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Abstract: G-quadruplex (G4) forming DNA sequences were recently found to play a crucial role in
the regulation of genomic processes such as replication, transcription and translation, also related to
serious diseases. Therefore, systems capable of controlling DNA and RNA G-quadruplex structures
would be useful for the modulation of various cellular events. In particular, peptides represent
good candidates for targeting G-quadruplex structures, since they are easily tailored to enhance
their functionality. In this work, we analyzed, by circular dichroism and synchrotron radiation
circular dichroism spectroscopies, the interaction of a 25-residue peptide deriving from RHAU
helicases (Rhau25) with three G-quadruplex-forming oligonucleotide sequences, in both sodium-
and potassium-containing buffers, the most relevant monovalent cations in physiological conditions.
The peptide displayed greater affinity for the G4 sequences adopting a parallel structure. However, it
showed the ability to also interact with antiparallel or hybrid G-quadruplex structures, inducing a
conformation conversion to the parallel structure. The stability of the oligonucleotide structure alone
or in presence of the Rhau25 peptide was studied by temperature melting and UV denaturation
experiments, and the data showed that the interaction with the peptide stabilized the conformation
of oligonucleotide sequences when subjected to stress conditions.

Keywords: G-quadruplex DNA; peptide; photo-stability

1. Introduction

G-quadruplex (G4) nucleic acid structures, present in guanine-rich nucleic acid se-
quences, result from the propensity of these sequences to form atypical and thermody-
namically stable structures under physiological conditions formed by stacks of Hoogsteen-
bonded guanine tetrads (Figure 1) [1]. These highly conserved structures, found in both
DNA and RNA nucleic acids, have a regulatory role in replication, transcription and re-
combination [2]. Moreover, G-quadruplex-forming sequences have been also found in
viruses [3], bacteria [4] and protozoa [5]. Indeed, studies have shown that G-quadruplex
structures play a role in the control of the human immunodeficiency virus-1 [3,6–9], of the
Epstein-Barr virus [10], of the human papilloma virus (HPVs) [11], and of Zika virus [12].
Recently, it has been found that G-quadruplex structures are also present in the novel
SARS-CoV-2 coronavirus [13].
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are distributed asymmetrically between the two DNA strands, with the G-rich strand run-
ning 5′ to 3′ from the centromere to the telomere [16]. 

Systems capable of controlling DNA and RNA G-quadruplex structures would be 
useful for the modulation of various cellular events and different G-quadruplex-targeting 
ligands have been described [17,18], including phthalocyanine [19], porphyrin [20], and 
other derivatives [21,22]. From these, peptides represent a class of highly specific ligands 
with a greater degree of functionality including binding on-off switching, cellular pene-
tration, and the ability to target organelles [23–27]. Among them, the N-terminal domain 
of the RNA helicase associated with AU-rich element (RHAU), a member of the human 
DEAH (Asp-Glu-Ala-His) box family of RNA helicases, which includes a specific motif, 
named RSM, necessary for G-quadruplex recognition and interaction (aa 54–66) [28], has 
recently raised the interest of several authors [29–32]. 

With the aim to develop a peptide that selectively interacts with secondary G4 struc-
tures we synthesized a peptide, named Rhau25 (Figure 1), containing the sequence 52–75 
of the RHAU protein. The binding of this peptide to G-quadruplex-forming sequences as 
well as the structure of oligonucleotide sequences and the stability of peptide/oligonucle-
otide complexes have been evaluated by circular dichroism (CD) spectroscopy using 
benchtop CD instruments and Diamond B23 beamline for synchrotron radiation circular 
dichroism (SRCD). This chiroptical spectroscopy is a useful tool for the characterization 
of G-quadruplex structures and nucleic acids-peptides interactions. Spectroscopic studies 
were performed in the presence of either sodium or potassium ions, the physiologically 
relevant monovalent ions involved in the stabilization of cationic coordination with the 
oxygen atom of the carbonyl group (O6) of guanine. 

 
Figure 1. Sequences of the synthetized Rhau25 peptide and G3T3, Htelo1 and T95-2T G-quadruplex-
forming oligonucleotide sequences with cartoons of the peptide Rhau25, G-tetrad and G4 topolo-
gies. 

Metal ion-G4 interaction studies indicated that the position of these ions could be 
within the quartet plane or between the planes of the quartet depending on ionic radius. 
Potassium ion (ionic radius 1.33 Å) is too large to be coordinated in the plane of G-quartet, 
whereas Na+ (ionic radius 0.95 Å) is small to be coordinated within the plane of G-quartet. 
Moreover, these studies indicated that K+ stabilizes more efficiently G4 than sodium ion, 
and that G4 structures exhibit diverse topologies depending on the monovalent cation 
added [33]. 

Figure 1. Sequences of the synthetized Rhau25 peptide and G3T3, Htelo1 and T95-2T G-quadruplex-
forming oligonucleotide sequences with cartoons of the peptide Rhau25, G-tetrad and G4 topologies.

The highest abundance of putative G-quadruplexes sequences is located at telom-
eres [14], which protect chromosomes from degradation, end-to-end fusions, and are
recognized as double-strand break sites [15]. In most telomeric DNAs, guanines and
cytosines are distributed asymmetrically between the two DNA strands, with the G-rich
strand running 5′ to 3′ from the centromere to the telomere [16].

Systems capable of controlling DNA and RNA G-quadruplex structures would be
useful for the modulation of various cellular events and different G-quadruplex-targeting
ligands have been described [17,18], including phthalocyanine [19], porphyrin [20], and
other derivatives [21,22]. From these, peptides represent a class of highly specific ligands
with a greater degree of functionality including binding on-off switching, cellular pene-
tration, and the ability to target organelles [23–27]. Among them, the N-terminal domain
of the RNA helicase associated with AU-rich element (RHAU), a member of the human
DEAH (Asp-Glu-Ala-His) box family of RNA helicases, which includes a specific motif,
named RSM, necessary for G-quadruplex recognition and interaction (aa 54–66) [28], has
recently raised the interest of several authors [29–32].

With the aim to develop a peptide that selectively interacts with secondary G4 struc-
tures we synthesized a peptide, named Rhau25 (Figure 1), containing the sequence 52–75 of
the RHAU protein. The binding of this peptide to G-quadruplex-forming sequences as well
as the structure of oligonucleotide sequences and the stability of peptide/oligonucleotide
complexes have been evaluated by circular dichroism (CD) spectroscopy using benchtop
CD instruments and Diamond B23 beamline for synchrotron radiation circular dichro-
ism (SRCD). This chiroptical spectroscopy is a useful tool for the characterization of G-
quadruplex structures and nucleic acids-peptides interactions. Spectroscopic studies were
performed in the presence of either sodium or potassium ions, the physiologically relevant
monovalent ions involved in the stabilization of cationic coordination with the oxygen
atom of the carbonyl group (O6) of guanine.

Metal ion-G4 interaction studies indicated that the position of these ions could be
within the quartet plane or between the planes of the quartet depending on ionic radius.
Potassium ion (ionic radius 1.33 Å) is too large to be coordinated in the plane of G-quartet,
whereas Na+ (ionic radius 0.95 Å) is small to be coordinated within the plane of G-quartet.
Moreover, these studies indicated that K+ stabilizes more efficiently G4 than sodium
ion, and that G4 structures exhibit diverse topologies depending on the monovalent
cation added [33].
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Three G-quadruplex-forming sequences (Figure 1), including the human telomeric
sequence Htelo1, the T95-2T sequence, and a synthetic sequence named G3T3, have been
selected to carry out interaction studies.

In this work, we showed that the selected peptide displays greater affinity for G-
quadruplex sequences adopting a parallel conformation, stabilizing this structure towards
stress conditions as heating and UV radiation. Moreover, the interaction of the peptide
with the oligonucleotide sequence adopting antiparallel or hybrid structures induced a
conformational conversion to a parallel G4-structure in the presence of both examined ions.

2. Materials and Methods

Oligonucleotide Preparation. Synthetic guanine-rich oligonucleotides were purchased
from Eurogentec (Seraing, Belgium). The deoxyoligonucleotides were dissolved in water
and allowed to equilibrate overnight at 4 ◦C prior to their use; stock solutions were
filtered using 0.45 µm Millipore syringe filters, and the concentrations were determined by
UV−visible spectrophotometry at 90 ◦C to ensure that any secondary structure was fully
denatured. G-quadruplex forming sequences were then diluted to the desired concentration
in 10 mM Tris-HCl buffer, pH 7.4, in presence of 70 mM potassium or sodium ions without
annealing. Calf Thymus DNA (ctDNA) sodium salt was purchased from Sigma Aldrich
(Milan, Italy) and used without further purification. ctDNA was dissolved in 10 mM
Tris-HCl buffer, pH 7.4, and stirred overnight to allow complete dissolution. The purity of
ctDNA was checked by measuring the ratio of A260/A280 = 1.82, and the concentration of
ctDNA was determined by the absorption of ctDNA at 260 nm (ε260 = 6600 L mol−1 cm−1).

Peptide synthesis. The solid phase peptide synthesis (SPPS) was achieved with the
Fmoc/HBTU chemistry approach [34] and carried out automatically using a Biotage®

Syro Wave™ synthesizer (Biotage AB, Uppsala, Sweeden) controlled by Syro XP peptide
software. After acetylation by treatment with acetic anhydride, the peptide was detached
from the Rink-amide resin along with removal of the side-chain protecting groups by
treatment with TFA in presence of TIS and water as scavengers. The peptide was isolated
by addition of ethyl ether and purified by elution on a Dionex Vydac reverse phase
C18 300 Å, 10 µ, 22 × 250 mm column using a preparative Shimadzu HPLC system (Kyoto,
Japan) equipped with LC-8A pumps, SLC-8A controller, an SPD-6A spectrophotometric
detector, and an ERC-3562 ERMA degasser. LC-ESI-MS analyses were conducted using
an Agilent 1260 Infinity II analytical HPLC system (G7129A vialsampler, G7117C DAD
HS, and G7111B Quat. Pump) equipped with a 6130 Quadrupole LC-MS analyzer. The
calculated mass was 2951.41 Da.

Circular Dichroism. CD spectra were acquired on a Jasco J-1500 CD spectrometer
equipped with a Jasco PTC-423S temperature controller (Jasco International, Tokyo, Japan).
Far-UV CD spectra were collected in 0.1 cm pathlength quartz cuvettes (Hellma Analytics,
Southend on See, UK) at 25 ◦C in the 198–360 nm range, at 100 nm/min scanning speed,
1 s response time, 2 nm bandwidth, 0.5 nm data pitch. The spectra recorded were the
average of 4 scans. Peptide concentration was 0.09 mg/mL in the 10 mM Tris-HCl buffer;
pH 7.4. G4 titration was conducted, adding aliquots of 2 µL Rhau25 peptide 0.29 mM stock
solution up to 2.2 molar equivalents to 200 µL of 13.5 µM oligonucleotide. Spectra were
accordingly corrected for dilution.

Synchrotron Radiation Circular Dichroism. SRCD melting experiments were per-
formed in the 10–90 ◦C range with 5 ◦C steps and allowing 2 min equilibration time.
Melting and UV-denaturation measurements were collected on Module A of beamline B23
of Diamond Light Source Ltd synchrotron facility, Harwell Science and Innovation Campus
(Didcot, UK). Spectra were recorded in the 198–360 nm range in 0.1 cm pathlength quartz
cuvettes (Hellma Analytics). Peptide concentration was 0.09 mg/mL in 10 mM Tris-HCl
buffer, pH 7.4.

CD and SRCD spectra were plotted and analyzed using OriginPro2018 software
(OriginLab Corporation, Northampton, MA, USA). The Kd values of peptide/G-quadruplex
complexes were determined by fitting the titration curves with the Hill equation (Hill1
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function in OriginPro2018 software). Multivariate analysis of spectra was obtained with
JMP Pro software version 15 (SAS Institute Inc., Cary, NC, USA).

3. Results and Discussion
3.1. Peptide Design and Secondary Structure

The Rhau25 peptide was synthesized by solid phase peptide synthesis (SPPS) using
Fmoc/HBTU chemistry, and then purified by preparative RP-HPLC and characterized by
LC-ESI-MS (Figure S1 in Supplementary Materials).

The secondary structure of the peptide was evaluated by CD spectroscopy in 10 mM
Tris-HCl buffer, pH 7.4, in presence of 70 mM either sodium or potassium ions. In these
conditions, the far-UV CD spectrum of peptide is characterized by the presence of two
negative bands at about 200 and 222 nm (Figure 2), suggesting the presence of an ensemble
of a secondary structure as confirmed by the estimation of the secondary structure content
(SSE) by the Jasco software. The addition of trifluoroethanol (20%) induced a change in
the shape of the CD spectrum (Figure 2) and the resulting spectrum adopted the typical
profile of α-helix as confirmed by the SSE analysis in agreement with the solution structure
determined by NMR method of an analogue peptide corresponding to sequences 1–20 of
our peptide [28]. The NMR study showed that the peptide adopted an L-shaped structure,
containing an α-helix spanning from Gly5 to Ala17, and that this structure was retained
when the peptide bound to G-quadruplex sequences [28].
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Figure 2. Far-UV CD spectra of Rhau25 peptide (0.09 mg/mL or 30.5 µM) in 10 mM Tris-HCl buffer,
pH 7.4, (black line) and in presence of 20% v/v trifluoroethanol (red line).

In the data obtained by CD spectroscopy the peptide conformational signature over-
laps with those of the G-quadruplex bases and the puckering of the deoxyribose com-
ponents of the nucleosides in the far-UV spectral region (185–250 nm). In the near-UV
region (250–320 nm), on the other hand, due to the negligible absorption of the Trp and
Tyr residues (about 0.021 with peptide concentration of 30 µM), only the conformation
of the stacked nucleotide bases are detected that can be successfully used to identify the
G-quadruplex topologies.

The determination of the bound conformation of the peptide when bound to the
G-quadruplex can only be conducted, at best, qualitatively, as the conformation of the
G-quadruplex molecules is induced to different degrees by the binding of the Rhau25
peptide as demonstrated in Figures 3–5. To do this, the CD spectrum of the complex
between the G4 and the peptide at (1:1.8) molar ratio was subtracted from that of the
complex with the highest peptide molar ratio of (1:2.2) as illustrated in Figure S4. This is a
qualitative assessment as any residual spectral feature in the near-UV region will indicate
that the base contributions have not been fully cancelled out, hence making this analysis
less accurate. Nevertheless, the results appear to indicate that the conformation of the
bound peptide to the G4s for 5 of the 6 complexes are of the more unordered conformation
observed for the Rhau25 peptide in Tris-HCl buffer, while the peptide bound to Htelo1
G-quadruplex sequence appears to bind with a more α-helical conformation, though the
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base contributions are quite significant. This is better illustrated by comparing the ratios of
the CD intensity at 202 nm over that at 220 nm for the calculated spectra of Figure S4.

1 
 

 
Figure 3. CD spectra of G3T3 (13.5 µM) in the absence (black line) and in presence of increasing
amounts of Rhau25 peptide in 10 mM Tris-HCl buffer, pH 7.4, 70 mM potassium (left) or sodium
ions (right). The arrows represent the direction of the spectral change as the peptide concentration
is increased.
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(left) or sodium (right) ions. The arrows represent the direction of the signal change as the peptide
concentration is increased.
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Figure 5. CD spectra of T95-2T G-quadruplex (13.5 µM) in the absence (black line) and in the presence
of increased amounts of Rhau25 peptide in 10 mM Tris-HCl buffer, pH 7.4, 70 mM potassium (left)
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concentration is increased.
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3.2. Peptide G-Quadruplex Interaction

The ability of the Rhau25 peptide to bind to G3T3, Htelo1, and T95-2T G-quadruplex-
forming sequences was assessed by CD spectroscopy in the presence of either sodium or
potassium ions.

CD spectroscopy, besides allowing for the evaluation of the peptide-G4 interaction,
provides useful information on the structure of the oligonucleotide sequence itself, being
the 240–300 nm region diagnostic of the G-quadruplex topology [35–38]. Indeed, a parallel
G4 structure is characterized by the presence of a positive band at about 264 nm and a
negative band at 245 nm, while antiparallel structure shows a positive band at 295 nm and
a negative band at 260 nm [35,37]. Hybrid or 3 + 1 structures show two positive bands at
295 and 260 nm, and a negative band at 245 nm [38].

As shown in Figure 3, the CD spectrum of G3T3 in presence of 70 mM potassium
ions is characterized by a positive band at 290 nm with a shoulder at about 254 nm, a
negative band at 234 nm, and a strong positive band at 205 nm, suggesting the presence
of a hybrid or 3 + 1 structure. The replacement of potassium with sodium ions induced a
drastic change in the CD pattern of G3T3 sequence that is characterized by two positive
bands at 296 and 246 nm, respectively, and a negative band at 268 nm. The strong positive
band at 205 nm observed in the presence of potassium ions is still present, but of lower
intensity. This spectral feature is typically the CD profile of an antiparallel G4 structure.

The addition of the Rhau25 peptide influenced the CD spectra of the G3T3 sequence
in the function of the monovalent cation added to the buffer. In the presence of potassium
ions, a decrease in the intensity of the positive band at about 290 nm accompanied by
the appearance of a positive band at about 265 nm that replaces the shoulder previously
described characterized the CD spectrum when the peptide reached a 2.2 peptide/G4
molar ratio (Figure 3, left panel). At wavelengths lower than 240 nm the dichroic signal
contains the contribution of both peptide and G4 sequences and is characterized by the
presence of two negative bands at 221 and 200 nm (Figure 3, left panel). The addition of
the Rhau25 peptide in the presence of sodium ions drastically modified the CD spectrum
of G3T3. At the same peptide-G4 molar ratio, an intense peak at 266 nm accompanied
by a negative band at 244 nm appeared, suggesting a conformational conversion of G3T3
sequence to a parallel quadruplex structure (Figure 3, right). Although the far-UV region
(190–240 nm) also contains the CD contribution of the peptide, the G4 CD contribution
is the dominating one, showing a negative band at about 222 nm with a positive band
at 210 nm that is qualitatively similar to that observed in the presence of potassium ions
(Figure 3, left). For the G4, the CD contribution in the far-UV region is due to the puckering
of the sugar moiety as well as the nucleoside chromophore, whereas the in the near-UV
region, it is solely due to the nucleoside electronic transitions. The CD contribution of
the peptide, on the other hand, is mainly in the investigated far-UV region below 240 nm
(Figure 2) and negligible in the near-UV region due to the aromatic side-chain of Tyr and
Trp residues.

Similarly, the Htelo1 structure was affected by the monovalent cation composition
(Figure 4). According to literature data, in the presence of sodium ions, the human telomeric
sequence adopts an antiparallel structure [39], while in the presence of potassium ions, the
CD spectrum is characterized by a positive band at 287 nm with a shoulder at 274 and a
negative band at 238 nm (Figure 4, left). The Htelo1 structure in K+ solution, on the other
hand, had not been as well identified as that in Na+ solution and was suggested to contain
both antiparallel and parallel arrangements [40–43].

The addition of Rhau25 peptide to the Htelo1 sequence, in the presence of K+, produced
minimal modification of the CD spectrum in the G4 diagnostic region (Figure 4, left), while
a decreased intensity of the positive band at 206 nm was observed. On the other hand,
in the presence of sodium ions (Figure 4, right), the peak at 290 nm disappeared in the
presence of the Rhau25 peptide and a conformational conversion to a parallel structure
occurred, as revealed by the positive band at 265 nm which was qualitatively similar to
that observed for the G3T3 under the same conditions (Figure 3, right).
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The CD spectrum of T95-2T was unaffected by the nature of the monovalent ions
added to the buffer and was characterized by the presence of a strong positive band at
about 266 nm and a negative band at about 245 nm. An additional positive band was
observed at 206 nm in both the explored conditions (Figure 5). The addition of the Rhau25
peptide modified the G-quadruplex T95-2T spectral features in the same manner in the
presence of either sodium or potassium ions. In both titrations a decreased intensity of both
positive and negative bands at 266 and 245 nm, respectively, were observed indicative of a
preserved G-quadruplex parallel structure topology. In the far-UV region below 240 nm,
two negative bands at 203 and 221 nm with similar spectral changes were observed for the
titrations in both sodium and potassium ion solutions.

The apparent Kd values of peptide/G-quadruplex complexes in either sodium or
potassium ions were determined by fitting the titration curves with the Hill equation [44].
The calculated Kd values of the investigated G-quadruplex sequences with the Rhau25
peptide in both KCl and NaCl conditions, respectively, are summarized in Table 1. Htelo
appears to bind to Rhau25 peptide with less affinity, demonstrating about half that of G3T3
and T95-2T, which showed similar binding affinities. The cooperativity for all titrations
appears to be between 1.5 and 2, indicating that, in all six cases, the binding of the peptide
increases the G-quadruplex affinity as more ligand was bound to it, while the stoichiometry
appears to be 1:1.

Table 1. Kd values calculated for each oligonucleotide strand in the presence of Rhau25 peptide.

Kd (µM)
G4 sequence KCl NaCl

G3T3 12.2 ± 0.8 14 ± 0.3
Htelo1 27 ± 1 30 ± 8
T95-2T 13.5 ± 0.5 13.9 ± 1

In addition, to evaluate the selectivity of Rhau25 peptide for G4 structures compared to
double-stranded DNA molecules, the peptide was titrated with calf thymus DNA (ctDNA).
No significant changes in the shape of the peptide spectrum were observed, indicating
the lack of interactions with ctDNA, which was successively confirmed by melting and
UV-denaturation studies on the Rhau25 peptide alone or in presence of ctDNA (Figure S2
in Supplementary Materials).

3.3. Multivariate Statistical Analysis of G-Quadruplex Structure

Multivariate analysis of CD spectra can offer a satisfactory and reliable evaluation of G-
quadruplex topologies such as parallel, antiparallel and so-called “hybrid” [35]. Principal
component analysis (PCA) and hierarchical cluster analysis (HCA) were used to obtain an
unbiased classification of G-quadruplex structures, independent of simple visual evaluation
of the CD spectra with and without the Rhau25 peptide.

To this purpose, a library of 23 CD spectra of various G4 sequences of known high-
resolution structures from NMR and X-ray of deposited Protein Data Base (pdb) data files
was used as the reference base data set and for the multivariate analysis [35].

Figure 6 shows the result of PCA conducted on the CD spectra of reference data
together with the 12 experimental conditions herein investigated. Ten out of the 12 investi-
gated data fall in the three main clusters observed in Villar-Guerra et al. [35] indicative of
parallel, antiparallel and hybrid G4 topologies (Figure 6). However, Htelo1 with Rhau25 in
Na+, and G3T3 with Rhau25 in K+ did not fall into any of the three main groups (Figure 6).



Pharmaceutics 2021, 13, 1104 8 of 17

Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

3.3. Multivariate Statistical Analysis of G-Quadruplex Structure 
Multivariate analysis of CD spectra can offer a satisfactory and reliable evaluation of 

G-quadruplex topologies such as parallel, antiparallel and so-called “hybrid” [35]. Princi-
pal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to ob-
tain an unbiased classification of G-quadruplex structures, independent of simple visual 
evaluation of the CD spectra with and without the Rhau25 peptide. 

To this purpose, a library of 23 CD spectra of various G4 sequences of known high-
resolution structures from NMR and X-ray of deposited Protein Data Base (pdb) data files 
was used as the reference base data set and for the multivariate analysis [35]. 

Figure 6 shows the result of PCA conducted on the CD spectra of reference data to-
gether with the 12 experimental conditions herein investigated. Ten out of the 12 investi-
gated data fall in the three main clusters observed in Villar-Guerra et al. [35] indicative of 
parallel, antiparallel and hybrid G4 topologies (Figure 6). However, Htelo1 with Rhau25 
in Na+, and G3T3 with Rhau25 in K+ did not fall into any of the three main groups (Figure 
6).  

 
Figure 6. PCA plot of the first and second principal components. In parentheses is the fraction of 
total variance explained. The blue solid circles represent G3T3, Htelo1, and T95-2T with and without 
Rhau25 (Rh) in Na+ and K+ respectively (total of 12 samples). The three clusters represent the parallel 
(grey), antiparallel (green) and hybrid (red) topologies defined by the reference pdb data (black 
solid circles for grey cluster, green solid circles for green cluster and red solid circles for red cluster 
[35]). The analysis was carried out using the most distinctive interval of wavelengths (220–310 nm) 
of the CD spectra. 

  

Figure 6. PCA plot of the first and second principal components. In parentheses is the fraction of
total variance explained. The blue solid circles represent G3T3, Htelo1, and T95-2T with and without
Rhau25 (Rh) in Na+ and K+ respectively (total of 12 samples). The three clusters represent the parallel
(grey), antiparallel (green) and hybrid (red) topologies defined by the reference pdb data (black solid
circles for grey cluster, green solid circles for green cluster and red solid circles for red cluster [35]).
The analysis was carried out using the most distinctive interval of wavelengths (220–310 nm) of the
CD spectra.

Hierarchical cluster analysis confirmed the assignment of the 12 CD spectra to the
G4 structure characteristics (Figure 7). For the samples studied here, besides the assign-
ment to parallel and antiparallel classes, the cluster analysis was able to distinguish the
“hybrid” class, a further additional group that included the spectra of Htelo1 with Rhau25
in Na+, and that of G3T3 with peptide in K+ isolated from the other 10 spectra with PCA
analysis (Figure 6).

From the above results, it is possible to confirm the successful performance of mul-
tivariate analysis in estimating the secondary structure of G-quadruplexes, as suggested
by [35], and to support the above-described peptide G-quadruplex interaction.

3.4. Influence of Rhau25 Peptide on G4 Secondary Structure Stability

Photo-denaturation experiments as well as thermal denaturation experiments [45–47]
were carried out to evaluate the folding stability of the G-quadruplex sequences in the
presence and absence of the Rhau25 peptide.

The SRCD spectra were recorded for the annealing process from 10 ◦C to 90 ◦C every
5 ◦C. To verify the presence of a two-state mechanism, F↔U, where F and U represent the
folded and unfolded states, respectively, in the denaturation of G-quadruplex sequences,
melting curves were constructed analyzing the CD intensity at two different wavelengths.
If the two-state assumption is valid, the spectral data at the two wavelengths should be
linearly correlated. The SRCD spectra as a function of temperature during the annealing
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process and the corresponding melting curve of Htelo1 in the presence of potassium ions
are illustrated in Figure 8 and the calculated Tm value in Table 2.

1 
 

 

Figure 7. Hierarchical cluster analysis on the CD spectra of experimental samples, eval-
uated with reference spectra from [35]. The dendrogram on the right indicates three
main clusters, comparable to those found with PCA analysis illustrated in Figure 6. For
each cluster, a typical associated CD reference spectrum is shown, indicating antiparallel,
“hybrid”, and parallel G4 topologies, respectively. A further cluster highlighted in amber
color includes the spectra of intermediate characteristics. Cluster analysis was obtained
according to Ward’s minimum variance method using the data of the most distinctive
spectra interval of 250–300 nm.
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Figure 8. (A) SRCD spectra of Htelo1 (13.5 µM) in 10 mM Tris-HCl buffer, pH 7.4, containing 70 mM
potassium ions during the annealing process from 10 ◦C to 90 ◦C every 5 ◦C. The dashed line
represents the oligonucleotide cooled to 20 ◦C after heating to 90 ◦C. The arrows represent the
direction of the spectral change as the temperature increased. (B) SRCD-melting curves at 206 nm
(blue), 271 nm (black) and 286 nm (red), respectively. Insert: Comparison of the corresponding first
derivative of the SRCD as a function of temperature.

Table 2. Melting temperature values for the G-quadruplex sequences with and without the
Rhau25 peptide.

Melting Temperature Tm (◦C)
Sample KCl NaCl

G3T3 alone 69 ± 0.3 51 ± 0.4
G3T3 + peptide n.d. * 69 ± 0.3

Htelo1 alone 66 ± 0.3 53 ± 0.3
Htelo1 + peptide n.d. * 59 ± 0.4 *,#

T95-2T alone >90 61 ± 0.2
T95-2T + peptide >90 >90

n.d. not determinable because of high stability of the structure. * observed conformational conversion.
# determined after 5 h equilibration time.

Only the Htelo1 and G3T3 oligomers, in the presence of potassium ions, as well as
the G3T3-peptide complex in the presence of sodium ions, showed signs of two-state
melting behavior (Figure 8, Figures S5 and S7 in Supplementary Materials) that enabled
the calculation of the folded fraction at each temperature. On one side, the sloping of the
baselines, which is often observed at low and/or high temperatures, has been fitted with
straight lines by other authors to determine the folded fraction [48]. However, on the other
side, this behavior could be interpreted as a two-transitions behavior, which shows a less
stable conformation with Tm of about 28 ◦C and a more stable conformation with higher
Tm (the latter indicated in Table 2).

In terms of G4 folding, the annealing of G3T3 with 2.2 equivalents of Rhau25 peptide
in K+ conducted in the same manner from 10 ◦C to 90 ◦C every 5 ◦C showed an increased
content of parallel topology that reached the maximum content at 70 ◦C (Figure 9B) as
revealed by the emergent positive band at 265 nm characteristic of the parallel topology
(Figure 9A). The repeated thermal melting experiment from 10 ◦C to 90 ◦C every 10 ◦C of
the previous annealed G3T3 with Rhau25 peptide (1:2.2) in K+ (Figure S9) revealed that the
parallel topology was retained, being very stable at high temperatures without denaturing
significantly even at 90 ◦C (Figure S8). It is important to note that the G3T3 in K+ during
and after annealing did not adopt the parallel topology (Figure S5, left). Indeed, melting
experiment on the G3T3-Rhau25 complex performed on the G4 sample annealed in the
presence of peptide shows that Rhau25 strongly increased the stability of the complex,
which did not achieve a fully denatured state at 90 ◦C (Figure S8).

The stable parallel topology induced by annealing was also observed for the Htelo1-
Rhau25 complex in the presence of potassium ions (Figure 10A). However, this was not the
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case in sodium ions (Figure 10C) where the increased formation of the parallel topology of
Htelo1 with 2.2 eq. Rhau25 in Na+ was maximized up to 45 ◦C, as shown in Figure 10D,
suggesting a possible denaturation above this temperature to unstacked single strand DNA.
However, the slow conformational transition process may have hindered the accurate
determination of the melting temperature of the complex. To verify this hypothesis, the
SRCD spectrum of the Htelo1-Rhau25 complex, obtained by addition of 2.2 equivalent of
Rhau25 peptide in a single aliquot to the oligonucleotide rather than titrated with smaller
aliquots, was monitored up to 90 min after the peptide addition (Figure S10). The CD melt-
ing experiment on Htelo1 was repeated, allowing 5 h equilibration time after addition of the
peptide, in order to assure the conformational transition would be completed (Figure S11).
Therefore, a more accurate melting temperature could be determined (Table 2).

Multivariate statistical analysis of the SRCD spectra of Htelo1-Rhau25 (1:2.2) in either
sodium or potassium ions, and G3T3-Rhau25 (1:2.2) solely in potassium ions, cooled
to 20 ◦C after annealing at 90 ◦C showed that these G-quadruplex sequences exhibited a
distinct behavior compared to all the other complexes evaluated in this study that are: G3T3-
Rhau25 (1:2.2) in Na+ and T95-2T-Rhau25 in both K+ and Na+ respectively (Figure S15).
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Figure 9. (A) Influence of temperature on the SRCD of G3T3 (13.5 µM) with 2.2 eq. of
Rhau25 peptide in 10 mM Tris-HCl buffer, pH 7.4, 70 mM potassium ions. The temperature
range was from 10 ◦C to 90 ◦C every 5 ◦C. The dashed line represents the oligonucleotide
cooled to 20 ◦C after heating to 90 ◦C. The arrows represent the direction of the spectral
change as the temperature is increased; (B) Plot of SRCD intensity versus temperature at
266 nm (red) and 289 nm (black). Insert: Comparison of the corresponding first derivative
of the SRCD at 266 nm and 289 nm.
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The T95-2T alone in potassium ions (Figure 11A) or when complexed with Rhau25 
peptide in the presence of sodium or potassium ions (Figure 5) was remarkably stable in 
the annealing process, retaining the parallel topology even at 90 °C. For this reason, it was 
not possible to determine their melting temperature Tm as the curves were not sigmoidal 
and the plateau was not reached at higher temperatures (Figure 11). On the contrary, in 
the presence of sodium ions, the T95-2T alone was able to reach a fully denatured state 
(Figure 11B,D), allowing the determination of the melting temperature (Table 2). This in-
dicated that the Rhau25 peptide stabilized the parallel topology of T95-2T in Na+ (Figure 
5, right) unlike that in K+ where the peptide appeared to be not necessary (Figure 5, left).  

The analysis of the melting curves (Figure 11C) highlights how in K+ the parallel to-
pology of T95-2T is more stable and thermally robust than in Na+, even when promoted 
by the Rhau25 peptide (Figure 11B).  

Figure 10. Thermal annealing of SRCD spectra of Htelo1 (13.5 µM) with 2.2 eq. of Rhau25 peptide in
10 mM Tris-HCl buffer, pH 7.4, containing 70 mM potassium ions (A) or sodium ions (C) from 10 ◦C
to 90 ◦C every 5 ◦C. The dashed line represents the oligonucleotide cooled to 20 ◦C after heating
to 90 ◦C. The arrows represent the direction of the signal change as the temperature is increased.
(B) Plots of SRCD intensity versus temperature in K+ buffer at 272 nm (red) and 287 nm (black) with
insert of the corresponding first derivatives. (D) Plots of SRCD versus temperature in Na+ buffer at
211 nm (blue), 266 nm (red), and 297 nm (black).

The T95-2T alone in potassium ions (Figure 11A) or when complexed with Rhau25 pep-
tide in the presence of sodium or potassium ions (Figure 5) was remarkably stable in the an-
nealing process, retaining the parallel topology even at 90 ◦C. For this reason, it was not pos-
sible to determine their melting temperature Tm as the curves were not sigmoidal and the
plateau was not reached at higher temperatures (Figure 11). On the contrary, in the presence
of sodium ions, the T95-2T alone was able to reach a fully denatured state (Figure 11B,D),
allowing the determination of the melting temperature (Table 2). This indicated that the
Rhau25 peptide stabilized the parallel topology of T95-2T in Na+ (Figure 5, right) unlike
that in K+ where the peptide appeared to be not necessary (Figure 5, left).
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Apart from the G-quadruplex/peptide complexes characterized by a conformational 
conversion (indicated with * in Table 2), the CD spectra of not annealed and annealed at 
20 °C were almost superimposable, indicating that the G-quadruplexes with or without 
the peptide were reversible. On the contrary, the conformational conversion induced 
upon heating was also retained upon cooling, indicating that the new conformation was 
the preferred one. 

Another behavior towards perturbations that is informative and useful to determine 
is the UV-photo-stability of the G4-sequences in presence or not of the Rhau25 peptide 
(1:2.2 molar ratio). The CD spectra were recorded as a function of irradiating time with 
either a UV-C lamp or the synchrotron radiation (Figures 12, S17–S21). Under these con-
ditions, the observed conformational denaturation has been attributed to the action of re-
active oxygen species (ROS) generated by the photolysis of water molecules, as recently 
demonstrated using a positive fluorophore probe [49]. 

Figure 11. Influence of temperature on the SRCD spectra of T95-2T (13.5 µM) in 10 mM Tris-HCl
buffer, pH 7.4, containing 70 mM (A) potassium or (B) sodium ions. The temperature varied from 10
to 90 ◦C. The dashed line represents the oligonucleotide cooled to 20 ◦C after heating to 90 ◦C. The ar-
rows represent the direction of the spectral change as the temperature is increased; (C) SRCD-melting
curves in sodium or potassium ions, and in the absence or presence of 2.2 equivalents of Rhau25
peptide; (D) Melting curves of T95-2T in 10 mM Tris-HCl buffer, pH 7.4, containing 70 mM sodium
ions at 206 nm (magenta), 243 nm (orange), and 265 nm (green) with insert for the corresponding
first derivatives.

The analysis of the melting curves (Figure 11C) highlights how in K+ the parallel
topology of T95-2T is more stable and thermally robust than in Na+, even when promoted
by the Rhau25 peptide (Figure 11B).

Apart from the G-quadruplex/peptide complexes characterized by a conformational
conversion (indicated with * in Table 2), the CD spectra of not annealed and annealed at
20 ◦C were almost superimposable, indicating that the G-quadruplexes with or without
the peptide were reversible. On the contrary, the conformational conversion induced upon
heating was also retained upon cooling, indicating that the new conformation was the
preferred one.

Another behavior towards perturbations that is informative and useful to determine
is the UV-photo-stability of the G4-sequences in presence or not of the Rhau25 peptide
(1:2.2 molar ratio). The CD spectra were recorded as a function of irradiating time with
either a UV-C lamp or the synchrotron radiation (Figure 12, Figures S17–S21). Under these
conditions, the observed conformational denaturation has been attributed to the action of
reactive oxygen species (ROS) generated by the photolysis of water molecules, as recently
demonstrated using a positive fluorophore probe [49].
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Figure 12. (A) CD spectra G-quadruplex sequence (as example, Htelo1 13.5 µM in 10 mM Tris-HCl
buffer, pH 7.4, in presence of 70 mM potassium ions) as a function of irradiation time with the arrow
representing the direction of the spectral change as irradiation time is increased. Normalized rates of
denaturation of G-quadruplex-forming sequences with and without the Rhau25 peptide in 70 mM
potassium or sodium ions; (B) for Htelo1; (C) for T95-2T; (D) for G3T3.

In terms of relative stability among the three sequences G3T3, Htelo1 and T95-2T
investigated under the four conditions of 70 mM K+, 70 mM Na+, with and without 2.2 eq.
of Rhau25 peptide in K+ or Na+, the UV denaturation curves in Figure 12B–D indicated
that the sequence T95-2T with 2.2 Rhau25 peptide in K+ (red lines) was the most UV stable
followed by both G3T3 and Htelo1. This order was maintained with the peptide in Na+

(blue lines), though these were less stable than those with the peptide in K+ (red lines).
Without the peptide in K+ (black lines), both T95-2T and G3T3 appeared to have similar
UV stability followed by the less stable Htelo1. On the other hand, without the peptide in
Na+ (magenta lines), G3T3 was the most stable followed by T95-2T with Htelo1 the last one.

In terms of relative stability for each G-quadruplex sequence studied under the four
conditions of 70 mM K+, 70 mM Na+, with and without 2.2 eq. of Rhau25 peptide in K+ or
Na+, the UV denaturation curves in Figure 12B–D indicated that the stabilities were more
similar for G3T3 than T95-2T than Htelo1 sequences.

In terms of the effect of the Rhau25 peptide on the UV stability of the induced G-
quadruplex topology, the G3T3 sequence was less UV stable, suggesting that the addition of
the peptide induced a G4 structure more prone to the denaturing effects induced by ROS.

4. Conclusions

In this study, circular dichroism spectroscopy was utilized to monitor the structure
and interaction with a small peptide, containing the sequence 52–75 of the N-terminal
domain of the human RHAU helicases, of three G-quadruplex-forming sequences able
to adopt different structure topologies, extending early studies by other authors on the
properties of RHAU derived peptides.

We have reported experimental evidence that not only does the Rhau25 peptide
specifically recognize parallel G-quadruplex structure, in the T95-2T sequence, with high
affinity, but also its interaction with antiparallel or hybrid G3T3 and Htelo1 structures
induced a conformational conversion of the G4-strucure to the parallel topology. This
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transition is favored in the presence of sodium ions coordinated within the plane of G4
structure. It is also observed in presence of highly stabilizing potassium ions after annealing
the peptide/G4 complexes.

The pharmaceutical relevance of these findings lies in the widespread presence in
regions of the genome of G-quadruplex-forming sequences, making these structures a
promising drug target not only in the discovery of anticancer but also antiviral drugs, espe-
cially against viruses that exhibit latency. Binding to specific G-quadruplex topologies, as
the Rhau25 peptide does, will also be an important aspect of drug design. With numerous
G-quadruplexes present in the human genome, binding to one particular structure will be
important in targeting transcription of individual genes.

In addition, to directly inhibit the transcriptional mechanism by stabilizing G-quadruplexes,
the use of peptide-based drugs can also block the interaction between nucleic acids and
specific proteins essential to allow G-quadruplexes to perform their function. Furthermore,
the properties of peptides can improve cellular permeation and targeting, increasing the
ability to target specific organelles, a feature not always present in small molecules.

Overall, the data presented here confirms the usefulness of multivariate analysis in
assigning the G4 secondary structure on the basis of CD spectral profile that can be further
used to understand G-quadruplex behavior, inspiring new therapeutic possibilities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13081104/s1, Figure S1: LC-ESI-MS characterization of the Rhau25 peptide;
Figure S2: Interaction of the Rhau25 peptide with ctDNA; Figure S3: CD titration curves of the
investigated G4-DNA strands with up to 2.2 eq. Rhau25 peptide; Figure S4: Calculation of the
Rhau25 peptide conformation when interacting with the investigated G4 sequences; Figure S5: CD
melting experiment on G3T3 in KCl buffer; Figure S6: CD melting experiment on G3T3 in NaCl
buffer; Figure S7: CD melting experiment on G3T3 + 2.2 molar equivalents of Rhau25 in NaCl buffer;
Figure S8: CD melting experiment on G3T3 + 2.2 molar equivalents of Rhau25 in KCl buffer after
annealing of the G4 sequence in presence of peptide; Figure S9: CD annealing and melting ex-
periments on G3T3 + 2.2 molar equivalents of Rhau25 in KCl buffer; Figure S10: Conformational
conversion of the Htelo1 quadruplex by the Rhau25 peptide in NaCl buffer monitored for up to
90 min; Figure S11: CD melting experiment on Htelo1 + 2.2 molar equivalents of Rhau25 in NaCl
buffer after 5 h equilibration time; Figure S12: CD melting experiment on Htelo1 in NaCl buffer;
Figure S13: CD melting experiment on T95-2T + 2.2 molar equivalents of Rhau25 in KCl buffer;
Figure S14: CD melting experiment on T95-2T + 2.2 molar equivalents of Rhau25 in NaCl buffer;
Figure S15: PCA plot identifying the main clusters indicative of G4 conformation, including data
recorded at 20 ◦C after the heating and cooling experiment for the samples that showed a conforma-
tional change; Figure S16: Hierarchical cluster analysis plot identifying the main clusters indicative
of G4 conformation including data recorded at 20 ◦C after the heating and cooling experiment for the
samples that showed a conformational change; Figure S17: UV denaturation experiment of G3T3
alone or in presence of Rhau25 in KCl buffer; Figure S18: UV denaturation experiment of G3T3 alone
or in presence of Rhau25 in NaCl buffer; Figure S19: UV denaturation experiment of Htelo1 alone or
in presence of Rhau25 in NaCl buffer; Figure S20: UV denaturation experiment of T95-2T alone or
in presence of Rhau25 in KCl buffer; Figure S21: UV denaturation experiment of T95-2T alone or in
presence of Rhau25 in NaCl buffer.
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