation for processing sensory informa-
tion via large-scale networks.

Advantages of Hill-type muscle.  The use of nonlinear Hill-type muscle improves the naturalness of the 
synthetic motion on the examples of biped28, and research also show that it improves the 2D motion stability for 
insect simulation33. However the significance of non-linear muscle has not been fully evaluated in the example 
of a 3D insect model. We here compare the performance of two actuator choices: Proportional-derivative (PD) 
servo11 and nonlinear Hill-type muscle, in terms of the naturalness of the synthetic motion (Fig. 7). The PD servo 
is defined as:

k q q k q( ) (16)g t t d t1τ = − ++ 

+q q q, ,t t t1  are the rotational angles and velocity of the joint. kg, kd are the gain and damping coefficients.
To quantitatively evaluate the difference between the ground-truth data and the simulated trajectories, we use 

the Euclidean distance between two vectors:

= || − ||d T T (17)g s

where T T T T T TT T[ , , ], [ , , ]g g g
n
g s s s

n
s

1 2 1 2 = =  are joint trajectories of rotation in one step cycle from the 
ground truth and simulated result respectively. Tg is computed as the average of all collected trajectories of real 
ants.

The quantitative result of comparison (Table 3) shows that trajectories of our model presents less deviations 
from the ground-truth data than the model in11. This is mainly caused by the linear feature of the PD servo. We 
also notice that the peak values of the trajectories of the previous model11 are generally higher than the ones 
of the proposed model in this work. The reason is possibly caused by the fact of over-shooting34. The prob-
lem of over-shooting refers to the fact that the PD servos normally require a large value of kg, thus causing the 
over-protraction/elevation/extension of the foot.

The reason is possibly caused by the fact of over-shooting34. The problem of over-shooting refers to the fact 
that the PD servos normally require a large value of kg, thus causing the over-protraction/elevation/extension of 
the foot.

The neuro-musculo-skeletal model we developed yields very promising results. The CMA optimization algo-
rithm successfully helps to find optimal parameter configuration for the model. The optimization process con-
verges quickly in around 2000 iteration. And the simulated gait pattern is highly consistent with the experimental 
data collected from real ants walking in the free mode.

An interesting and promising point is that the joint torques of the simulated and real cases also present high 
consistency. It will be a great help to biologist in studying of some special phenomenons of insects such as the 
incredible lifting ability of ants and impressive leaping ability of mantis. They can easily observe and analysis the 
stress conditions under various situations with the simulated model. And the study can stimulate the develop-
ment of bionic design.

The model could also be beneficial in studying of higher level behavior of insects. With the model, we can 
reproduce the motion of an insect with only the recorded foot trajectories. Thus, we can use techniques of 
machine learning to extrapolate or predict the trajectories of insects under different circumstances and then 
reconstruct the 3d motion with our model. Our model is intended to be widely applicable in its ability to model 
insect locomotions. Here we only conduct a primary validation on ants. It will be interesting to apply this model 
to other insect species in future, potentially including other locomotion constraints.

Joints Our Model Previous Model11

body-coxa 0.7188 1.4827

coxa-femur 0.3467 1.7306

femur-tibia 0.4962 4.1081

Table 3.  Quantitative comparison of the trajectory difference between the ground-truth data and the ones 
generated by our model and the previous model11.
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In conclusion, we have proposed a neuro-musculo-skeletal model of virtual insects. By incorporating some 
nature-tested mechanisms of real insects, the model is capable of reproducing the gait pattern observed from real 
insects on virtual ones. There are a couple of directions for future works. The current implementation uses a sin-
gle neuron to simulate the neuron group activating the same muscle. Improving the model complexity to match 
the real insect is worth exploring. To extend this framework to these advanced motion skills is one of the future 
efforts. How to encode more sophisticated behaviours, such as collective transport35, as patterns of spiking trains 
is even more challenging.
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