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Pre-obese children’s dysbiotic gut microbiome and
unhealthy diets may predict the development
of obesity
Simone Rampelli 1, Kathrin Guenther2, Silvia Turroni 1, Maike Wolters2, Toomas Veidebaum3,

Yiannis Kourides4, Dénes Molnár5, Lauren Lissner6, Alfonso Benitez-Paez7, Yolanda Sanz 7,

Arno Fraterman8, Nathalie Michels9, Patrizia Brigidi1, Marco Candela1 & Wolfgang Ahrens2

It is widely accepted that the intestinal microbiome is connected to obesity, as key mediator

of the diet impact on the host metabolic and immunological status. To investigate whether

the individual gut microbiome has a potential in predicting the onset and progression of

diseases, here we characterized the faecal microbiota of 70 children in a two-time point

prospective study, within a four-year window. All children had normal weight at the beginning

of this study, but 36 of them gained excessive weight at the subsequent check-up. Micro-

biome data were analysed together with the hosts’ diet information, physical activity, and

inflammatory parameters. We find that the gut microbiota structures were stratified into a

discrete number of groups, characterized by different biodiversity that correlates with

inflammatory markers and dietary habits, regardless of age, gender, and body weight. Col-

lectively, our data underscore the importance of the microbiome–host–diet configuration as a

possible predictor of obesity.
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Obesity and associated metabolic diseases are linked to diet
and gut microbiome in an intimate way1. Prevalence rates
of obesity have increased dramatically in the past dec-

ades. In 2014, 1.9 billion adults worldwide were overweight and
600 million of them were obese (World Health Organization,
2016, http://www.who.int/mediacentre/factsheets/fs311/en/). Obe-
sity, deriving from a positive energy balance that results from a
surplus in ingested with respect to the expended energy, is con-
sidered a major risk factor for health, with important con-
sequences on quality of life, life expectancy, and healthcare costs2.
The intestinal microbiome is a pivotal emerging factor that can
affect human metabolic homeostasis and promote the risk of
metabolic complications connected to obesity. Even if there is a
lack of consensus on the obese-type microbiome configuration,
taxonomic and functional alterations have been suggested to
contribute to the pathogenesis of obesity in both humans and
animal models3–5. The altered microbial profile occurring in
obese people is considered as an extreme deviation from the
microbiota–host mutualism, resulting from the response to a
high-fat high-sugar diet5. The obesity-related gut microbiota is
generally characterized by a low degree of biodiversity and
enrichment in pathobiont bacteria, such as members of the family
Enterobacteriaceae, as well as Erysipelotrichaceae and the sulphate
reducer species Bilophila wadsworthia4,6. This dysbiotic microbial
structure is probably involved in the manifestation of obesity in a
multifactorial way7. Coherently with the energy harvest hypoth-
esis3, the gut microbiome of obese individuals possesses higher
efficiency in energy extraction from the diet, providing an extra
supply of calories to the host8–10. Furthermore, the concomitant
overload of the intestinal microbial ecosystem with pro-
inflammatory Enterobacteriaceae and sulphate-reducing bacteria
may consolidate the obesity-associated inflammation and insulin
resistance11.

The prevalence of obesity is increasing worldwide, particularly,
in children12, and this has been closely associated with cardio-
vascular risk factors, such as hypertension, insulin resistance, and
dyslipidaemia, during adulthood13. However, links among diet,
microbiome structure, and child health are still unclear. To test
the hypothesis that the composition and/or the diversity of the
microbiome had an impact on the onset of obesity, we explored
the faecal microbiota structure in 70 children in a prospective
study, at a baseline survey and a follow-up after 4 years. All
children were normal weight at baseline, but 36 developed an
excessive weight gain until follow-up. We also collected com-
prehensive data on lifestyle, such as dietary intake and physical
activity, as well as medical history, anthropometry, measures of
physiological, immunological, psychological parameters, and
socioeconomic status. According to our findings, clusters of
dietary patterns are associated with specific differences in the gut
microbiota and health datasets: the normal weight children ate
differently and had a distinctive microbiome configuration
compared to obese children. Measures of increased inflammation
in obese children suggest that dietary adjustments might promote
healthier adolescence and adulthood by modulating the intestinal
microbiota.

Results
Microbiota structure, health correlations, and healthy growth.
To investigate links between the gut microbiota and obesity,
health, diet, and other lifestyle factors, we analysed the faecal
microbial composition in 70 children at two time points (T1, T3)
within a 4-year window. Children were stratified by timing and
weight status: at T1, all children were normal weight of which 34
are referred as T1_N who remained normal weight (mean ± sd,

age (years): 7 ± 2; BMI (kg m−2): 16 ± 1), and 36 as T1_O (age: 8
± 2; BMI: 16 ± 2), who gained excessive weight; accordingly, at
T3, 34 subjects had maintained their normal weight (T3_N; age:
11 ± 2; BMI: 17 ± 2), while 36 had gained excessive weight (T3_O;
age: 12 ± 2; BMI: 20 ± 3).

We generated 7.9 million sequence reads from 16s rRNA gene
V3–V4 amplicons, with an average of 56,485 (±22,321, sd)
paired-end reads per sample, for 20,360 OTUs (Operational
Taxonomic Units) grouped at 97% of sequence identity. When
examining OTU abundance, we identified four subject clusters,
one of which (C3) included the majority of obese subjects, before
and after they had developed obesity (Supplementary Fig. 1). For
18 out of the 70 children, the most relevant variable that drove
the separation was the sample origin, with samples T1 and T3
from the same individual clustering together in the dendrogram
(p= 0.0001, Fisher’s test).

To identify trends in the gut microbiota, we established co-
abundance associations of genera (Supplementary Fig. 2), and
then clustered correlated bacterial taxa into four co-abundance
groups (CAGs), describing the microbiota structures found across
the whole dataset. The dominant (i.e. the most abundant) genera
in these CAGs were Bacteroides (green), Prevotella (yellow),
Dorea (violet), and Bifidobacterium (blue). The CAG relation-
ships are termed Wiggum plots, where genus abundance is
represented as a disc proportional to normalized over-abundance
(Fig. 1). The four subject divisions, as identified by OTU
clustering (Supplementary Fig. 1), were superimposed on the
unweighted (Fig. 1) and weighted (Supplementary Fig. 3) UniFrac
Principal Coordinates Analysis (PCoA) plots, allowing defining
four clusters, C1–C4. Within a spectrum of microbiota structures,
these clusters represent groups of individuals who have a
significantly different microbiota layout from each other, as
defined by the permutation multivariate analysis of variance
(MANOVA) test on UniFrac data (p < 0.001). We then
constructed Wiggum plots for the gut microbiota for each of
the 4 groups (Fig. 1). The microbiota variation from the groups
dominated by normal weight children (C1/C2) to the groups
dominated by obese children (C3/C4) was accompanied by
distinctive CAG dominance, most relevantly by abundances of
Prevotella CAG (C1) and Dorea and Bacteroides CAGs (C4).
Significant associations between several health/inflammation
measurements and the major axes from unweighted UniFrac
PCoA analysis are shown in Table 1. In particular, when
considering the whole cohort, a shift of the microbiota structure
towards positive values of the PCo1 axis was associated with
inflammation, i.e. serum levels of C-reactive protein (CRP) and
IL-6. Interestingly, other inflammatory markers, such as
interleukin-15 (IL-15), tumour necrosis factor alpha (TNF-α),
interferon gamma-induced protein 10 (IP-10), interleukin 6 (IL-
6), and interleukin 8 (IL-8), correlated only with the microbiota
profiles from children developing obesity. As expected, there was
minimal variability amongst normal weight subjects. It should be
noted that the education level score and physical activity score
(time spent in moderate to vigorous physical activity, MVPA)
were also associated with the microbiota structure, but in an
independent way with respect to inflammatory parameters and
the lean/obese phenotype (Supplementary Fig. 4). Furthermore,
the microbial biodiversity was associated with the inflammatory
status. Indeed, we observed a gradual change of the level of
biodiversity along PCo1, from the highest level in the samples
belonging to the C2 cluster to the lowest values in the C4
microbiomes (p < 0.000001, Kruskal–Wallis test; Supplementary
Fig. 5). On the other hand, when comparing the biodiversity of
the child microbiota among the original groupings (T1_N, T3_N,
T1_O, T3_O), we only detected a significant difference using the
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Table 1 Regression tests of associations between clinical measurements and microbiota composition

Parameter PCo1 PCo2 PCo3

RC range RC sd p RC range RC sd p RC range RC sd p

(a) Unweighted UniFrac PCoA for all subjects

ISCED (education level score) −0.95934 −0.15989 0.3 0.369546 0.10869 0.04 0.350038 0.13463 0.3
Evenson MVPA (moderate to vigorous
physical activity) score

0.64632 0.10772 0.5 −0.415378 −0.12217 0.05 0.387634 0.14909 0.2

CRP 3.10902 0.51817 0.0003 0.000374 0.00011 0.9 −0.05109 −0.01965 0.9
Triglyceride 1.83048 0.30508 0.04 0.071706 0.02109 0.7 0.149942 0.05767 0.6
IL-6 2.34798 0.39133 0.03 0.082212 0.02418 0.8 −0.284232 −0.10932 0.5
Diastolic blood pressure 2.24544 0.37424 0.04 0.32045 0.09425 0.3 0.33124 0.1274 0.4
Glucose 0.2517 0.04195 0.8 0.131818 0.03877 0.7 −0.951886 −0.36611 0.02

(b) Unweighted UniFrac PCoA for developing obesity-only subjects (T1_O, T3_O)

Evenson MVPA (moderate to vigorous
physical activity) score

−0.23454 −0.03909 0.8 −0.440368 −0.12952 0.04 0.076778 0.02953 0.8

CRP 3.18672 0.53112 0.007 −0.097478 −0.02867 0.7 −0.327028 −0.12578 0.2
TNF-α 2.78556 0.46426 0.04 −0.09656 −0.0284 0.8 −0.691912 −0.26612 0.3
IP-10 2.99568 0.49928 0.05 0.250036 0.07354 0.4 −0.479206 −0.18431 0.4
IL-8 3.16782 0.52797 0.04 −0.031246 -0.00919 0.9 −0.313976 −0.12076 0.6
IL-6 3.00882 0.50147 0.04 0.181254 0.05331 0.6 −0.701142 −0.26967 0.3
IL-15 2.92746 0.48791 0.04 0.16286 0.0479 0.7 −0.434798 −0.16723 0.6

(c) Unweighted UniFrac PCoA for normal weight-only subjects (T1_N, T3_N)

Weight −0.81234 −0.13539 0.4 −0.646952 −0.19028 0.05 −0.317382 −0.12207 0.5
Triglyceride 1.94376 0.32396 0.04 0.462876 0.13614 0.2 0.41379 0.15915 0.4

Quantile (median) regression tests of associations between metadata measurements and microbiota composition as measured by unweighted UniFrac PCoA across all groups (all children, a; T1_O/
T3_O-only children, b; T1_N/T3_N-only children, c). Column headings are: RC range, regression coefficients scaled to the full variation along each PCoA axis, thus indicating direction and magnitude of
the association; RC sd, regression coefficients scaled to one standard deviation; p, quantile regression p value
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Fig. 1 Variation of the gut microbiota structure across normal weight and obese children is mirrored by changes in health indices. The PCoA plots (PCo1
and PCo3 axes used) in the lower part of the figure show four significantly different groups of subjects (C1–C4, p < 0.001), as defined by unweighted
UniFrac microbiota analysis of normal weight children (T1_N, T3_N; left), the whole cohort (centre) and obese children (T1_O, T3_O; right). The top of the
figure shows the Wiggum plots corresponding to the four groups from the whole cohort analysis, in which disc sizes indicate genus over-abundance
compared to the average relative abundance in the whole cohort. Pie charts show the proportion and number of subjects per group (pink, T1 normal weight
children that will develop obesity (T1_O); red, T3 obese children (T3_O); cyan, T1 normal weight children (T1_N); light blue, T3 normal weight children
(T3_N)). For subject clustering (C1–C4), please see Supplementary Fig. 1. Curved arrows indicate a transition from health (blue) to an inflammatory state
(red), as defined by the increase in several inflammatory markers (CRP, IL-6, IL-8, IL-15, TNF-α), as well as in triglycerides and diastolic blood pressure.
Please see also Table 1
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Shannon index. In particular, we found higher biodiversity in the
T1_N microbiome than T1_O samples (p < 0.01, Wilcoxon test),
but this evidence was not confirmed with the other metrics.

It should be noted that both the unweighted and weighted
UniFrac PCoA space was not correlated with either the child’s age
(p= 0.7 for unweighted UniFrac; p= 0.6 for weighted UniFrac,
permutational correlation test), gender (p= 0.2 for unweighted
UniFrac; p= 0.4 for weighted UniFrac; permutational MANOVA)
or maturation stage according to Tanner classification14 (p= 0.2 for
unweighted UniFrac; p= 0.6 for weighted UniFrac), meaning that
the associations described above were irrespective of these variables.

Taken together, these results indicate that the gut microbiota
may exist under a number of configurations, which are associated
with host metabolic and immunological factors and, in the
context of other individual lifestyle and genetic variables, may be
involved (or not) in the development of the multifactorial obese
phenotype.

Impact of diet on the gut microbiota. To identify the food types
with the most significant contribution (p < 0.05, permutational

correlation test) to the microbiota ordination, we superimposed
the food data from Food Frequency Questionnaires (FFQs) on the
unweighted UniFrac PCoA plot of Fig. 1 (Fig. 2a). Remarkably, a
higher consumption of milk, fish, seeds, and whole meal bread
was associated with the configurations C1 and C2 of the gut
microbiota. On the other hand, the microbiota configurations C3
and C4 were associated with a higher consumption of dairy
products, pizza, sausages, and sweetened drinks. Differently, as
mentioned above, the microbiota diversity was inversely corre-
lated to the first axis. In line with the available literature on the
diet as the major driver of the microbiota structure15, differences
in food consumption may thus contribute to differences in
microbiota diversity between groups. Mean values of food con-
sumption per day for each of the four microbiota groups are
reported in Supplementary Table 1, along with more information
on food categories. Furthermore, by focusing on macronutrients,
we found that the most discriminant category was carbohydrate,
whose consumption increased in a gradual manner along the first
axis (Fig. 2b). In light of the fact that diet, in terms of excess
energy intake, is a major cause of obesity1, it is important to note
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Fig. 2 Differences in food consumption lead to different microbiota configurations. a PCoA based on unweighted UniFrac distances of the faecal microbiota
of 70 children at two time points, as shown in the centre of Fig. 1. The biplot of the average food coordinates weighted by frequency of consumption per
sample was superimposed on the PCoA plot to identify the foods contributing to the ordination space (blue arrows). Only the food categories showing a
highly significant correlation with the sample separation (p < 0.005, permutational correlation test) were displayed. Samples are coloured by subject group
(C1–C4), as in Fig. 1. The black arrow at the bottom indicates the direction of the microbiota diversity gradient along PCo1. b Summary of the macronutrient
intake, expressed as a percentage of kilocalories consumed per day, and fibre consumption, as grams of fibre intake per 1000 kilocalories consumed. Data
are presented for each of the four microbiota groups. p value < 0.05 was indicated in the figure (**)
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that the microbiota configurations (C1–C4) were independent of
the total daily caloric intake, and that an increase of caloric intake
was observed at T3, compared to the first time point, in accor-
dance with the growth of children (Supplementary Fig. 6).

Microbiota, diet, and physical activity relation to obesity. FFQ
data were further explored in a Correspondence Analysis, where
the first axis, describing over 9% of the dataset variance, con-
tained most of the discriminating food types identified in the
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previous correlation analysis of FFQ data on the microbiota
PCoA, such as milk, pizza, and sweetened drinks. Application of
Ward linkage clustering and Euclidean distance metrics to this
axis allowed identifying five dietary groups (p < 0.001, Fisher’s
test): D1 (‘low protein/low carbohydrate’), D2 (‘high carbohy-
drate/high fat’), D3 (‘high carbohydrate/high fibre’), D4 (‘low
protein/low fat’), and D5 (‘high protein/high fat’) (Fig. 3a). We
then calculated the Healthy Food Diversity (HFD) index, an
index used to measure dietary diversity, based on evidence that a
diverse diet promotes health status16. By analysing samples by
dietary groups rather than microbiota groups, we found out that
the diet was the least diverse in D2, while showing the highest
diversity in D1 and D3 (p= 0.0002, Kruskal–Wallis test; Fig. 3b).
When we focused on the sample distribution in a longitudinal
way, we observed that for 16 out of 70 children, the T1 and
T3 samples fell in the same dietary group. Twelve children
changed their diet group from D1 to D3 or vice versa, thus
maintaining a high HFD index. Only four children (2 T1_O/
T3_O and 2 T1_N/T3_N) modified their dietary group in the
worst way, i.e. from diets with the highest HFD index (D1, D3) to
the least diverse diet, D2 (Supplementary Data 1).

By matching the stratifications of subjects in dietary and
microbiota groups, we sought for redundant combinations
associated with the obese phenotype. In particular, in the light

of the obtained results, the combination D2 diet and C3/C4
microbiota was exclusively associated with a disease-promoting
and inflammation status. Seven obese children out of 36 were
D2–C3/C4, whereas none of T1_N/T3_N children possessed this
configuration (p= 0.0006, Fisher’s exact test). It is important to
note that the only T1_N child who fell in the D2 group (C2
microbiota group) showed a high MVPA score (higher than 75%
of T1 subjects), suggesting a protective role of physical activity in
children consuming a diet associated with a low HFD index. This
was also confirmed for the combination D5 diet and C3/C4
microbiota, in which fell seven obese children and only one T1_N
child with high MVPA score (p= 0.008). However, it should be
pointed out that, even if the combinations D2/D5 diet and C3/C4
microbiota were associated with the obese phenotype, there were
obese children harbouring different profiles. This stresses that
obesity is a complex mosaic, in which several endogenous and
exogenous factors, including host genetics, contribute to health
decline. Interestingly, when looking at T1 samples in a
prospective manner, we consolidated our hypothesis, by detecting
D2/D5–C3/C4 configurations exclusively in normal weight
children who showed excessive weight gain at T3. This finding
suggests a sort of predictive potential of the
microbiome–host–diet configuration, even if the model clearly
needs to be implemented with more subjects, sampling points and
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four groups in Fig. 1) are highlighted by black squares. OTUs are colour-coded by family assignment in the vertical tree. Bacteroidetes phylum, blue
gradient; Firmicutes, green; Proteobacteria, red; and Actinobacteria, yellow. Four hundred fifty-six OTUs classified to the family level are visualized. The bar
plot shows the relative abundance of the family-classified microbiota profiles
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other omics data to increase statistical power. The assignment of
the dietary group, microbiota group, and physical activity score is
reported in Supplementary Data 1 for each sample.

Microbiota signatures of obesity. UniFrac PCoA analysis
showed weak but significant separation between subjects with
(T3_O) or without obesity (T1_N, T3_N, T1_O), according to
both unweighted (p= 0.02, permutation test with pseudo-F
ratios; Fig. 4a) and weighted (p= 0.05; Fig. 4b) distance metrics.
Family-level microbiota assignment highlighted a readjustment
within the phylum Bacteroidetes, with a higher proportion of
Bacteroidaceae and a lower proportion of Prevotellaceae in obese
children when compared to the normal weight counterparts
(Fig. 4c). In addition, obese children showed a higher

contribution of the genus Lachnospira compared to normal
weight children at the same time point (T3_N). When looking at
T1_O/T3_O children in a longitudinal way, we denoted an
increase in the relative abundance of Proteobacteria and a
decrease in the proportions of the families Clostridiaceae and
Ruminococcaceae after the onset of obesity. On the other hand,
when focusing on normal weight children, we observed only a
sensible reduction in Proteobacteria at the second time point
(T3_N) compared to the baseline. A complete summary of the
significant differences in the gut microbiota between groups is
reported in Table 2. It is important to note that differences
between obese (T3_O) and non-obese (T1_O and T3_N) children
involved major microbiota components, whereas differences
between non-obese children (T1_N, T3_N, and T1_O) involved
only minor components, proving that obesity is associated with
certain gut microbiota profiles, although alone cannot be used as
unique predictive tool.

Discussion
In this study, we explored the structure of the gut microbiota of
70 children in a two-time point prospective study, with samplings
being separated by a period of 4 years. During this time window,
half of the children maintained their normal weight, while the rest
gained excessive weight. The data were integrated with dietary
intake information, measures of physical activity and inflamma-
tory parameters. By analysing the degree of similarity among the
140 gut microbial profiles, we identified four significantly differ-
ent compositional clusters, each representing a gut microbiota
steady state. For each of these steady states, we obtained a
peculiar compositional profile, as highlighted by the respective
dominance of the four CAGs. In particular, the steady state C1
was characterized by Prevotella and Bacteroides CAGs, while the
steady state C2 was dominated by the Prevotella CAG. Con-
versely, steady states C3 and C4 were more heterogeneous, with
the first showing the concomitant presence of all the four CAGs
(Prevotella, Bacteroides, Bifidobacterium, and Dorea), and the
second lacking only the Bifidobacterium CAG. Steady states were
characterized by a different degree of bacterial diversity, with
C2 showing the highest level of microbial diversity followed by
C1, C3, and C4. When seeking for the prevalence of sample types
within the four steady states, we found that samples from pre-
obese (T1_O) and obese (T3_O) children were largely more
prevalent in the low-diversity clusters, C3 and C4. In addition,
when we explored connections between the gut microbiome
steady states and inflammation, we found positive associations
with C3 and C4. Taken together, our data indicate that the low-
diversity gut microbiota configurations C3 and C4 can represent
obesogenic gut microbiome layouts, predisposing children to
metabolic inflammation and obesity.

In light of the importance of diet as a gut microbiome
modulator15,17–23, we explored connections between dietary
habits and microbiome steady states. To this aim, the individual
dietary profiles at T1 and T3 were clustered into five dietary
groups, from D1 to D5, each being characterized by a different
abundance of macronutrients: protein, fat, and carbohydrate.
When we calculated the HFD index16, the dietary clusters D1 and
D3 showed the highest potential to promote health, while D2 the
lowest. Interestingly, when we sought for redundant combina-
tions between diet and microbiome clusters, potentially predis-
posing to obesity, we found that the combinations D2/D5 and
C3/C4 were more prevalent in pre-obese (T1_O) and obese
children (T3_O) compared to the other subjects. In particular, the
combination D2 diet and C3/C4 microbiome steady state was
exclusively observed in obese children, while seven of the eight
children that showed the combination D5 and C3/C4 were obese.

Table 2 Microbial taxa significantly different across the four
groups of children

Differences between normal weight children at T1

Taxon Level Mean
T1_N

SEM
T1_N

Mean
T1_O

SEM
T1_O

p

Cyanobacteria Phylum 0.19 0.07 0.14 0.07 0.05
S24-7 Family 0.7 0.25 0.11 0.08 0.05
Slackia Genus 0.05 0.01 0.03 0.01 0.008
[Prevotella] Genus 0.3 0.18 0 0 0.05
Lactococcus Genus 0.12 0.04 0.1 0.07 0.04

Differences between normal weight children at T1 and T3

Taxon Level Mean
T1_N

SEM
T1_N

Mean
T3_N

SEM
T3_N

p

Proteobacteria Phylum 1.51 0.19 1.08 0.11 0.04
Tenericutes Phylum 0.6 0.18 0.18 0.08 0.03
[Mogibacteriaceae] Family 0.14 0.02 0.18 0.02 0.03
Enterobacteriaceae Family 0.32 0.17 0.04 0.02 0.01
Catenibacterium Genus 0.07 0.04 0.23 0.1 0.04

Differences between children before and after the onset of obesity

Taxon Level Mean
T1_O

SEM
T1_O

Mean
T3_O

SEM
T3_O

p

Proteobacteria Phylum 1.1 0.13 1.56 0.24 0.02
Lactobacillaceae Family 0.2 0.13 0.11 0.07 0.02
Clostridiaceae Family 1.5 0.2 1.14 0.17 0.03
Ruminococcaceae Family 24.82 1.16 21.55 0.98 0.02
Alcaligenaceae Family 0.66 0.09 0.86 0.09 0.03
Ruminococcus Genus 5.92 0.86 3.88 0.47 0.05
Sutterella Genus 0.66 0.09 0.86 0.09 0.03

Differences between normal weight and obese children at T3

Taxon Level Mean
T3_N

SEM
T3_N

Mean
T3_O

SEM
T3_O

p

Bacteroidaceae Family 15.76 1.86 19.62 1.68 0.03
Prevotellaceae Family 6.16 1.45 5.23 1.74 0.02
Christensenellaceae Family 0.49 0.11 0.29 0.10 0.05
[Mogibacteriaceae] Family 0.18 0.02 0.11 0.02 0.001
[Tissierellaceae] Family 0.02 0 0.01 0 0.04
[Cerasicoccaceae] Family 0.10 0.06 0 0 0.002
Slackia Genus 0.05 0.01 0.02 0.01 0.008
Bacteroides Genus 15.76 1.86 19.62 1.68 0.03
Prevotella Genus 6.16 1.45 5.23 1.74 0.02
[Prevotella] Genus 0.26 0.12 0.03 0.03 0.02
Lachnospira Genus 0.74 0.10 1.44 0.21 0.02
Roseburia Genus 0.13 0.02 0.23 0.04 0.03
Oscillospira Genus 0.80 0.05 0.66 0.05 0.04

Only taxa found in at least 20% of the samples were considered. Differences in relative
abundance were assessed by Wilcoxon test, paired or unpaired as needed
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Finally, the combinations D2/D5 and C3/C4 at T1 were dis-
tinctive of normal weight children who showed excessive weight
gain at T3, supporting the relevance of the combination of diet
and microbiome structure as a possible predictor of obesity. It is
also tempting to speculate that the differences in food intake
contributed to the observed microbiota differences. Consistent
with the gut microbiome arrangements reported in other studies,
we observed higher levels of Bilophila in children that consumed
more milk24, and higher contribution of Prevotella in children
with higher intake of whole meal bread25. On the other hand, we
found more Bacteroides and Oscillospira in children who ate more
ham and sausages, as already described in adults following an
animal-based, low-fibre diet15. As demonstrated by Zhernakova
and colleagues26, we also found evidence of an inverse correlation
between microbiota diversity and consumption of sugar-
sweetened drinks. It is worth noting that a high diversity in the
gut microbial ecosystem, together with high levels of short-chain
fatty acid production were reported in rural children of Burkina
Faso, whose diet is rich in complex carbohydrates and fibre27.
Similarly, a high-diversity gut microbiome, with enrichment of
genes involved in the metabolism of complex polysaccharides,
was found in the Hadza, a hunter-gatherer population following a
heavily plant-based diet28. In line with these findings, our results
showed that the microbiota diversity was higher in children who
ate more foods containing oligosaccharides, such as honey and
whole milk29, with the latter being also a source of fat-soluble
Vitamin D, whose deficiency is associated with obesity in children
and adolescents30. The microbiota diversity was also higher in
children with high consumption of complex polysaccharides,
such as whole meal bread, nuts, and seeds. The link between diet
and microbiota also clearly involves human physiology. Indeed, it
has been demonstrated that the dietary fat increases the amount
of endotoxins in the blood31, and that circulating endotoxin levels
are associated with elevated TNF-α, IL-8, and IL-6
concentrations32,33. In agreement with these data, we found
higher plasmatic levels of IL-6, IL-8, and TNF-α associated with
an overabundance of gram-negative bacteria, such as Veillonella,

Akkermansia, Bacteroides, and Parabacteroides, in the C3/C4
configurations. On the other hand, we found that the consump-
tion of fish was directly connected to a microbiota configuration
with low inflammatory grade, as it has been reported for lard-
consuming mice transplanted with the microbiota of fish oil-
consuming mice34. Importantly, the health–microbiota associa-
tions were statistically significant even when the model was
adjusted for age, and robust to gender and maturation stage
according to Tanner classification14.

Finally, we also detected robust microbiome signatures of
obesity as previously reported1,4,6, such as the reduction of the
ecosystem diversity. Furthermore, a higher proportion of Bac-
teroidaceae and a lower abundance of Prevotellaceae characterized
the obese children with respect to normal weight children, con-
sistently with the long-term dietary effects reported by Wu and
colleagues17. Looking longitudinally, the onset of obesity in
children was connected to an increase of Proteobacteria and a
decrease of Clostridiaceae and Ruminococcaceae, suggesting that
the obesity development also involves changes in the abundance
of key gut microbiome components.

In conclusion, our data highlight the importance of the indi-
vidual microbiome configuration as a mediator of the dietary
impact on the individual metabolic and immunological home-
ostasis. According to our findings, the individual gut microbiome
configuration—in terms of steady state—together with the long-
term dietary habit can be considered as a predictive tool for the
development of obesity in children (Fig. 5). Hence, our data pave
the way for a new perspective, where dietary recommendations to
reduce the obesity risk in children are specifically tailored based
on the individual microbiome structure, with the precise purpose
of avoiding combinations of diet and microbiome configuration
that are likely to favour the onset of obesity. Our data also stress
the multifactorial nature of obesity, where gut microbiome dys-
bioses and interacting factors (e.g. diet) are only a part of the
complex mosaic of determinants of this phenotypic trait (Fig. 5).
Future studies on larger cohorts, based on shotgun metagenomics
and possibly providing for more extensive sampling, are needed
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Obesity

D2 - high carbohydrate/high fat diet 
D5 - high protein/high fat diet 

C3/C4 microbiota configurations
(Dorea and Bacteroides CAGs) 

Mosaic of endogenous/exogenous
factors:  
-  Genetics 
-  Physical activity 

Fig. 5 The mosaic aetiology of obesity. The gut microbiota diversity is likely altered at multiple stages by the diet. Unhealthy diets may promote an
inflammatory state that, in turn, is strictly interconnected with the gut microbial configuration. The combination of these three factors (unhealthy diets,
inflammation and a dysbiotic, low-diverse and pro-inflammatory microbial layout) may favour the onset of obesity. High physical activity may protect the
human host from obesity, even when diet and microbiota are in a low-diversity and pro-inflammatory configuration. However, human genetics can lead the
host to develop obesity, regardless of the microbiome configuration
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to better unravel the contribution of the gut microbiota, as well as
of specific species and/or strains, to this complex mosaic.

Methods
The IDEFICS/I.Family cohort. The sample comprised children derived from the
surveys of the ‘Identification and Prevention of Dietary- and Lifestyle-Induced
Health Effects in Children and Infants’ (IDEFICS) cohort study and from the
project ‘Investigating the determinants of food choice, lifestyle and health in
European children, adolescents and their parents’ (I.Family). The IDEFICS study is
a prospective cohort of 16,228 children aged 2–9 years from eight European
countries (Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain, and Swe-
den), from kindergartens and schools. The IDEFICS study consisted of one baseline
survey (T0) performed from September 2007 to May 2008 and one follow-up
survey (T1), which was conducted 2 years later (September 2009 to July 2010). The
surveys provided information about dietary habits, physical activity, socio-
demographic factors, clinical and physical examinations, and health outcomes. The
follow-up project I.Family represents an extension of the IDEFICS study (T3) and
was conducted in 2013–2014, in which children who participated in T0 and/or T1
were followed up for the third time complemented with information from their
parents and siblings. Details of the design and methods of these surveys have been
described elsewhere35.

The present study is based on a subgroup of IDEFICS/I.Family children who
provided stool samples. The first stool samples were collected in 2010 during the
second survey of IDEFICS (T1) in five of the eight participating countries (Cyprus,
Estonia, Germany, Hungary, and Sweden). A second stool sample was collected in
these countries during the follow-up at T3. None of the children took antibiotics in
the 14 days before sample collection. All applicable institutional and governmental
regulations concerning the ethical use of human volunteers were followed during
this research. Approval by the appropriate ethics committees (Cyprus National
Bioethics Committee, Cyprus, 12/Jul/2007, No. EEBK/EM/2007/16 and 21/Feb/
2013, No. EEBK/ETI/2012/33; Tallinn Medical Research Ethics Committee
(TMREC), Estonia, 14/Jun/2007, No. 1093 and 17/Jan/2013, No. 128; Ethic
Commission of the University of Bremen, Germany, 16/Jan/2007 and 11/Dec/2012;
Medical Research Council, Hungary, 21/Jun/2007, 22-156/2007-1018EKU and 18/
Dec/2012, 4536/2013/EKU; Regional Ethics Research Board in Gothenburg,
Sweden, 30/Jul/2007, No. 264-07 and 10/Jan/2013, No. 927-12) was obtained by
each of the centres doing the fieldwork. The parents or guardians as well as
children from the age of 12 years gave their written informed consent and younger
children expressed their oral consent for the examinations and data collection.

Sample collection. The IDEFICS and I.Family examinations of children included
the collection of biological samples (blood, urine, saliva, faeces). Venous blood was
drawn after an overnight fast using standardized procedures36 by all survey centres,
and stored at −80 °C. Faeces were collected in a subsample with the PSP® Spin
Stool DNA PLUS Kit (Stratec Molecular, Berlin, Germany) at home. The stool
collection kit included a collection tube with a DNA stabiliser, an illustrated
description of how to collect the stool samples, a short questionnaire and a paper
stool collector. The participant had to collect one spoon of the middle of the faecal
sample and to mix the sample by shaking. The samples were stored at −20 °C on
the day of collection and then transferred to −80 °C upon arrival in the laboratory.
More details about children are reported in Supplementary Data 1.

Collection of clinical, behavioural, and nutritional data. Examinations of chil-
dren included anthropometry, blood pressure, accelerometry, genetic data from
saliva, and physiological markers in blood and urine. Supplementary Table 2 gives
an overview on the assessment methods applied in the study and a description of
the collected variables.

Dietary intake and behaviour were measured in detail using a validated semi-
quantitative FFQ37,38 and a self-administered computer-assisted 24-h dietary recall,
which is linked to a tailor-made European database of food composition tables39,40

as described below.

DNA extraction and sequencing. Total microbial DNA was extracted from faecal
samples by the repeated bead-beating plus column method41 with some additional
steps as reported by Turroni et al.42. The V3–V4 hypervariable region of the 16s
rRNA gene was amplified using the 341F and 805R primers with added Illumina
adapter overhang sequences as previously reported43. Indexed libraries were pre-
pared by limited-cycle PCR using Nextera technology and the final library was
diluted to 6 pM with 20% PhiX control. Sequencing was performed on Illumina
MiSeq platform using a 2 × 300 bp paired-end protocol, according to the manu-
facturer’s instructions.

Bioinformatics and biostatistics. Paired-end reads were processed combining
PANDAseq44 and QIIME45. High-quality sequences were clustered into OTUs at
97% sequence similarity by UCLUST46. Taxonomy was assigned with the RDP
classifier against the Greengenes database (May 2013 release). Chimeric OTUs were
identified using ChimeraSlayer47 and then filtered out. All singleton OTUs were
discarded.

Alpha-diversity was evaluated using three different metrics: Shannon,
Phylogenetic Diversity (PD) whole tree, and observed OTUs. Weighted and
unweighted UniFrac distances were used to perform PCoA. PCoA, heatmap, and
bar plots were built using the packages Made448 and Vegan (http://www.cran.r-
project.org/package=vegan).

Steady states were identified through hierarchical Ward linkage clustering based
on the Spearman correlation coefficients of the proportion of OTUs, filtered for
OTU subject prevalence of at least 20%. We then verified that each cluster showed
significant correlations between samples within the group (multiple testing using
the Benjamini–Hochberg method) and that the clusters were statistically
significantly different from each other (permutational MANOVA using the
Spearman distance matrix as input, function Adonis of the vegan package in R).

The R packages Stats and Vegan were used for statistical analysis. In particular,
to compare the gut microbiota structure among different groups for α-diversity and
macronutrient intake, we used the Wilcoxon test. The significance of data
separation in the PCoA was assessed by a permutation test with pseudo-F ratios
(function Adonis in Vegan). Cluster separation in hierarchical clustering analyses
was tested using Fisher’s exact test. Significant differences in bacterial relative
abundance at different phylogenetic levels among groups were assessed by
Mann–Whitney U tests or Kruskal–Wallis test. p values were corrected for multiple
comparisons using the Benjamini–Hochberg method when appropriate. False
discovery rate (FDR) ≤ 0.05 was considered as statistically significant.

Correlation analysis of clinical data and gut microbiota. Correlations between
microbiota composition and host metadata, including inflammatory markers and
other health parameters were analysed using quantile (median) regression tests,
adjusted for age. Median regression is less influenced by outliers than the classical
linear regression because it gives less relevance to extreme values. The potential
impact of gender and maturation stage according to Tanner classification14 (whose
information was available only at T3 for children who were 8 years old or older, i.e.
68 out of 70) on the microbiota structure was also evaluated. We carried out the
analysis by using the R package quantreg, as already performed by Claesson et al.49.

Analysis of nutritional data. Dietary data was collected through a semi-
quantitative FFQ, weighted by 7-day consumption frequencies. Forty-six items
were in common between FFQs at T1 and T3. Additional four items were obtained
from questions about the type of milk and yoghurt consumed (skimmed or full-
fat). For all FFQs the lowest frequency option was ‘never or less than once a week’,
for foods with the highest frequency, the option was ‘4 or more times per day’37,38.
At the same time, subjects were asked to compile 24-h dietary recalls with their
parents, for retrieving more detailed information about the composition of their
diet39,40. After considering several methodological approaches to quantify food
frequency, we elected to convert the frequency of consumption assessed with the
FFQ to a continuous scale of daily consumption (e.g. if the food was eaten 2 times
per day, then the daily consumption was 2). When the frequency was reported as a
range (e.g. eaten 1–3 times per week), the mean of the range (e.g. 2) was used to
calculate the daily consumption. The superimposition of the food frequencies on
the microbiota PCoA space was conducted using the envfit function of the Vegan
package of R. A corrected p value ≤ 0.01 was considered as statistically significant.
Macronutrient data were taken from dietary recalls, in particular in I.Family (T3),
dietary intake of the previous 24 h was assessed using the validated web-based
SACANA (Self-Administered Children, Adolescents and Adult Nutrition Assess-
ment) 24-h dietary recall tool, which is based on the validated SACINA (Self-
Administered Children, Infants and Adult Nutrition Assessment) offline version39

used in the IDEFICS study (T1). Children reported their diet and entered the type
and amount (g) of all drinks and foods consumed during the previous day. While
in SACINA all information was reported by the parents, in SACANA, children
reported for themselves with the help of their parents50 or from a dietician or
trained study nurse during the survey examinations.

Co-abundance analysis. CAGs were identified as previously described49. In brief,
associations among bacterial genera, present in at least two samples with relative
abundance >0.1%, were evaluated by the Kendall correlation test, displayed using
hierarchical Ward clustering with the Spearman correlation-based distance metrics
and utilized to determine co-abundant groups of bacterial genera. Significant
associations were controlled for multiple testing using the q-value method (FDR ≤
0.05)51. Permutational MANOVA was used to determine whether the CAGs were
significantly different from each other. Wiggum plot networks were created using
the Cytoscape software (http://www.cytoscape.org/), as previously reported49. The
circle size represents the bacterial abundance and connections between nodes
represent positive and significant Kendall correlations among genera (FDR ≤ 0.05).

Data availability
Sequencing reads were deposited as raw data, as a whole and separately for each
sample, along with available metadata, in the MG-RAST database with the
accession codes mgm4780879.3 to mgm4781018.3 (https://www.mg-rast.org/
mgmain.html?mgpage=project&project=mgp84098). All relevant data are avail-
able from the authors.
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