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1 Introduction

Medical infrared thermography (MIT) is a technology which has its roots dating back to 400BC

when, change in body heat was considered as an indication of an underlying medical condition

[1]. The following section is a briefing of infrared thermography and related terms.

Infrared thermography is a graphical representation of heat.

Thermogram: The picture produced by infrared thermography, using photographic film sen-

sitive to infrared radiation or the record produced by a thermograph.

Radiation: Transfer of energy through electromagnetic waves.

The types of thermography are contact thermography (using liquid crystals), remote sensing

thermography (using IR optical and detector system) and computer assisted

thermography (using modern robust thermal imaging cameras) [1–3]. Different types of
imaging methods based on infrared radiation are static, dynamic (DAT, subtraction),

dynamic (active), TTM (thermal texture mapping), multispectral/hyperspectral, multimodality,

and sensor fusion.

Medical infrared thermography (MIT) has gained importance in the recent years because of the

following factors:

1. Thermal imaging is less sensitive to light and hence poor illumination does not pose any

adverse effect on the image.

2. Temperature as a tool for diagnosis has shown promising results in the early detection of

many diseases like breast cancer, rheumatoid arthritis, osteoarthritis, Raynaud’s

syndrome, and so on.

https://www.collinsdictionary.com/dictionary/english/picture
https://www.collinsdictionary.com/dictionary/english/thermography
https://www.collinsdictionary.com/dictionary/english/photographic
https://www.collinsdictionary.com/dictionary/english/infrared
https://www.collinsdictionary.com/dictionary/english/thermograph
https://doi.org/10.1016/B978-0-12-816086-2.00004-7
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3. Surface temperature distribution of an object under study can be easily obtained over a wide

area in just one click of a thermal imager.

4. The patients are not subject to any harmful radiation from the imaging equipment as

infrared thermography is noninvasive, noncontact, and nonradiant.

5. With the improvements in thermal sensing equipment and software image processing

capabilities, computer aided diagnostic system is feasible and accurate.
2 Characteristics of Thermal Infrared Images

Infrared radiation is an electromagnetic wave emitted by any object above absolute zero. It is

just next to the visible spectra in the electromagnetic spectrum with its wavelength in

the range 0.7 to 1000μm.

The important characteristics of thermal infrared images are resolution, noise, spectrum,

and dynamic range.
2.1 Spatial Characteristics (Resolution)

Fig. 1 shows the thermal infrared sensing detectors (focal plane array) of dimension 320�240

producing a thermal image of 320�240 pixels. The thermal infrared image is shown in

Fig. 2. Each pixel in the image shows the surface temperature detected at that point. Thus the

image represents the temperature distribution across the surface of the object imaged. The

variation in temperature is depicted using different colors as seen in the temperature scale.

Here dark color represents lower temperature and light color higher temperature.
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Fig. 1
Arrangement of infrared detector array corresponding to pixels in the thermal image.



Fig. 2
Thermal image showing the spatial characteristics of the thermal image (spatial resolution 320�240

pixels).
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2.2 Noise (Thermal Resolution)

Noise in the thermal image limits the camera sensitivity to detect targets of weak contrast.

This is characterized by noise equivalent temperature difference (NETD) and minimum

resolvable temperature difference (MRTD).

Good sensitivity and pixel count ensures that the image contains good thermal and spatial detail

and hence good diagnostic ability.
2.3 Spectral Characteristics

The entire spectral band of Infrared is subdivided into five regions based on the wavelength

range. The wavelength of near infrared (NIR) is between 0.7 and 1.0μm, short wave infrared is

between 1 and 3μm, mid wave infrared between 3 and 5μm, long wave infrared between 8 and

14μm and very long wave infrared having wavelength>14 upto 1000μm.

The spectrum we are concerned lies in the long wave infrared (LWIR) region corresponding to

8–14μm as human body radiates most at 10μm.

Higher temperatures mean higher wavelengths and thus in the thermal infrared image, hot areas

are shown bright and at very high temperatures, the region is shown as white because of

the emission of green and blue light at higher wavelengths. Human skin has an emissivity in the

range of 0.98 which matches the emissivity of a perfect blackbody. Hence a modern day

thermal imager with high sensitivity to infrared radiation can effectively measure the

temperature of the object imaged. Also it has been shown that there is a correlation between the

temperature of the object and the infrared energy radiated from the surface of the object.
2.4 Dynamic Range

It represents the capability of the camera to maintain the finer radiometric measurements even

when the temperature spans a large range in the image captured. So a captured thermal

infrared image should not have temperatures varying by >30°C as pointed out in Ref. [3].
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The nominal for medical infrared thermography is 12 bits per pixel. The typical characteristics

of a thermal image and testing of the same is explained by Houdas and Ring [4].
3 Medical Infrared Thermography

Ring [5] has studied the development of temperature measurement in medicine and the use of

thermography to visualize the spatial and temporal patterns of surface temperature of man

in states of health and disease over a period of 25years. During 1934 to 1936, Hardy [6, 7]

studied the physiological role of infrared emission from human body and proposed that human

skin can be considered as a blackbody radiator. This heat radiation from the body surface

can be detected through the use of a thermal imaging camera. Ring et al. has presented in detail

the physics behind infrared thermal imaging in Ref. [8]. Thermal infrared imaging works

by capturing the infrared radiation emitted from various regions of the body as temperature

readings spontaneously. Every part of the body has a specific thermal pattern associated with it

based on the microcirculation near skin surface. Thus thermal imaging can be used to

monitor the changes in the temperature profile of a particular region with respect to time.
3.1 Early Diagnosis Using Medical Infrared Thermography

The quantification of medical infrared thermal images for early diagnosis of human

pathological conditions has been attempted by many researchers as presented in Ref. [9]. The

list of diseases where digital infrared thermal imaging (DITI) is used is given in Table 1.

There are many successful computational techniques in diagnosis and detection of medical

conditions such as breast cancer [10] as shown in Fig. 3A and B, diabetic foot and osteoarthritis,

in effectively screening potential severe acute respiratory syndrome (SARS) patients, in the

analysis of cortical perfusion during ischemic strokes, in the segmentation of the eye and cornea

and also in the detection of glaucoma from ocular thermographic images as observed in

Ref. [11].

A typical diagnostic system using medical infrared thermography, image processing, and soft

computing is shown in Fig. 4.
Table 1 List of medical conditions where DITI is used

• Breast cancer

• Diabetic foot ulcer and neu-
ropathy detection

• Lung cancer
• Arthritis
• Sports injury

• Glaucoma

• Dental abscess
• Blood perfusion
• Skin lesions
• Respiratory distress
• Raynaud’s phenomenon



Fig. 3
(A) Normal breast and (B) abnormal breast.

Visual image IR camera

Infrared radiations

IR image

Diagnosis

Classification using soft
computing techniques

(Diseased or normal, low, moderate,
high)
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(Temperature difference, mean,

standard deviation, area, depth, etc.)

Fig. 4
Block diagram showing the typical use of soft computing and infrared thermography for medical

diagnosis.
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3.2 How Is IR Thermal Imaging Different From Other Medical Imaging Modalities?

An IR thermal image captures the infrared energy radiated from the surface of the skin or any

other object above absolute zero. The salient feature of thermography is its ability to image

the thermovascular appearance of the skin and not the structure and anatomy of the human body

which is done by many other medical imaging modalities. Jones and Plassman [12] details

the journey of the improvements in thermal imagers, how an IR image is formed, processed, and

analyzed for detective the changes in response to different stimuli like cool temperatures.

Izhar in his thesis [13] describes the registration and analysis of thermal images in medicine.

Oliver Faust et al. [14] have given a review of algorithms used for computer aided

diagnosis systems using thermography. But most of these do not make use of soft computing

techniques for the processing of the infrared thermal images.
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Herry and Frize in their work [15] present techniques to de-noise the infrared images, to remove

the background from the infrared images to identify the regions of interest and statistical

analysis of the ROIs to classify normal and abnormal temperatures.

3.3 Role of Soft Computing in Medical Infrared Thermography

Modern intelligent diagnostic systems for medical thermal infrared image analysis is built on a

combination of various soft computing techniques such as fuzzy logic (FL), neurocomputing

(NC), evolutionary computing (EC), probabilistic computing (PC), and parts of machine

learning (ML). These techniques include artificial neural networks (ANN), fuzzy-C-means

(FCM), deep learning—convolutional neural networks (CNN), support vector machine (SVM),

genetic algorithm (GA), fuzzy neural networks, and Bayesian networks. SVM and ANN rule

this space and with the improvement in hardware and computing capability like graphical

processing units (GPU), deep learning architectures are paving way for more accurate

intelligent systems. A lot of hybrid soft computing techniques have been used for medical

thermal infrared image analysis. For a more detailed understanding of soft computing

techniques for medical image analysis please refer [16].

4 Main Focus and Motivation Behind the Chapter

This chapter focuses on the use of medical infrared thermography and soft computing

particularly deep learning for diabetic foot assessment. Diabetic foot complications are a major

cause of concern for diabetic patients as it affects mobility and quality of life. At present,

any patient suffering from diabetes for five or more years in the case of type 1 diabetes and

patients diagnosed with type 2 should undergo foot evaluation to prevent any foot complication

such as ulcer or peripheral neuropathy. This requires the patient to visit the foot evaluation

clinic in regular periods usually 3months in the case of at risk patients, 6months with patients

involving other diabetic complications and peripheral arterial disease and 1 year for regular foot

evaluation. This is cumbersome looking at the money and time involved. Many patients

avoid or ignore the visit. This later converts to foot or toe amputation which can be avoided if

computer aided diagnosis system is available at home as an app in mobile or for

telemedicine purposes. For such a system, image processing has to be done automatically and

abnormality has to be detected immediately that suggests treatment or visiting the clinic.

This is where machine learning comes into play as image processing for the extraction of

abnormal regions, grading the level of complication and for decision making to suggest further

action such as suggesting the patient to visit the foot evaluation clinic and get the treatment

done or later for telemedicine. Hence we studied the surface temperature distribution (STD)

patterns in the plantar foot of both diabetic and healthy subjects to establish the differences in

temperature capable to early diagnosis of the complication and we are looking forward to

building a diagnostic system to detect and assess diabetic foot complications early to prevent

amputation.
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The broad objective of this research is to design an intelligent system to auto detect the onset

and assessment of foot complications caused by diabetes and to improve the early

diagnosis of the same. It is based on the analysis of IR thermal images of the regions of

interest of the foot. The main objectives are

(1) Study of surface temperature distribution in the plantar foot of diabetic and normal

subjects to evaluate the potential of thermography for early diagnosis of type 1 and type 2

diabetic complications.

(2) Design of an automated intelligent assessment system for diabetic foot complications

using the aid of digital image processing techniques and artificial neural networks.

(3) Correlation between the existing clinical methods for foot evaluation and the evaluation

done by thermography will be carried out to establish the usefulness and accuracy of

the system built.
5 Literature Review on Diabetic Foot Complications Assessment Using MIT

Bagavathiappan et al. [17] have studied the correlation between diabetic neuropathy and plantar

foot temperature proving the capability of thermography in detecting diabetic neuropathy.

Brånemark et al. [18] observed the temperature distribution patterns of hands and feet for both

nondiabetic and diabetic subjects. Bharara et al. [19] formed a healing wound index based

on the thermal profile of foot wound of diabetic patients. This helps in studying the healing

pattern of the diabetic foot complication to suggest treatment. Peregrina-Barreto et al. [20]

studied the temperature pattern of diabetic patients and have analyzed the same using

angiosome concept. They have divided the entire foot into four regions corresponding to four

angiosomes, a concept derived by Nagase et al. Estimated temperature difference between

the left and right foot was calculated to carry out the analysis. Also, the classification of the

thermal patterns is done for each of the four regions based on seven classes derived. They

concluded that the estimated temperature difference did not show any difference useful for

analysis and that the HSE (hot spot estimator) was capable of detecting hot spots which would

turn out to be ulcer later which the ETD (estimated temperature difference) was not able to.

Hernandez-Contreras et al. [21] were able to observe the butterfly pattern associated with

nondiabetic subjects. They formulated an index called the TCI (thermal change index) based on

the temperature readings of the corresponding angiosomes of diabetic and nondiabetic subjects.

They concluded that a change of 1°C was sufficient to identify various thermal classes.

No statistical analysis was done for the data. Liu et al. [22] were able to detect abnormal regions

in the foot of diabetic patients using the temperature difference between the ipsilateral and

contralateral foot with a cutoff of 2.2°C. Automatic segmentation and registration of the foot

was carried out and then the temperature difference between the left and right foot was

calculated. But the methodology followed to calculate the temperature difference was not

explained. In this work, a new methodology is proposed to analyze accurately the temperature

distribution in healthy and diabetic subjects. Renero-C [23] has observed abrupt changes
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in temperature using thermography to detect possible diabetic foot ulcer formations. Gatt et al.

[24] demonstrate that the probability of complications of PAD, neuropathy, and/or

neuroischaemia being present increases as the temperature of these regions rises. A narrative

review on the various techniques used for diabetic foot complications based on

asymmetry analysis, stress test and temperature distribution analysis is given

by Hernandez-Contreras et al. [25].
5.1 Methodology

The work done so far is shown in the flow chart (Fig. 5).
Fig. 5
Extraction of abnormal regions in plantar surface of foot.
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5.2 Study Population

Sixty-two diabetic patients (38 male and 24 female) and with diabetes mellitus, and

20 nondiabetic subjects with an average age of 42years, standard deviation 12years. Few

patients had or was having diabetic foot complications and other patients had healthy foot. We

imaged the diabetic subjects at the Karnataka Institute of Endocrinology and Research (KIER),

Bangalore, India after taking informed consent for the study. KIER’s Institutional Ethical

Committee approved the study. So, all ethical considerations were met.

Inclusion criteria

• Adult male or female, 18years of age or over.

• Diagnosed with type 1 or type 2 diabetes.

• Is healthy without diabetes.

• Currently receiving treatment for a diagnosis of diabetic foot ulcer or have had an active

foot ulcer healed within the last 6months.

• Is willing and able to provide informed consent indicating that they understand the purpose

and procedures required for the study.

Exclusion criteria

• Subjects who do not meet the inclusion criteria.

• Is currently enrolled in another clinical trial.

5.3 Thermal Image Acquisition and Segmentation

Image acquisition protocol plays an important role in infrared thermography.IR thermal image

or the thermogram acquisition should be done in a controlled environment after considering

the various factors briefed in Ref. [26]. IR thermal image acquisition of human foot is discussed

in Ref. [27] where the different imaging setups for thermal infrared image acquisition of

foot and its influence on the accuracy of the segmentation of the foot for further analysis to

detect diabetic foot ulcer is analyzed.

The healthy subjects were imaged in the college laboratory and the diabetic subjects were

imaged at KIER (Karnataka Institute of Endocrinology and Research, Bangalore). Informed

consent was taken from all the patients involved in the study.

The thermal images of healthy foot are segmented using the method (Otsu thresholding

followed by morphological processing) explained by Sudha et al. [27]. For diabetic patients,

active contours without edges method for segmentation given by Chan and Vese [28] is used.

If the segmented region extends beyond the edges of foot, it is removed using

morphological processing. The morphological operation used is closing.

For colder toes and for diabetic patients with amputation, the aforesaid methods do not work

well. For such images, roipoly function in MATLAB is used to interactively segment the
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left and the right foot approximated by a polygon. This morphological processing is

similar to the process discussed in Ref. [29] by Zohora et al.

But the problem in the segmentation method [27] was the segmentation of the toes region when

it was cold and when the subjects had existing complications like ulcer. Hence we explored

another acquisition procedure where we had cut two holes in the polyurethane foam with

density 30kg/m3 at the bottom of the foam. This made sure that patients need not insert their

foot in the holes as required previously but to just keep the foam on the ankle region from

the top when the subjects are lying in supine position as seen in Fig. 6. The foot is

segmented automatically using a mask fixed in position for the left foot and right foot as

shown in Fig. 7A and B. Then supplying this mask to the active contours function, the foot is

segmented as shown in Fig. 7C.

Themain advantage of using a left and right mask for segmentation is to automate the process of

segmentation of the foot for all images contained in a folder. All the images obtained on a

particular day are saved in the same folder. We have written a matlab script to read the images,

save it in a variable and using the mask defined. This saves lot of time and energy when
Fig. 6
Foot thermal image acquisition.

Fig. 7
(A) Initial predefined left mask, (B) right mask, and (C) segmented foot using the mask and active

contours method.
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compared to manual or semiautomated segmentation where human intervention is required to

define the initial contour for segmentation. The segmented foot is also saved in the

same folder with the same filename as the thermal image with “_mask” added to the filename.

5.4 Thermal Image Registration

Now the segmented feet are not the exact same mirror images of each other since both are not

aligned with respect to each other as can be seen in Fig. 8A. The left and right foot has to

be aligned to do the comparison of the temperature values. Hence, both the foot has to be

registered to do the same. This is done using the following process. The mirror image of the

segmented right foot is computed. Using this as the reference image, the left foot is

registered. The registered left foot can be seen in Fig. 8B as magenta colored foot

5.5 Extraction of Region of Interest (ROI)

Once we have the segmented foot, the next step is the extraction of ROI to perform the analysis.

For this process we have split each plantar foot into six regions—the hallux or the bigger

toe, other toes region (corresponding to the 2nd to the 5th toe), the plantar arch region, lateral

foot region in the middle and the heel—inner and outer regions similar to that given by

Hernandez-Contreras [30]. The regions are shown in Fig. 9. A bounding box is drawn around

each of the foot to separate them.

For each of the regions in the bounding box, the mean temperature, the max temperature, the

mean temperature difference and correlation between the corresponding regions of each

foot are computed for further analysis.

5.6 Feature Extraction and Detection of Abnormality

Statistical features such as mean temperature difference (MTD) and correlation between

the corresponding pixels in the left and right foot are extracted after careful processing to take

into account that the left and right feet are mirror images of each other.
Fig. 8
(A) Segmented right and left foot and (B) registration of the left foot with respect to the right (seen in

magenta color).



Fig. 9
Bounding box of the segmented left foot and the six regions of interest extracted from the bounding
box. R1, big toe region; R2, other toes region; R3, plantar arch region; R4, lateral middle sole; R5,

inner heel region; R6, outer heel region.

84 Chapter 4
A hot region in diabetic patients is a characteristic feature of inflammation or the presence of

ulcer. Fig. 10A shows the extracted hot regions as white patches. Fig. 10B shows the

infrared image of a diabetic patient. The gray color in Fig. 10C represent cold regions.

The technique followed here is thresholding. The threshold for extracting the hot region is

calculated using the formula (Eq. 1).

Max Max Temp:of Left Foot, Max Temp of Right Footð Þ (1)
Fig. 10
(A, E) Segmented hot regions, (B, F) IR thermal image of diabetic patient, (C, G) segmented cold

regions by inbuilt multilevel thresholding, and (D, H) segmented cold region using our
thresholding method.
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The multilevel threshold that works best for extracting the cold regions is calculated using the
following formulas (Eqs. 2,3).

Level1¼ min Mean_LeftFoot,Mean_RightFootð Þ=2ð Þ (2)

Level2¼ min Mean_LeftFoot,Mean_RightFootð Þ (3)

The difference in the regions extracted by the built in multithresholding function and our
method can be easily visualized from Fig. 10C, D and G, H.
5.7 Statistical Analysis

The features extracted are analyzed for each of the six regions. Table 2 shows the MTD for four

diabetic and four healthy subjects. Table 3 shows the correlation between the

corresponding left and right foot regions.

The correlation coefficient “r” is calculated between the corresponding regions (matrix A) of

the left foot and right foot (matrix B) using the formula given in Eq. (4):
Table 2 Mean temperature difference (MTD) between left and right foot

S.�No.

MTD

Rl R2 R3 R4 R5 R6

Healthy 0.77 0.59 0.59 0.4 0.2 0.74
Healthy 0.67 0.63 0.89 0.12 0.08 0.23
Healthy 0.55 0.8 0.36 0.09 0.31 0.36
Healthy 0.81 0.732 0.35 0.85 1.14 1.13
Diabetic 0.9 0.92 0.01 0.02 0.51 1.68
Diabetic 0.32 0.24 0.3 0.02 0.38 1.75
Diabetic 3.06 0.84 1.24 0.38 0.7 3.04
Diabetic 0.24 0.26 0.17 2.72 2.65 2.42

Table 3 Correlation between left and right foot corresponding to the six regions

S.�No.

Correlation

Rl R2 R3 R4 R5 R6

Healthy 0.78 0.89 0.98 0.91 0.92 0.91
Healthy 0.79 0.91 0.87 0.89 0.92 0.97
Healthy 0.86 0.74 0.85 0.88 0.74 0.89
Healthy 0.8 0.92 0.64 0.89 0.78 0.95
Diabetic 0.77 0.9 0.75 0.9 0.77 0.93
Diabetic 0.72 0.84 0.77 0.95 0.81 0.94
Diabetic 0.52 0.65 0.49 0.68 0.6 0.5
Diabetic 0.61 0.7 0.63 0.5 0.42 0.46
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where A ̅ ¼ mean (A) and B̅ ¼mean (B).
m and n are the size of the region given as m�n pixels.

This is a valuable measure as it represents a spike in some temperature reading in the region

being analyzed. Thus correlation between the left and right foot regions for diabetic

subjects remain low in all the diabetic subjects analyzed. It was in the range of 0.4 to 0.8, low

correlation in the region where there is an underlying complication present or building up.

So this ensures that the most problematic region is not missed.
5.8 Classification of Foot for the Assessment of Diabetic Complication Using Deep
Learning Neural Network

Neural networks are efficient in handling many of the issues faced by other architectures such

as images corrupted by noise, degraded, and distorted images. Both similarity and

dissimilarity between images can be figured out by neural nets. Also, the effective use of

parallel processing can be leveraged to neural network architecture with much ease, hence

reducing computation time. Features extracted from medical images are very subjective.

As features are not hand crafted and learning happens in an unsupervised manner, it is very

suitable to avoid any bias in reading the temperature values. Also, the ability to learn

new features automatically enhances the accuracy of classification.

Deep learning is effective when we have a huge dataset which is very much limited in the case

of medical domain and particularly with thermal imaging. For such small datasets, it is still

possible to use Deep Convolutional Neural Networks which was pretrained on large datasets

using natural images. The power of CNNs can be leveraged to small datasets using the

concept of transfer learning as pointed out in Ref. [31]. We have explored the use of pretrained

deep learning convolutional neural network (CNN) model called the Mobilenet model [32]

to classify the foot images as healthy, diabetic without complications and diabetic with

complications. Training a deep learning model from scratch will take days. But a pretrained

model can be retrained for our own problem in few hours. It took just few seconds for our

problem on a 1060 GPU. The evaluation/classification time taken on the machine for a single

image is 0.05s on an average. We have used the Tensorflow library and the mobilenet

architecture for the same. This is a preliminary study to evaluate and understand the

applicability of CNN model to thermal infrared images and it has shown promising results.

Fig. 11 shows the steps involved in the using the pretrained model for our classification



Download the

pretrained

mobilenet 

architecture 

Retrain the model for the new 

categories of classification of 

foot (diabetic with 

complication, diabetic 

without complication and 

healthy)

Run the model
using test image

Augment the 

dataset using 

images obtained 

from different 

color palettes 

Fig. 11
Block diagram for classification using pretrained classification model.
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problem. Fig. 12 shows the three classes of images that the model is trained on: the diabetic with

complications, diabetic without complications and healthy subjects without diabetes.

Out of the 62 images captured from diabetic patients, 50 patients were without existing

complications and 12 were with existing complications. There were 20 images in the healthy

category.

Data augmentation: As this is a very small dataset, we considered augmenting the dataset with

more data and since this is medical data, we cannot synthesize new data. Hence, we

considered taking the different palette images for any given image. For example for a single

image taken from a diabetic patient, the images in rainbow palette, hot metal, and ironbow

palette were taken. Thus we have three different images for the original image. This gave a

threefold increase in the number of images. Thus the total images in Diabetic without

complications is 150, diabetic with complications is 36 and healthy is 60.
Classification
results

Diabetic with
complication
(images)
(36 images)

Diabetic without
complication
(150 images)

Healthy
(60 images)

Retrain model built
using mobilenet
architecture for
classification of human
foot images as diabetic
with complication,
diabetic without
complication, healthy

Trained
model to
classify
foot
images

Test imageFoot images

Fig. 12
The different classes of foot and the classification system.
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Pretrained model used: Mobilenet architecture trained on 1000 image categories of the

imagenet dataset.

Methodology used: Transfer learning—where the weight obtained in training the model on a

different dataset is retrained to learn another set of classes for a different dataset (images of

diabetic and healthy foot).

System configuration:
Processor: Intel core i7 processor.

Processor Speed: 3GHz.

RAM: 16GB.

Storage: 240GB SSD+1TB HDD.

Graphics card: Nvidia 1060 with 6GB RAM.
There has been success in using various soft computing techniques such as ANN, Naı̈ve

Bayes, SVM and k-Nearest Neighbour for classification of thermograms as shown by

Dey et al. [33]. The work in Ref. [34] highlights the use of convolutional neural network for

segmenting the pressure areas to reconstruct the shoe last surface for designing shoes

for diabetic foot.

We would be validating the results with the classification results obtained from clinical data.
6 Challenges for Medical Infrared Thermography

Even though there is a reappraisal of MIT, there are many challenges posed to this technology.

The challenges are briefed in the following section.
6.1 Thermal Image Acquisition

There are no generic databases of thermal infrared images for various medical complications

which are readily available for researchers to explore in comparison to visual images.

Hence thermal image acquisition is a very important initial step to carry out any research

on thermal infrared images.

Accurate segmentation of the ROI and hence early detection of any abnormality in the

human physiology from a thermal/infrared image is possible with accurate measurement

of temperature. Accurate measurement of temperature is a direct result of good quality image

acquired under controlled environmental conditions which captures all the essential

details required for the analysis. Hence image acquisition plays a very important role in medical

image analysis. This is clearly evident in the research work presented by Sudha et al. [27]

where the thermal image acquisition of foot is carried out to segment the foot from the

background. In this paper, authors have analyzed three different setups for acquiring
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thermal images of the foot and have discussed the influence of these on the accuracy of

segmentation. The results show that acquisition protocol influences the result of image

processing and hence has a pivotal role to play when it comes to efficient use of infrared

thermography in medical image analysis. The thermal imager selected for the medical image

analysis should have high sensitivity to pick up those minute differences in temperature

that suggests an abnormality.
6.2 Environmental, Individual, and Technical Challenges

A whole lot of factors that influence the use of infrared thermography in humans have

been classified in the review [26] as environmental, individual and technical factors. These

factors should be taken into consideration for the effective processing of the thermal infrared

images. Often it is very difficult to take care of all these factors while using infrared

thermography. The most influential being the ambient temperature, relative humidity, source

radiation, camera features, ROI selection, statistical analysis, medical history, metabolic

rate, skin blood flow, intake factors and physical activity. Temperature measurements

should ideally be accurate to within a�2% margin in order to get the best results.

A detailed discussion of the challenges to medical infrared imaging is presented in Ref. [3].

Thermal reflections and occlusions are a problem with thermal infrared images. The

identification and suppression of these reflections is explained in Ref. [35].

6.3 Hardware Requirements

One important factor when it comes to image processing these days which is not included in the

previous set of factors is the hardware requirements. With the advancement of technology and

software computing capabilities, there is a compelling need to improve the features of the

underlying hardware to support high dimensionality as is the case of deep learning systems.

This is becoming a basic requirement in the case of image processing using deep learning

architectures. Graphical processing units (GPU) with parallel architectures are the way forward

for deep learning systems built to analyze thermal images. Since deep learning is very

computationally intensive, we will need a fast CPU with many cores.

6.4 Specific Challenges to Thermal Imaging

For infrared thermography to be effective the amount of heat that still exists after the heating or

cooling of the object under study should also be considered.

The research challenges in medical infrared imaging are as follows:

• Stability and sensitivity of IR imaging systems.

• Understanding of body thermal patterns.



90 Chapter 4
• Advanced IR image processing methods are required.

• Design of CAD systems built on soft computing techniques and efficient feature extraction

methods should be explored.
7 Future Roadmap for MIT and Soft Computing

The chapter by Dey et al. [36] “Thermal imaging in medical science” gives a brief

review of the current research activity in thermal imaging of breast cancer and future

perspectives in MIT. Some of the recommended are

• Development of an intelligent breast thermography diagnostic system based on neural

network.

• Improvement in processing, segmentation, and classification of thermal images should be

carried out.

• Advancements in image fusion techniques for better understanding of thermal image is

required.

• Improvement in terms of sensitivity and specificity of thermography in diagnosing various

medical conditions is required.

• Automation of edge detection and object identification is still a difficult and

challenging task.

• Security in transmission of thermal images has to be studied. The work by Dey et al. [37]

can be considered for watermarking the images.

• Removal of noise to improve accuracy in medical diagnosis should be researched.

It is clearly evident that medical infrared thermography and soft computing will revolutionize

the way healthcare is provided to people in the future. Telemedicine will also gain importance

with the use of this technology. Gunes [38] studied the systems for dimensional affect

recognition in multiple modalities including thermal signals represented as thermal image and

found out that thermal imaging could be used to classify pretended and evoked facial

expressions of positive and negative affective states.
7.1 Issues to be Addressed

Following are the issues to be addressed in building intelligent diagnostic systems by Deep-

learning architectures for automated analysis of medical thermal images.

a. Building a large database to cater to the needs of the deep learning system is difficult.

So data augmentation and other techniques to synthesize data have to be evaluated

and suitable technique should be considered.

b. Gathering of expert knowledge to form the fuzzy rules for feature selection has to be

carefully done to effectively classify the images.
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c. Lack of medical and bio-thermal knowledge has to be covered by discussion with medical

experts.

d. Reproducibility of the images is a great concern due to the large set of factors involved.

e. Takes long time for the entire process from thermal image acquisition stage to the

classification stage as it required repeated capturing of images in particular time gaps.

f. Identifying the best deep learning architecture for good accuracy in classification.
8 Results and Discussion

8.1 Segmentation

The performance of the segmentation algorithm is evaluated using Jaccard index, RFN (rate of

false negatives) and RFP (rate of false positives).

Jaccard index is a similarity coefficient which measures the similarity of sets based on the

formula:

Jaccard Index¼ GT\SIð Þ= GT[SIð Þ (5)

where GT represents the ground truth (manually segmented image in our case) and SI
represents the segmented image (using morphological operations).

RFN and RFP is calculated using the formula

RFN¼ FN= FN+TPð Þ (6)

RFP¼ FP= FP +TNð Þ (7)

where FN is false negative (foreground/white pixels included as background/black pixels or
omitted foreground pixels), FP is false positive (black/background pixels included as white/

foreground pixels), TN is true negative (background/black pixels identified correctly) and TP is

true positive (foreground/white pixels identified correctly).

The segmentation method proposed here and performance evaluation of the method is

implemented in MATLAB R2016a. The evaluation of our segmentation method for 15 diabetic

subject images based on the three measures is given in Table 4.

From Table 4, it can be observed that the segmentation of the foot from the background

is comparable with the ground truth. But there is still scope for reducing the False Positives,

False Negatives, and the Jaccard Index. High FPs is a result of white pixels which should

not be part of the segmented result as in the case of image 3 in the table. This is because

the toes are cold and the temperature of the background matches with the other part of the

foot and hence it becomes part of the segmented image making the count of white/foreground

pixels to increase. Also, FNs in image 8 is high because of cold foot with temperatures

merging with the background. Thus, the count of black/background pixels increase which



Table 4 Performance of the segmentation method

Images S.�No

Performance of the Proposed Segmentation Method

Jaccard Index RFP RFN

1 0.9254 0.0128 0.0035
2 0.9462 0.0246 0.0152
3 0.6812 0.852 0.623
4 0.8483 0.0823 0.0875
5 0.9715 0.0265 0.0123
6 0.8212 0.082 0.0537
7 0.9682 0.0116 0.0098
8 0.7128 0.2104 0.1342
9 0.9754 0.0323 0.0145
10 0.9856 0.0154 0.0032
11 0.9422 0.0887 0.0784
12 0.9204 0.0375 0.0196
13 0.8573 0.1280 0.0278
14 0.9345 0.0284 0.0173
15 0.9041 0.0679 0.0450
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contribute to higher FNs. To improve the accuracy further, we are planning to explore the use

of deep learning for the segmentation task also.
8.2 Statistical Analysis of the Surface Temperature Distribution (STD) to Detect
Abnormality

The outcome of the analysis done is as follows:

• The STD is symmetrical across all the corresponding regions in left and right foot in healthy

subjects.

• The temperature is considerably high at the region 3 (plantar arch) owing to the butterfly

pattern and is at least 1.5°C higher compared to the other regions for a particular foot.

This is vice versa in the case of patients with diabetic foot complications where the

temperature was higher in the region of complication.

• The temperature difference of 2.2°C was observed in the presence of foot complication.

• Correlation coefficients between the left and right foot is >0.8 in the case of healthy

subjects and it is less in the range of 0.4 to 0.7 in most of the diabetic subjects. Since this

range is mutually exclusive between the diabetic and healthy subjects, correlation

coefficient is a very good indicator of abnormal thermal pattern. When the patient has good

diabetic control, then the correlation is equivalent to that of healthy subject as can be seen in

the first two diabetic subjects in Table 3.

• The right foot had the maximum temperature in the regions 1, 2, and 3 compared to the

left foot in all the subjects both healthy and diabetic. This explains why right foot is

the most common site for diabetic foot problems.



Fig. 13
Foot thermal images showing (A) butterfly pattern in healthy subject and (B) absence of butterfly

pattern and presence of hyperthermia in the toes region of diabetic subject.
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Plantar foot temperature varies in diabetic foot due to thermoregulation problems related to

neuropathy and/or ischemia, and also in case of inflammation. There is a wider variation in

diabetic patients compared to healthy subjects. Region 3 shows the maximum temperature in

two nondiabetic subjects as expected in the arch region where a butterfly pattern is a

characteristic of healthy foot as shown in Fig. 13.

There was significant difference in temperature in the regions corresponding to each foot

whenever there is an abnormality. Registration is approximate in the sense that when the big

toe is amputated, the bounding box heights differ and hence the regions are not properly

segmented. The hot and cold regions extracted from the images suggest the location of an

underlying inflammation or the extent of inflammation if present already in the case of

ulcer or the presence of neuropathy. The isolation of these regions will help the doctor in

identifying the underlying angiosome for assisting in therapy or surgery. The dataset used

is small and it has to be built with more images so that the analysis is more accurate.

The next step is to build such a dataset. Segmentation of the foot from the background posed

problems in the case of diabetic patients when the toes were cold. Hence we are looking

forward to build a deep learning network to do the segmentation.
8.3 Classification of Foot Using Transfer Learning of Pre-trained CNN Model

A typical output from the classification of a test image using the CNN classifier is shown in

Fig. 14. This shows that the image given to the model is classified as a diabetic foot without any

complication with a probability of 87.43% which is very high compared to the next two

predictions which is healthy with 7.73% and diabetic with complication with 4.82%. This

clearly shows that the model is able to distinguish between different categories with greater

confidence. This prediction is correct for the given image. Similarly by testing all the images,

we got an average accuracy of 91% for each of the classes. This is really amazing given the fact



Fig. 14
Output of the classifier for the test image of a diabetic patient without complication.
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that thermal imaging is totally different from any other imaging modality and the model is

pretrained on natural images (�1,42,000 images).

This preliminary study assures us that we could use deep learning for our problem also.

We are planning to build such a model from scratch to have more control over the parameters to

fine tune the classification and to quantify the level of complication as different categories.

9 Future Research Directions on Diabetic Foot Assessment

In the days to come our focus would be on the following:

• Explore the use of deep learning for segmentation of the foot from background.

• Build a mathematical classification model based on the quantification of risk of ulcer

formation.

• Build a software system using all the image processing and classification work carried out

for the early diagnosis and quantification of the diabetic foot complications.

• Correlate with the existing clinical foot evaluation methods to evaluate the system built and

its applicability for use as a home monitoring tool for diabetic foot.

• Develop a mobile application capable of using as an adjunct tool for telemedicine and home

monitoring of diabetic foot complication.

10 Conclusion

Medical Infrared Thermography being noninvasive and noncontact has the special ability to

diagnose human physiology due to heat transfer in skin tissues. With the special characteristics
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and advantages of thermal imaging, computer aided diagnosis systems are becoming more and

more accurate and effective. The advancements in image processing, feature extraction and

selection and soft computing techniques like deep learning in combination with improvements

in parallel computing architectures have paved way for more interest and importance to

research in this imaging modality. The soft computing techniques used mostly are artificial

neural networks, SVM and genetic algorithm with texture based features for most of the

classification task. But the most effective ones are the mean temperature difference and

correlation. With more computing power and capability of the recent systems and the

reappraisal of thermography in medicine, we shall see more advances in deep learning in

the years to come. Thermography is being recognized as an adjunct tool for detecting

abnormality in the temperature profile of patients to uncover an underlying disease or

inflammation. The advantage of being noncontact and noninvasive makes it a safe diagnostic

imaging technique. This chapter emphasizes the use of existing soft computing techniques

coupled with the specific characteristics of infrared thermography making it more

efficient and safe. The authors’ current work on automated foot thermal image analysis

for diabetic foot assessment is also discussed and future research directions are also given.
Acknowledgments

The work reported in this chapter is supported by the college (BMS College of Engineering) through Technical

Education Quality Improvement Programme [TEQIP-III] of the MHRD, Government of India by providing the

thermal camera for this research. We are also thankful to Al-Amoudi Scientific Research Foundation (ASRF) for

providing funds for setting up GPU computing facility in the college. We are also very grateful to the podiatric

surgeon at KIER, Dr. B.�Pavan for his valuable input in collecting patient details and to all the patients who

consented to participate in this study.

References

[1] J. Jiang, E.Y.K. Ng, A.C.B. Yeo, S. Wu, F. Pan, W.Y. Yau, J.H. Chen, Y. Yang, A perspective on medical

infrared imaging, J. Med. Eng. Technol. 29 (6) (2005) 257–267.
[2] A. Szentkuti, H.A.N.A.S. Kavanagh, G. Simeon, Infrared thermography and image analysis for biomedical use,

Period. Biol. 113 (4) (2011) 385–392.
[3] M. Diakides, J.D. Bronzino, D.R. Peterson (Eds.), Medical Infrared Imaging: Principles and Practices, CRC

Press, Taylor & Francis Group, Boca Raton, FL, 2013.

[4] Y. Houdas, E.F.J. Ring, Human Body Temperature, Plenum Press, New York, 1982.

[5] E.F.J. Ring, The historical development of temperature measurement in medicine, Infrared Phys. Technol.

49 (2007) 297–301.
[6] J.D. Hardy, The radiation of heat from the human body. I–IV, J. Clin. Invest. 13 (1934) 593–620 and 817–883.
[7] J.D. Hardy, C. Muschenheim, The radiation of heat from the human body V, J. Clin. Invest. 15 (1936) 1–8.
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