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Abstract

Summary: A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of
interest from heterogeneous datasets. Here, we present scGate, an algorithm that automatizes marker-based purifi-
cation of specific cell populations, without requiring training data or reference gene expression profiles. scGate puri-
fies a cell population of interest using a set of markers organized in a hierarchical structure, akin to gating strategies
employed in flow cytometry. scGate outperforms state-of-the-art single-cell classifiers and it can be applied to mul-
tiple modalities of single-cell data (e.g. RNA-seq, ATAC-seq, CITE-seq). scGate is implemented as an R package and
integrated with the Seurat framework, providing an intuitive tool to isolate cell populations of interest from hetero-
geneous single-cell datasets.

Availability and implementation: scGate is available as an R package at https://github.com/carmonalab/scGate
(https://doi.org/10.5281/zenodo.6202614). Several reproducible workflows describing the main functions and usage
of the package on different single-cell modalities, as well as the code to reproduce the benchmark, can be found at
https://github.com/carmonalab/scGate.demo (https://doi.org/10.5281/zenodo.6202585) and https://github.com/carmo
nalab/scGate.benchmark. Test data are available at https://doi.org/10.6084/m9.figshare.16826071.

Contact: santiago.carmona@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) is becoming increasingly
popular, enabling high-throughput exploration of cell types and
states from complex tissues. Cell types are generally defined based
on biological function and the markers used to physically isolate
them, but these can change depending on the source tissue. In
scRNA-seq data analysis, knowledge of cell type-defining marker
genes is typically used to manually identify relevant cell populations
within custom bioinformatics workflows, requiring several steps
and parameters.

Alternatively, when high-quality transcriptomic profiles are avail-
able for the cell type of interest, training multinomial machine learn-
ing classifiers to predict cell type identity has been shown to be a
powerful approach (Abdelaal et al., 2019; Pasquini et al., 2021). For
example, popular tools such as SingleR perform well when trained on
high-quality bulk RNA-seq gene expression profiles of sorted cell pop-
ulations (Huang et al., 2021). However, reliable reference transcrip-
tional profiles are not always available. Moreover, batch effects and

other biases are difficult to assess in training datasets, which can lead
to overfitting and biased predictions.

In this work, we developed an intuitive tool to purify a cell popu-
lation of interest from complex scRNA-seq datasets based on

literature-derived marker genes, without requiring reference gene
expression profiles or training data. With scGate, an expert can pur-
ify a cell population of interest from a complex scRNA-seq dataset

by only defining a few marker genes, or by using sets of markers dis-
tributed with the scGate package. This provides a straightforward
and complementary approach to machine learning-based classifiers,

aimed at automatizing current practices in marker-based purifica-
tion of cell types from single-cell transcriptomics datasets.

2 Results

scGate is an R package that automatizes the typically manual task
of marker-based cell type annotation, to enable accurate and intui-

tive purification of a cell population of interest from a complex
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scRNA-seq dataset (for instance, a dataset of blood-derived immune
cells, Fig. 1A). scGate builds upon our recent method UCell
(Andreatta and Carmona, 2021) for robust single-cell signature
scoring, and Seurat, a comprehensive and powerful framework for
single-cell omics analysis (Hao et al., 2021).

Briefly, scGate takes as input: (i) a gene expression matrix or
Seurat object and (ii) a ‘gating model’ (GM), consisting of a set of
marker genes that define the cell population of interest. The GM can
be as simple as a single marker gene, or a combination of positive

and negative markers. For example, the marker MS4A1 (encoding
CD20) alone allows purifying B cells with 99.7% precision and
99.7% recall (Fig. 1B, left panel). A model that requires NCAM1
and KLRD1 but absence of CD3D purifies natural killer (NK) cells
with 100% precision and 95% recall (Fig. 1B, right panel). In both
cases, antibody-derived tags (ADT) from the same cells confirm a
correct purification at the protein level (Fig. 1B). More complex
GMs can be constructed in a hierarchical fashion. For instance, mac-
rophages can be purified from a complex tissue such as melanoma

Fig. 1. Purifying cell populations from single-cell datasets using scGate. (A) Uniform Manifold Approximation and Projection (UMAP) representation of scRNA-seq data of

PBMC populations annotated by Hao et al. (2021) (B) Purification of target cell types using scGate, for B cells on the left (using marker MS4A1 [encoding CD20]) and NK on

the right (using NCAM [encoding CD56] and KLRD1 as positive markers, and CD3D as a negative marker). The violin plots display normalized ADT counts for the indicated

proteins on the same cells. Precision (PREC), recall (REC) and MCC are shown. (C) UMAP representation of scRNA-seq data of melanoma tumors annotated by Jerby-Arnon

et al. (2018) (D) Purification of macrophages using a hierarchical GM: immune cells at the first level (left panel) and macrophages at the second level (middle panel).

Macrophage gene signature (UCell) scores are shown in the right panel. (E) scGate purification of monocytes using DNA accessibility of a PBMC 10� multiomics dataset.

Violin plots display coupled RNA expression values. Gene-associated accessibility values were inferred using Signac (Stuart et al., 2021). (F) PREC (Positive Predictive Value)

and MCC values for five publicly available scRNA-seq datasets (derived from blood or tumors) for scGate and three other cell type classifiers
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tumors (Fig. 1C) by defining a two-level hierarchical GM. The first
level gates on immune cells using pan-immune cell marker PTPRC
encoding CD45, and subsequently the second level purifies macro-
phages from immune cells using the markers CD68 and FCGR1A
(Fig. 1D). Our algorithm evaluates the strength of the marker activ-
ity in each cell using the rank-based method UCell, and then per-
forms k-nearest neighbor (kNN) smoothing by calculating the mean
UCell score across neighboring cells. By kNN-smoothing, scGate
aims at mitigating the large degree of sparsity in single-cell omics
data. Finally, a fixed threshold over kNN-smoothed signature scores
is applied in binary decision trees generated from the user-provided
GM (e.g. Fig. 1D and Supplementary Fig. S1A), to annotate cells as
either ‘pure’ or ‘impure’ with respect to the cell population of
interest.

The intuitive and flexible design of scGate allows for positive
and negative markers and sequential/hierarchical gating strategies,
providing users a quick and simple, yet powerful tool to purify cell
populations of interest from arbitrarily complex datasets. For ex-
ample, a simple two-gene signature (Foxiþ Cftrþ) was sufficient to
accurately isolate rare pulmonary ionocytes (Montoro et al., 2018)
(Supplementary Fig. S1B). Each of the purifications shown in
Figure 1B required just one line of R code within a Seurat workflow,
for instance, to purify NK cells:

scGate(seurat_object, model¼gating_model(name="NK",
signature¼c("NCAM1","KLRD1","CD3D-"))

scGate can also be applied to single-cell modalities other than
RNA-seq. On a multi-omics scATAC þ scRNA-seq dataset of
human peripheral blood mononuclear cells (PBMCs), scGate was
able to successfully isolate CD14þ monocytes, T cells, NK cells and
B cells from DNA accessibility data (Fig. 1E and Supplementary Fig.
S1C). In a converse experiment to Figure 1B, scGate was applied to
ADT counts, confirming the accuracy of target cell type isolation by
the paired scRNA-seq readouts (Supplementary Fig. S1D). scGate
comes with pre-defined GMs based on commonly used markers of
immune cell types in human and mouse, such as T cells, B cells, NK
cells, myeloid cell populations, among others. With these marker
sets and five author-annotated published datasets from blood or
tumors (Abdelaal et al., 2019; Hao et al., 2021; Jerby-Arnon et al.,
2018; Yost et al., 2019; Zilionis et al., 2019), we compared the pre-
dictive performance of scGate against three popular single-cell clas-
sifiers: SingleR (Aran et al., 2019), SCINA (Zhang et al., 2019) and
Garnett (Pliner et al., 2019). Of note, SingleR and Garnett are super-
vised classifiers and require reference gene expression profiles for
training. For SingleR, we used the recommended HPCA dataset for
training and other parameters by default; for Garnett, we applied
the pre-trained PBMC classifier provided by the authors. SCINA is
marked-based, but no database of signatures is provided by the
authors; we adapted scGate signatures to be compatible with
SCINA. Across the board, scGate outperformed competing methods
for the isolation of target cell types (Fig. 1F). When compared with
the second-best methods in terms of predictive performance, scGate

had superior mean precision than SCINA (0.88 versus 0.83, paired
Wilcoxon test P-value¼5.9 � 10�4) and higher Matthews correl-
ation coefficient (MCC) than SingleR (0.81 versus 0.75, paired
Wilcoxon test P-value¼6.7 � 10�3).

Multiple predefined scGate models are provided in a public re-
pository as version-controlled tab-separated text, allowing scGate to
automatically synchronize its internal database of GMs. Users can
manually edit these models and easily write their own. scGate also
provides functions to evaluate the performance of custom GMs, ei-
ther user-provided or those that accompany the package, on a set of
pre-annotated testing datasets. Overall, scGate provides an accurate,
scalable and intuitive tool to isolate cell populations of interest that
can be seamlessly incorporated into Seurat pipelines for single-cell
data analysis.
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