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Abstract

HIV-I structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which
are transported to the cytoplasm by Crml. It has been assumed that once in the cytoplasm,
translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs.
Previous analyses have demonstrated that Samé8 and a mutant thereof, Samé8AC, have dramatic
effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis,
respectively. While investigating the inhibition of incompletely spliced HIV- mRNAs by Samé68AC,
we determined that the effect was independent of the perinuclear bundling of the viral RNA.
Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA
exported via the Tap/CTE export pathway was not blocked by Sam68AC. We demonstrate that
inhibition of HIV expression by Samé8AC is correlated with a loss of PABPI binding with no
attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68AC to
selectively inhibit translation of HIV-1 RNAs exported by Crm| suggests that it is able to recognize
unique characteristics of these viral RNPs, a property that could lead to new therapeutic
approaches to controlling HIV-I replication.

Introduction

Expression of the full coding potential of the HIV-1
genome is dependent upon a number of post-transcrip-
tional processes. The primary 9 kb transcript from the
integrated provirus can be spliced into over 30 mRNAs
through suboptimal splicing events [1-4]. Resulting HIV-
1 mRNAs can be grouped into three classes: the unspliced,
9 kb class, encoding Gag and GagPol; the singly spliced, 4
kb class, encoding Vif, Vpr, Vpu and Env; and the multiply
spliced, 2 kb class, encoding Tat, Rev and Nef. Incom-
pletely spliced mRNAs are normally retained in the
nucleus but the virus has evolved a mechanism for the
transport of the 9 kb and 4 kb viral mRNAs to the cyto-
plasm. The Rev protein is translated in the cytoplasm,

then shuttles into the nucleus where it multimerizes on
the Rev Response Element (RRE) contained in the introns
of the incompletely spliced HIV-1 mRNAs. Once Rev
binds to the RNA, its nuclear export signal (NES) interacts
with Crm1 and mediates export to the cytoplasm [5,6].

HIV-1 gene expression may be controlled at several steps
including transcription, splicing, polyadenylation,
nuclear export and translation [3,4,7]. All of these proc-
esses depend upon host cell factors [8]. Recent work in
our laboratory has focused on Sam68, a member of the
STAR/GSG family of proteins [9]. These proteins contain
an RNA binding motif, the KH domain, embedded within
a larger conserved GSG (Gld1, Sam68, GRP33) domain,
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which mediates multimerization. Sam68 is a nuclear,
non-shuttling protein, and contains both proline- and
tyrosine-rich domains mediating binding to multiple
kinases (i.e. Src, Lck, Sik/BRK, ZAP-70) through SH3 and
SH2 domains, respectively [9,10]. Given its interaction
with kinases involved in signal transduction, Sam68 has
been suggested to serve as a signal mediator that affects
multiple cellular processes including cell cycle regulation,
tumour suppression, alternative splicing, and RNA 3' end
formation [9-17]. More pertinent to HIV-1, overexpres-
sion of Sam68 and other members of the GSG family have
been shown to significantly enhance HIV-1 gene expres-
sion [18-21]. Sam68 can also enhance expression of HIV-
1 mRNAs exported to the cytoplasm via the constitutive
transport element (CTE) of Mason-Pfizer monkey virus by
promoting utilization by the translational apparatus of
the cell [22]. Two groups have reported that depletion of
Sam68 results in the loss of HIV-1 structural protein
expression in several cell lines [23-25].

In contrast to the full length protein, a truncation mutant
of Sam68 lacking the C-terminal 112 amino acids,
Sam68AC, is a potent inhibitor of HIV-1 protein expres-
sion [19,21]. Unlike Sam68, Sam68AC is localized pre-
dominantly in the cytoplasm and its inhibitory function
requires this distribution [21]. Therefore, differences in
activity between Sam68 and Sam68AC likely reflects the
different protein-protein interactions available in the dif-
ferent compartments of the cell. Previous experiments in
our lab showed that Sam68AC induced accumulation of
HIV-1 4 kb mRNAs into perinuclear bundles suggesting
that it might act by sequestering the viral RNA from the
translational apparatus [21]. In this study, we set out to
define the mechanism and specificity of Sam68AC inhibi-
tion. We show that Sam68AC specifically inhibits RRE
containing mRNAs. We also demonstrate that depolymer-
ization of microfilaments disrupted the perinuclear bun-
dles, dispersing the viral RNA throughout the cytoplasm,
but failed to restore the synthesis of the HIV-1 structural
proteins (Gag, Env). This finding suggests that the block
to expression is at the level of engagement with the trans-
lational apparatus. Subsequent analysis of HIV-1 env
mRNA distribution in polysome gradients in the presence
and absence of Sam68AC supports this conclusion. Our
studies determined that Sam68AC has no effect on viral
RNA polyadenylation or poly(A) tail length. Inhibition of
translation by Sam68AC was not associated with any
changes in viral RNA localization, abundance, or process-
ing but is correlated with changes in the composition of
the mRNP. We show that Sam68AC inhibition of HIV-1
mRNA translation is accompanied by a reduction in
PABP1 association with the affected mRNAs.

http://www.retrovirology.com/content/5/1/97

Results

Susceptibility to Samé8AC repression is conferred by the
nuclear export pathway

The ability of Sam68AC to selectively suppress expression
of the 9 kb and 4 kb classes of HIV-1 mRNAs suggested
that there is some unique feature that renders them sus-
ceptible to repression. Cellular mRNAs use the Tap export
pathway, while HIV-1 9 and 4 kb RNAs are incompletely
spliced and contain sequences preventing their export by
Tap [26-33]. These incompletely spliced HIV-1 RNAs are
exported from the nucleus via the interaction of HIV-1 Rev
with the host protein Crm1 [5,6,34]. Two possible expla-
nations for repression of the 9 kb and 4 kb HIV-1 RNAs by
Sam68AC are immediately apparent: either they contain
unique RNA sequences recognized by Sam68AC or export
via the Crm1 pathway marks the viral RNA for inhibition.
To address this question directly, we examined the ability
of Sam68AC to inhibit expression of HIV-1 Gag RNAs uti-
lizing different nuclear export elements; the constitutive
transport element (CTE) from Mason-Pfizer Monkey virus
that interacts directly with Tap (Gag-CTE), or the RRE that
requires Revand Crm1 (Gag-RRE) (Fig. 1a) [35]. Gag RNA
generates a 55 kDa polyprotein that is subsequently proc-
essed by the viral protease into matrix (p17), capsid
(p24), nucleocapsid (p9) and p6. Gag expression was
measured by anti-Gag western blot in which the p55 pre-
cursor and p24 are detected. GagRRE expression is
dependent upon Rev and is reduced to baseline by
Sam68AC (Fig. 1b,c). Parallel western blots demonstrated
that Sam68AC does not markedly alter Rev levels (Fig.
1b). In contrast to the Gag-RRE reporter, Sam68AC had
no significant effect on expression from Gag-CTE (Fig.
1b,c). This demonstrates that it is not the Gag sequence,
but rather the RRE and/or the Crm1 export pathway that
dictates inhibition by Sam68AC.

Perinuclear bundling of HIV-1 RNA by Samé8A4C does not

account for translation inhibition

Previously, we reported that Sam68AC expression
induced accumulation of both unspliced viral RNA and
Sam68AC in bundles at the outer periphery of the nucleus
[21]. As shown in Fig. 2a, in the absence of Sam68AC,
HIV-1 env RNA is distributed throughout the cytoplasm.
The formation of the perinuclear bundles upon co-expres-
sion of Sam68AC, as seen in Fig. 2b, suggested that
Sam68AC might be sequestering the RNA from the trans-
lational apparatus. If true, disruption of these complexes
should restore translation of the viral RNAs. We examined
the effect of various agents which disrupt the cytoskeleton
on the integrity of the Sam68AC/viral RNA perinuclear
bundles, and the expression of viral proteins (Fig. 2c-f)).
To minimize secondary drug effects, the minimum
amount of each drug required to depolymerize its target in
one hour was used (data not shown). While treatment of
cells with either nocodazole or colcemid to disrupt micro-
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Samé68AC selectively suppresses expression of mMRNAs exported by the Rev/RRE complex. a) An illustration of the
two HIV-I Gag expression constructs used: Gag-RRE and Gag-CTE. b) 293T cells were transfected with either Gag-RRE or
Gag-CTE plasmids in the absence (-) or presence (+) of expression vectors for Rev and Sam68AC. Forty-eight hours post-
transfection, cell lysates were prepared, fractionated on SDS-PAGE gels and blotted. Blots were probed to detect levels of Gag
(p55 and p24, a-Gag), Sam68AC (a-myc), Rev (a-Rev) and tubulin (c-tubulin). ) Quantitation of Gag expression over multiple

assays, results being normalized to tubulin levels. Asterisks denote samples determined to have significantly different levels of
p24 expression from that seen with Gag-RRE and Rev ata p < 0.01.
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Figure 2 (see previous page)

Sam68AC maintains translational repression of viral mMRNAs when perinuclear bundles are dissolved. To analyze
the requirement of the cytoskeleton for the formation of Samé68AC-induced perinuclear bundles, the effect of disrupting
microtubules or microfilaments on viral RNA subcellular distribution was examined. As a comparison, Hela cells were co-
transfected with Rev, the HIV-I env expression plasmid pgTat and pcDNA (a) or Sam68AC (b) and untreated prior to fixation
(none). In parallel, Hela cells transfected with pgTat, Rev and Sam68AC were treated 48 h post-transfection with nocodazole
(Noc.) (c), colcemid (Col.) (d) to disrupt microtubules or cytochalasin D (cyto. D) (e) or latrunculin B (Lat. B) (f) to depoly-
merise microfilaments for 2 hours prior to fixation. Locations of the unspliced pgTat (env) RNA and Samé68AC were deter-
mined by in situ hybridization and immunofluorescence respectively. Nuclei were stained with DAPI (g) To determine the
impact of altered HIV-1 RNA subcellular distribution on its translation, Hela cells were co-transfected with Rev, Gag-RRE and
pcDNA or Sam68AC. 48 hours post-transfection, cells were treated with the indicated drug for 2 hours to depolymerise
either the microtubules or microfilaments. Then 35S-methionine was added to the media and incubated for 4 hours prior to
harvest. Cell lysates were prepared and incubated with anti-Gag antibody. Immunoprecipitates were run out on 10% SDS-
PAGE and exposed to a phosphor screen. The position of the Gag p55 band is indicated.

tubules had no effect on localization of viral RNA or
Sam68AC (Fig. 2¢,d), disassembly of the microfilaments
by treatment with cytochalasin D or latrunculin B resulted
in dispersal of both viral RNA and Sam68AC throughout
the cytoplasm (Fig. 2e, f). The distribution of the viral
RNA which has been released from the perinuclear bun-
dles is similar to that seen in the absence of Sam68AC
(Fig. 2a).

Next we questioned whether the released viral RNA was
translated. Cells were transfected with Gag-RRE and Rev
expression vectors in the presence or absence of
Sam68AC. Forty-eight hours post-transfection, cells were
treated with the drugs as before and synthesis of viral pro-
tein was monitored by incubation in the presence of 35S
methionine. Cells were lysed, the 35S-labelled Gag immu-
noprecipitated, the immunoprecipitates run out on SDS-
PAGE gels, and the gels exposed to a phosphorscreen over-
night (Fig. 2g). The 55 kDa Gag polyprotein (p55) was not
detected in the immunoprecipitates from the mock trans-
fected cells but only in immunoprecipitates from cells
transfected with Gag-RRE and Rev (Fig. 2g, lanes 1-5 ver-
sus 6). Therefore, the immunoprecipitation was specific
and the p55 signal could be used as a measure of Gag-RRE
translation. None of the drugs had any effect on the level
of Gag expression in the absence of Sam68AC indicating
that they had no significant effect on translation (Fig. 2g,
lanes 1-6). None of the drugs induced expression of Gag
in the presence of Sam68AC (Fig. 2g, lanes 7-12) despite
latrunculin B/cytochalasin D shifting the subcellular dis-
tribution of both Sam68AC and the viral RNA. Therefore,
integrity of the Sam68AC/viral RNA perinuclear bundles
is not essential for translational repression. This observa-
tion suggests that Sam68AC inhibits viral RNA transla-
tion, not by changing its subcellular distribution, but
blocking interaction with the translational apparatus. This
effect could be achieved either through alterations in viral
RNA structure or composition of the mRNDP.

Samé68A4C inhibits HIV env RNA recruitment into heavy
polysomes

To confirm that Sam68AC was acting at the level of trans-
lation, cytoplasmic extracts were fractionated on linear
sucrose gradients (Fig. 3). Fractions collected were subse-
quently analyzed for the presence of Sam68AC, ribosomal
protein L26, actin mRNA and unspliced HIV env RNA. As
shown in Fig. 3b, Sam68AC is predominately found at the
top of the gradient but a significant amount is present in
the heavier fractions consistent with previous observa-
tions of an association between Sam68 and ribosomes
[36]. Addition of EDTA to disrupt polysomes resulted in a
shift in Sam68AC distribution to the top of the gradient,
suggesting that there might be interaction of Sam68AC
with polysomes. Parallel analysis of actin mRNA (Fig. 3¢)
revealed that the bulk of this RNA is found within heavy
polysomes in the presence or absence of Sam68AC. EDTA
addition induced a shift in distribution to lighter gradient
fractions consistent with an association with polysomes.
In contrast, unspliced HIV-1 env RNA underwent a shift in
distribution from being predominately in the polysome
fraction to predominately in the mRNP/monosome frac-
tion in the presence of Sam68AC (Fig. 3d). The distribu-
tion of unspliced env RNA in the presence of Sam68AC
significantly overlaps with that seen upon addition of
EDTA consistent with a selective inhibition of translation
of this mRNA.

Mapping of domains within Samé8AC essential for
repression of HIV-1 gene expression

Sam68 contains a number of well-defined domains that
mediate specific RNA binding (KH-domain), non-specific
RNA binding (RGG-boxes) or protein-protein interac-
tions (proline-rich domains and tyrosine-phosphoryla-
tion sites) [9]. We made a number of deletions of
Sam68AC to define a minimal inhibitory mutant (Fig.
4a,b). As shown by western blots (Fig. 4b), all mutants
were equally expressed and subsequent immunofluores-
cence microscopy confirmed that all were localized to the
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Figure 3

Effect of Samé8AC on association of env RNA with polysomes. Cells were co- transfected with Rev, the HIV-| env
expression plasmid pgTat and pcDNA or Sam68AC. 48 hours post-transfection cells were harvested and cytoplasmic extracts
layered onto 15-50% linear sucrose gradients. Following centrifugation, gradients were fractionated and analyzed by monitor-
ing (a) absorbance at 254 nm (b) distribution of Sam68AC and ribosomal protein L26 by western blotting or (c) actin and (d)
unspliced env RNA distribution by QRT-PCR. To ascertain whether profiles were dependent upon the integrity of polysomes,
an aliquot of the cell lysate was treated with EDTA (+EDTA) to dissociate ribosomal subunits prior to fractionation on the gra-
dients.
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Figure 4 (see previous page)

Domain requirements for Sam68AC inhibition of gp120 protein synthesis from pgTat. a) lllustration of Samé68AC
domain structure, and various mutants thereof. Vertical black bars represent the proline rich domains; hatched boxes repre-
sent the RGG boxes; the horizontal bars represent the GSG domain; and the speckled box represents the KH domain. At the
bottom is the illustration of the unspliced pgTat reporter construct, which encodes gp|20. The black bar below pgTat indicates
the position of the RPA probe used and the protection products expected. b) 293T cells were transfected with pgTat, Rev and
the indicated Sam68AC mutants. Forty-eight hours post-transfection, cells were harvested and RNA and protein extracted for
analysis. A representative western blot indicating Env (gp120) expression in the presence of Samé8AC and various mutants
thereof is shown. Blots were reprobed with anti-myc to confirm protein expression and anti-tubulin to normalize for loading.
c) RNA analysis of pgTat by RNase protection assay. The four protection products are indicated: unspliced-uncleaved (us-uc),
unspliced-cleaved (us-c), spliced-uncleaved (s-uc) and spliced-cleaved (s-c). gp120 is translated from the us-c isoform of the

RNA. 20 ug of total RNA was input to the assay.

cytoplasm (data not shown). Previous analyses have
determined that the region spanning amino acids (a.a)
269-321 is essential for the inhibitory property of
Sam68AC [37]. In our work, Sam68ACmin, spanning
amino acids 14 to 300 with an internal deletion of amino
acids 45 to 54 (encompassing an RGG box), was the min-
imal construct that retained significant inhibitory activity
(Fig. 4b). In contrast, deletion of the first 28
(Sam68A28AC) or last 70 (Sam68:5-262) amino acids of
Sam68AC resulted in a loss of inhibitory activity (Fig. 4b).
These observations indicate that domains at the N- and C-
terminus of Sam68AC are essential to its inhibitory activ-

ity.

Splicing, cleavage, and polyadenylation are tightly cou-
pled events within the nucleus. However, in the case of
HIV-1 RNA, numerous forms of viral RNA are generated,
some of which have failed to undergo one or more of
these steps. This is essential for the production of the HIV-
1 structural proteins and therefore, the HIV-1 lifecycle.
The HIV-1 env reporter, pgTat, expresses gp160/120 from
the unspliced, cleaved mRNA (see Fig. 4a) [11]. Previ-
ously, we showed that full-length Sam68 increases the
amount of unspliced, cleaved pgTat mRNA available for
polyadenylation, export and translation into gp160/120
[11]. We have also shown that restoring nuclear accumu-
lation of Sam68AC by addition of a heterologous nuclear
localization signal (NLS) converted the protein into a
stimulator of Rev function comparable to full length
Sam68 [21]. In light of these results, we wanted to assess
whether Sam68AC inhibition is due to alterations in the
abundance or processing of env RNA.

We examined the extent of splicing and cleavage of pgTat
RNA by RNase protection assay (RPA). As illustrated in
Fig. 4a, the RPA probe used in this analysis spans both the
3" splice site and the polyadenylation site, yielding four
RNase protection products: unspliced, uncleaved (US-
UC); unspliced, cleaved (US-C); spliced, uncleaved (S-
UC); and spliced, cleaved (S-C) (Fig. 4a). Sam68AC did
not cause any marked change in the amount of US-C RNA

that could account for the loss of gp160/120 expression
but a reduction in levels of S-C RNA was consistently
observed (Fig. 4c) that might reflect effects on either viral
RNA splicing or S-C RNA stability. In contrast, the mutant,
Sam68:5-262, increased the abundance of US-C RNA
(Fig. 4c). The stimulation of cleavage of unspliced RNA by
Sam68:5-262 is consistent with the known activity of full
length Sam68 in promoting RNA polyadenylation previ-
ously reported by our laboratory [11] and define that dif-
ferent domains of Sam68 are required for inhibitory
versus stimulatory activity.

Inhibition by Sam68AC is not associated with changes in
polyadenylation of env RNAs

De-adenylation of mRNA is a common form of transla-
tional repression [38]. To assess changes in the polyade-
nylation state of env mRNAs in the presence of Sam68AC,
total RNA was extracted and the polyadenylated RNA iso-
lated using oligo(dT),s beads. Given that cleavage and
polyadenylation are tightly coupled processes, all cleaved
RNAs are expected to have a poly(A) tail and bind to the
oligo(dT),5 column. Appearance of cleaved RNA in the
poly(A)- fraction would be indicative of a de-adenylation
event. Analysis of the poly(A)- and poly(A)+ fractions by
RPA revealed that the fractionation was successful;
uncleaved env RNAs (US-UC and S-UC) being predomi-
nantly in the poly(A)- fraction and cleaved versions (US-
C and S-C) in the poly(A)+ fraction (Fig. 5a). Sam68AC
did not shift the distribution of the unspliced RNAs
between the fractions, indicating that the US-C form of
pgTat RNA retained a poly(A) tail of sufficient size to bind
to the column (Fig. 5a).

To assay whether there were any significant changes in
poly(A) tail length, we used a random amplification of
cDNA ends, polyadenylation test (RACE-PAT) [39]. A
primer consisting of a specific 15-mer sequence followed
by 20 T residues was used to make cDNA. This primer
anneals randomly along the length of the poly(A) tail,
generating cDNAs with a range of lengths corresponding
to where on the poly(A) tail cDNA synthesis was initiated.
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Samé68AC does not alter the polyadenylation status of the affected viral RNAs. Cells were transfected with pgTat
with (+Rev) or without (-Rev) Rev in the absence (pcDNA) or presence of the various Samé68AC mutants. Total RNA was har-
vested and used in the assays below. a) 20 pg of total RNA was selected using oligo(dT) beads and both the polyA- and polyA+
fractions were input into the RNase protection assay. b) RACE-PAT analysis. The illustration at top shows the position of the
anchor primer used to make cDNA and the relative positions of the PCR primers. The anchor primer can anneal anywhere
along the length of the polyA tail in order to make cDNA, and the resultant PCR generates a smear representing various
lengths of polyA tail. Amplicons to either spliced or unspliced RNAs were generated using S F or US F primers, respectively,
and the anchor primer. Products were analyzed by fractionation on PAGE gels, and sizes of products determined by compari-

son to markers.

Using a reverse primer complementary to the 15-mer
sequence and a env specific forward primer specific to
either spliced (S F) or unspliced (US F) env RNA, we meas-
ured the length of the polyA tail of each RNA species (Fig.
5b). Without a poly(A) tail, the spliced amplicon is 340
nucleotides and the unspliced amplicon is 415 nucle-
otides. Therefore, the tail length of spliced pgTat RNA is
approximately 10-60 nucleotides and that of the
unspliced RNA is 200-250 nucleotides (Fig 5b). No
change in amplicon size was observed upon addition of
Sam68AC. Thus, the loss of gp120 expression upon
Sam68AC co-transfection cannot be attributed to de-ade-
nylation of unspliced env mRNA.

Samé68AC alters the association of Rev-dependent viral
RNAs with PABPI

PABP1 has been shown to be an important promoter of
mRNA translation through its direct interaction with
elFAG and resultant indirect interactions with the elF4E
cap binding protein [40,41]. Therefore, we examined
PABP1 association with pgTat mRNA by RNP immuno-
precipitation (RIP). PABP1 levels were not affected by
expression of the Sam68 proteins and there was no
change in epitope availability since precipitation of
PABP1 was similar for each sample (Fig 6a). RNA analysis
determined that pgTat RNAs were specifically precipitated
with PABP1 as compared to control rabbit IgG RIPs (Fig.
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Figure 6

Samé68AC inhibits the association of unspliced pgTat RNAs with PABP1. 293T cells were transfected with pgTat and
Rev in the absence (pcDNA) or presence of the various Sam68AC mutants. Cell lysates were prepared 48 h post-transfection
and used in the assays below. a) PABP| western blot showing the input and immunoprecipitated (IP) protein using either rabbit
IgG (R-IgG) or anti-PABPI (PABP). b) RNase protection assays showing input and immunoprecipitated (IP) pgTat RNAs. RNA
was extracted from either rabbit IgG (R-IgG) or anti-PABP| (PABP) precipitated samples and analyzed by RPA. c) Quantitation
of RPA shown in (b). The ratio of US-C to S-C pgTat mRNA immunoprecipitated with anti-PABP| was standardized to the
input. The amount of US-C precipitated in the presence of pcDNA was set to 1.0. Error bars represent one standard devia-

tion. Data was quantitated from 3 independent experiments. Asterisk indicates a value significantly different (p-value < 0.05)
from samples transfected with pcDNA.
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6b). The S-C form of pgTat was the major isoform pulled
down with anti-PABP-1 antibody but US-C RNA was also
detected in the immunoprecipitates. Unexpectedly. some
immunoprecipitation of both US-UC and S-UC was also
detected particularly in the presence of the Sam68A28AC
and Sam68:5-262. The reason for this is unclear but
might reflect an indirect interaction of PABP1 with these
RNAs (that lack a polyA tail). PABP1 association was
quantitated by comparing the ratio of US-C to S-C pgTat
RNA in the RIP compared to the input (Fig. 6c).
Sam68A28AC and Sam68:5-262 had no significant effect
on US-C RNA association with PABP1. Sam68AC and
Sam68ACmin significantly reduced US-C RNA associa-
tion with PABP1 (p < 0.05, Fig. 6b,c). Expression of
Sam68AC also had no effect on the immunoprecipitation
of RNPs containing the S/C form of pgTat RNA, consistent
with Sam68AC being able to discriminate between the
US-C and S-C forms of the viral RNA.

To confirm that Sam68AC induced similar changes in
PABP1 association in the context of the HIV-1 provirus,
the experiment was repeated using a replication inactive
form of the virus (HxBruR/RI"). Sam68AC strongly
reduced both p24 and gp160/120 expression from this
construct (Fig. 7). However, the mutants have slightly dif-
ferent effects on the provirus than on the env reporter con-
struct pgTat. While Sam68:5-262 enhances expression of
gp160/120 and p24, Sam68A28AC and Sam68ACmin
have little effect. None of the mutants had any effect on
Rev or PABP1 protein levels (top band, Fig 7, Fig. 8a).
PABP1 was immunoprecipitated uniformly in all samples
(Fig. 8a). The proviral RNA associated with PABP1 was
analyzed using an RPA probe that spans the 5' splice site
within Gag, yielding 2 protection products. One protec-
tion product corresponds to the 9 kb and the other to the
spliced forms (2 and 4 kb classes) of HIV-1 mRNAs. As
translation of both the 9 kb (p24) and 4 kb (gp160/120)
classes of viral RNAs are affected by Sam68AC, the band
corresponding to the 2 and 4 kb classes could not be used
for quantitation. Relative PABP1 association was quanti-
tated by the ratio of 9 kb RNA to actin RNA in the RIP
compared to the input. Sam68AC significantly decreased
PABP1 association with HIV-1 9 kb RNA relative to
pcDNA, while Sam68:5-262 significantly increased
PABP1 association with HIV-1 9 kb RNA (p < 0.01, Fig.
8b,c). Both Sam68A28AC and Sam68ACmin showed
slight reductions in PABP1 association with 9 kb viral
RNA but these were not found to be significant even at a
higher p-value (p < 0.05, Fig. 8b,c). Therefore, similar to
the results seen with the pgTat vector, changes in viral pro-
tein expression are correlated with extent of interaction of
the corresponding RNA with PABP1.

http://www.retrovirology.com/content/5/1/97

Discussion

Recent studies have highlighted the changes in RNP com-
position that occur during mRNA processing, export and
surveillance as the RNA moves from its site of synthesis
through the nuclear pore to the translational apparatus. In
particular, a number of hnRNP proteins are removed, the
exon junction complex (EJC) is added following splicing
then subsequently removed during translation, and there
is an exchange of factors at the extreme 5' and 3' ends of
the RNA (CBP20/80 and PABP2 are exchanged for eIlF4E
and PABP1, respectively) [42-44]. What remains
unknown is the extent to which the protein composition
of a specific RNP is determined by its sequence or its
processing pathway. In the case of the EJC, the act of splic-
ing deposits the complex ~20-25 nt 5' of the splice site in
a sequence independent fashion [44]. In other instances,
binding of factors to specific sequence elements (Zipcode
localization elements, AU-rich elements) affects localiza-
tion, stability or translation of an RNA [43]. It has gener-
ally been assumed that, despite an alternative export
pathway, translation of incompletely spliced HIV-1
mRNAs occurs in the same manner as host mRNAs. How-
ever, in this study we provide evidence that Sam68AC is
able to discriminate between RNAs based, in part, on the
export pathway used (Fig. 1). What is unclear is whether
export by Crm1 alone is sufficient to confer inhibition by
Sam68AC or if additional features of the HIV-1 incom-
pletely spliced RNAs (perhaps the Rev/RRE complex) pro-
vide additional recognition elements that confer
regulation by this factor. Some data (not shown) supports
the latter hypothesis.

Translational control has been studied extensively, and
there are several well-defined mechanisms: changes in
subcellular distribution (stress granules, P-bodies)
[45,46], changes in RNA structure (de-adenylation, cyto-
plasmic adenylation)[38], destabilizing RNA elements
(AREs) [47,48], and blocking eIF4E initiation (4E-BPs)
[49] to name a few. Our data show that inhibition by
Sam68AC is not dependent upon changes in mRNA sub-
cellular distribution (Fig. 2). Polysome gradient analysis
(Fig. 3) demonstrated that Sam68AC selectively blocks the
association of unspliced HIV-1 env RNA with the polys-
ome fraction, consistent with a block in one of the steps
of translation. However, data acquired to date does not
permit us to evaluate whether the block is at initiation or
subsequent elongation. Future experiments will attempt
to address this issue. These observations conflict with a
previous report by Zhang et al that suggested the mecha-
nism of inhibition was a block to nuclear export [37]. As
evidence of this transport block, they performed nuclear/
cytoplasmic fractionation in which Sam68AC sensitive
mRNAs co-sedimented with the nuclear fraction. We
clearly see that the inhibited mRNAs are in perinuclear
bundles in the cytoplasm, in the presence of Sam68AC

Page 11 of 19

(page number not for citation purposes)



Retrovirology 2008, 5:97

o-rev

a-myc

a-tubulin

Figure 7

HxBru R/RI

Sam68AC
£ | ACmin
A28AC
5-262
mock

http://www.retrovirology.com/content/5/1/97

<4—9gp160
<4—gpi120

<4— p55

<4— p24

_|€4— Rev

Effect of Sam68AC mutants on protein expression from the HIV-1 provirus. 293T cells were transfected with the
proviral clone pHxBruR-/RI- in the absence (pcDNA) or presence of the various Samé68AC mutants. Western blots on total
cell lysates harvested from 293T cells transfected with HxBruR-/RI-and either pcDNA, Samé68AC or mutants thereof. p24 is
expressed from the 9 kb, gp120 is expressed from the 4 kb, and Rev (top band) is expressed from the 2 kb class of proviral
mRNA. Blots were reprobed with anti-myc to confirm protein expression and anti-tubulin to normalize for loading.
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Samé68AC inhibits the association of 9 kb proviral mRNAs with PABPI. Cells were transfected with the proviral
clone pHxBruR-/RI- in the absence (pcDNA) or presence of the various Samé68AC mutants. Cell lysates were prepared 48 h
post-transfection and used in RIP assays. a) PABPI| western blot showing the input and immunoprecipitated (IP) protein using
either rabbit IgG (R-IgG) or anti-PABP| (PABP). b) RNase protection assays showing input and PABP| immunoprecipitated (IP)
HxBruR-/RI-RNAs. RNA was extracted from either rabbit IgG (R-IgG) or anti-PABP| (PABP) precipitated samples and ana-
lyzed by RPA. c) Quantitation of RPA shown in (b). The amount of 9 kb HxBruR-/RI-mRNA relative to actin mMRNA immuno-
precipitated with anti-PABP| compared to the input. The amount of 9 kb precipitated in the presence of pcDNA was set to

1.0. Error bars represent one standard deviation. Data was quantitated from 3 independent experiments. Asterisks indicate
values significantly different (p-value < 0.01) from pcDNA.
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(Fig. 2b). However, their association with the microfila-
ments makes these mRNPs insoluble, and as a result they
co-sediment with the nuclei and would be incorrectly
scored as untransported (Fig. 2b, data not shown).
Sam68AC does not affect target mRNA abundance (Fig.
4c), polyadenylation (Fig. 5a), or poly(A) tail length (Fig.
5b), only PABP1 binding (Fig. 6, 8). The reduction in
PABP1 binding to Rev-responsive viral RNAs by Sam68AC
could be achieved either by blocking PABP2 exchange for
PABP1 following export, or removing PABP1 from the
mRNA once it has engaged the translational apparatus.
We believe that inhibition of PABP1 binding to an mRNA,
by Sam68AC, represents a novel mode of translation inhi-
bition but further studies will be necessary to identify the
stage of cytoplasmic RNA processing being affected by
Sam68AC.

Previous analyses had demonstrated that inhibition of
HIV expression by Sam68AC was lost upon introduction
of mutations that disrupted RNA binding capacity consist-
ent with a direct interaction with the affected RNA being
required [21]. Mutational analysis shown in this study
indicates that additional domains of Sam68AC are essen-
tial to its inhibitory potential; amino acids 14 to 44 and
amino acids 262 to 300. Since neither of these regions has
been implicated in RNA binding, the findings suggest that
these regions might be involved in mediating protein-pro-
tein interactions. Interestingly, the requirements for inhi-
bition appear distinct from those promoting unspliced
RNA polyadenylation and enhancement of HIV gene
expression as further C-terminal mutations (Sam 5-262)
converted the protein from an inhibitor to a stimulator.
While the regions encompassed by Sam68ACmin were
sufficient to inhibit HIV expression in several different
assays, other data suggests that it might have reduced
function. Sam68AC consistently inhibited expression of
the incompletely spliced HIV-1 mRNAs and had a corre-
sponding effect on PABP1 binding. However, the mutants
had different effects on pgTat and HxBruR-/RI- reporters.
Importantly, the effect of the mutants on viral protein syn-
thesis was mirrored in the effects they had on PABP1 bind-
ing. For instance, Sam68:5-262 had a limited effect on
gp160/120 expression from pgTat, but increased the
amount of gp160/120 and p24 from HxBruR-/RI". Corre-
spondingly, Sam68:5-262 had no significant effect on
PABP1 binding to US-C pgTat mRNA but did significantly
increase PABP1 binding to the 9 kb HxBruR/RI- mRNA. In
contrast, Sam68ACmin was able to block expression of
pgTat RNA but not the 9 kb and 4 kb RNAs of the provirus.
Analysis of the effect of Sam68ACmin revealed that it
decreased binding of PABP1 to US/C pglat RNA but
resulted in no or little alteration in PABP1 interaction
with viral RNAs. Given that regions affecting inhibitory
function are outside of the domain required for RNA
binding (GSG and RGG motifs), the differences among

http://www.retrovirology.com/content/5/1/97

the Sam68AC mutants likely reflect changes in the interac-
tion with host factors. These factors could facilitate or
inhibit remodeling of the viral RNP following export from
the nucleus and their activity could vary depending upon
subtle differences in the processing/composition of the
RNPs being affected.

The perinuclear accumulation of viral RNA induced by
Sam68AC, while not essential for the translational inhibi-
tion, is similar in phenotype to the effect seen upon deple-
tion of human Rev-interacting protein (hRIP) [50]. This
finding suggests that both Sam68AC and hRIP may be
influencing a similar step in viral RNA metabolism. These
observations are consistent with a model whereby the
viral RNP and hRIP interact at the nuclear periphery
(directly or indirectly) to initiate remodeling of the viral
RNP to enhance its translation, a part of which is the
exchange of PABP2 for PABP1. Sam68AC may interfere
with this remodeling and prevent binding of PABPI,
thereby inhibiting translation initiation (Figure 9). The
recent identification of two RNA helicases (DDX1 and
DDX3) that play essential roles in Rev function suggests
that remodeling of the viral RNP plays an important role
in ensuring efficient expression of the HIV-1 structural
genes [51,52]. How and where these helicases act remains
to be determined.

In summary, we have discovered that Sam68AC is able to
use the features of Crm1 mRNA export to specifically
inhibit translation of Rev-dependent HIV-1 mRNAs. Inhi-
bition occurs by a novel mechanism: inhibiting the asso-
ciation of PABP1 with the target mRNA. Based on the data
presented here, and other published work, we hypothe-
size that viral mRNAs transported via the Crm1 export
pathway have a unique mechanism through which they
engage the translation machinery, possibly involving
hRIP, DDX1 and DDX3 (Fig. 9). If true, it would indicate
that mRNAs using different export pathways have distinct
RNP compositions and therefore, separate control mech-
anisms. Future research into the details of translation ini-
tiation for Rev-dependent HIV-1 mRNAs may lead us to
discover further discrepancies from host mRNAs and lead
to new therapeutic approaches to control HIV-1 gene
expression.

Materials and methods

Expression constructs

The following constructs have been previously described:
SV-Hygro, SV-H6Rev, CMVmyc3xterm [53], pDM128
[54], pgTat [55], Bl-env-HindIll [56], Sam68, and
Sam68AC [21]. Gag-CTE and Gag-RRE plasmids were pro-
vided by Dr. K. Boris-Lawrie, Ohio State University.
HxBruR-/RI- was provided by Eric Cohen, Universite de
Montreal. Sam68A28AC was generated by PCR using
primers: 5'-CGGAATTCCCCTCGGTGCGTCTGA-3' and
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Model of Sam68AC inhibition of HIV-1 protein expression. The distinct processing pathways of fully spliced versus
incompletely spliced viral RNAs result in differences in the composition of the RNPs that appear in the cytoplasm. Upon
export, the RNPs undergo compositional changes including the exchange of PABP2 for PABP| to become translationally active.
Sam68AC interacts with unique components of the Crm| exported RNPs to block the exchange of PABP2 for PABPI or
removes PABPI from the affected RNA, resulting in a block to translation.

5'-CGGGATCCAGTCACAGTGG-CACCICT-3'". The
amplicon was digested with EcoRI and BamHI and ligated
into CMVmyc3xterm. Sam68:5-262 was made by EcoRI
and EcoRV digest of Sam68AC and ligated into the EcoRI
and Smal sites of CMVmyc3xterm. Sam68ACmin was
made in a stepwise fashion. First, Sam68:5-300 was gen-
erated by PCR using primers 5'-CCATTAACGCAAAT-
GGGCGGTA-3' and 5'-CCGCTCGAGAACAGG-TGGAGG-
3'. The amplicon was digested with EcoRI and Xhol and
ligated into Sam68AC. To generate internal deletions,
Quickchange mutagenesis (Stratagene) was carried out
using Sam68:5-300 as a template: A14: 5'-GGGGAATTC-

GAGAAGATCGGGCCGCAGCTGGC-3' and 5'-GCAGCT-
GCGG-CCCGATCITCTCGAATTCCC-3'; A(45-54): 5'-
GCTTCCTCAC-CGGCCCGCTCGGGCCTCGCCC-3' and
5'-GGGCGAGGCCCGAGCGGGCCGG-TGAGGAAGC-3".
Bl-actin was generated by PCR from cDNA using primers:
5'-GCTACGAGCTGCCTGACG-3' and  5-TCCTTCT-
GCATCCTGTCG-3'. The amplicon was cloned into the
EcoRV site of Bluescript. BI-SD-Gag was amplified from
HxBruR-/RI" using: 5'-CGCGGATCCGAAGTAGTGTGT-
GCCCGTCT-3"' and 5'-CCCAAGCITCCCTGCITGCCCAT-
ACTATA-3'. The amplicon was digested with BamHI and
HindIII and ligated into Bluescript.
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Cell lines and transfections

HeLa and 293T cells were maintained in Iscove's modified
Dulbecco's medium (IMDM) supplemented with 10%
fetal bovine serum (FBS), 50 pg/mL gentamycin sulfate
and 2.5 pg/mL amphotericin B. Vectors were introduced
to 293T cells by calcium phosphate transfection [57]. Vec-
tors were introduced to HeLa cells by Fugene 6 transfec-
tion reagent (Roche) following manufacturer's protocol.
Cells were harvested two days post-transfection.

Antibodies

The following antibodies were used: mouse anti-myc
(Invitrogen), mouse anti-tubulin (Sigma), mouse anti-
gp120AK (courtesy of H. Schaal), mouse anti-p24 (clone
183-1112-5C), rabbit anti-L26 (Cell Signaling Technol-
ogy) and rabbit anti-human PABP1 (aa 462-633) (cour-
tesy of N. Sonenburg, McGill University). The following
secondary antibodies were used: donkey anti-rabbit IgG
conjugated HRP, donkey anti-mouse IgG conjugated
HRP, donkey anti-rabbit IgG conjugated Texas red, don-
key anti-mouse IgG conjugated Texas red (Jackson
Immuno Research), protein G conjugated HRP (Molecu-
lar Probes), and sheep anti-digoxigenin conjugated FITC
(Boehringer Mannheim).

Western blots

6 x 105 293T cells were transfected as follows: 0.5 pg
GagRRE, 0.1 pg SV-Hygro or SV-H6Rev, and 2.0 pg
pcDNA3.1 or Sam68AC. For Rev-independent expression
cells were transfected with 2.0 pg GagCTE, and 2.0 pg
pcDNA3.1 or Sam68AC. Cells were harvested in whole
cell lysis buffer (150 mM NaCl, 10 mM Na,HPO,, 1% Tri-
ton X-100, 0.1% SDS, 0.2% sodium azide, 0.5% sodium
deoxycholate, 1 mM sodium orthovanadate), fractionated
on SDS-PAGE gels and transferred to PVDF membrane
(Pall Life Sciences). Bound antibodies were detected using
Western Lightning (Perkin Elmer). For quantitation of
western blots, films were scanned and analyzed using
Imagequant software. Signals for both p55 and p24 were
combined for analysis and data normalized using the
tubulin signals. Quantitation shown was generated from
three independent experiments.

In Situ hybridization and immunofluorescence

3 x 105 HeLa cells were transfected with 0.25 ug SV H6Rev,
1.25 pg pglat and 5.0 pg pcDNA3.1 or Sam68AC. 48
hours post-transfection, cells were treated with fresh
media containing no drug, colcemid (0.1 pg/mL), noco-
dazole (1.0 pg/mlL), cytochalasin D (0.5 pg/mL), or
latrunculin B (0.5 pg/mL) for 2 hours prior to fixation. In
situ hybridization was performed as previously described
[56]. Digoxigenin-labeled Env-HindlIII probe, antisense to
HIV-1 env mRNA, was made with 10 x digoxigenin RNA
labeling kit (Roche). Myc-tagged proteins were detected
with monoclonal anti-myc antibody (Invitrogen) as previ-
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ously described [58]. Immunofluorescence was detected
using a Leica DMR microscope at either 400x or 630x
magnification.

35S labeling

6 x 10° Hel.a cells were transfected with 0.2 pg SV-H6Rev,
1.0 pg Gag-RRE and 4.0 pg pcDNA3.1 or Sam68AC. 48
hours post-transfection, cells were treated with drugs for 2
hours, as outlined above. Cells were then labeled with 100
pCi of 35S- methionine for 4 hours. Cells were harvested
in whole cell lysis buffer then diluted with 3 volumes
IPP150 (150 mM KCl, 10 mM Tris-HCl pH 7.5, 0.1%
NP40, 0.1% sodium azide). The precleared lysates were
incubated with anti-p24 antibody for 1 hour at 4°C, then
immunoprecipitated with Gammabind plus sepharose
(GE Healthcare) for 1 hour. Beads were washed with
IPP150 buffer and the immunoprecipitated protein was
run out on 10% SDS-PAGE. Labeled proteins were
detected following exposure to a Phosphor Imager screen.

RNA analysis

3 x 100293T cells were transfected with 0.4 ug SV-Hygro
or SV-HG6Rev, 2.0 pg pglat and 8.0 pg of pcDNA3.1,
Sam68AC or mutants thereof. 48 hours post-transfection
25% of the cells were harvested in whole cell lysis buffer
for protein analysis, and 75% of the cells were harvested
for RNA isolation [59]. RNase protection assays (RPA)
were performed as previously described [11]. To monitor
the polyadenylation status of the pgTat mRNA 10 pg total
RNA was selected using oligo(dT)25 beads according to
manufacturers directions (Dynal Biotech). The selected
RNA was then input into the RNase protection assay using
Bl-Tat X/X probe [11]. RACE-PAT (random amplification
of cDNA ends-polyadenylation test) cDNA was synthe-
sized using an anchor primer (5'-CTCGCCGGACACGCT-
GAACTTTITTITITITITTTITITIT-3") with MMLV-RT
(Invitrogen). The cDNA generated was then used to gener-
ate both spliced and unspliced amplicons using the for-
ward spliced (5'-AGCGGAGACAGCGACGAAGAG-3') or
unspliced (5'-CGACCTGGATGGAGTGGGACA-3') and
the reverse primer (5'-CTCGCCGGACACGCTGAAC-3").
Amplification used the following cycle parameters: 94°C,
1 minute; 66°C, 1 minute; 72°C, 2 minute; for 30 cycles.
Amplicons were fractionated on native PAGE gels and
detected by exposure to Phosphor Imager screen. For pro-
viral RNA analysis, 3 x 10° 293T cells were transfected
with 2.0 pg HxBruR-/RI- and 8.0 pug of Sam68AC or
mutants thereof. The probes used for RNase protection
assay were Bl-actin and BI-SD-Gag.

Polysome analysis was performed as described by Li et al.
[60] with the only modification being the addition of
cytochalasin D (0.5 pg/ml) to the media 1 h prior to har-
vest. 0.5 ml fractions were collected following centrifuga-
tion and analyzed for protein or RNA distribution. For
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protein analysis, 5 pg/ml BSA was added to 200 pl of each
fraction and proteins precipitated by addition of an equal
volume of 40% TCA. After incubation at 4 C for 1 h, pre-
cipitate was collected by centrifugation, washed 5 times
with acetone and resuspended in whole cell lysis buffer.
Proteins were fractionated on SDS-PAGE gels and blotted
onto PVDF membranes for detection of indicated pro-
teins. In the case of RNA, following proteinase K/phenol-
chloroform purification, RNA was ethanol precipitated,
resuspended and treated with Turbo DNase 1 as per man-
ufacturer's instructions (Ambion). RNA was then used for
quantition of actin and env RNA by real time QRT-PCR
using the following primer sets: actin forward 5'-GAG
CGG TTC CGC TGC CCT GAG GCA CTC-3', actin reverse
5'-GGG CAG TGA TCT CCT TCT GCA TCC TG-3', env for-
ward 5'-CAA CAA TGG GTC CGA GAT CTT-3', env reverse
5'-AGC TCC TAT TCC CAC TGC TC-3'. QPCR reactions
were run in duplicate for each probe and gradient fraction.

RNP immunoprecipitation

3 x 100 293T cells were transfected with 0.4 ug SVH6Rev,
2.0 pg pglat and 8.0 pg of pcDNA3.1, Sam68AC or
mutants thereof. Whole cell lysates were generated by a
modification of the protocol of Siomi et al [61]. 48 hours
post-transfection, cells were washed twice with 1 x PBS
and once with Buffer A (110 mM potassium acetate, 2 mM
magnesium acetate, 2 mM DTT, 10 mM HEPES pH 7.5).
The cell pellet was resuspended in 400 pl Buffer B (10 mM
potassium acetate, 2 mM magnesium acetate, 2 mM DTT,
5 mM HEPES pH 7.5, 20 uM cytochalasin D) and incu-
bated on ice for 10 min. Cells were disrupted by passage
through 25 gauge needle, 5 times. KCI was added to 100
mM final concentration. Cells debris was pelleted by cen-
trifugation at 1,500 rpm. Supernatant was adjusted to
0.5% NP40 and incubated on ice for 20 min. Insoluble
material was pelleted by centrifugation at 14,000 rpm and
supernatant retained for use in subsequent immunopre-
cipitations. 1/42 of the supernatant was retained for anal-
ysis of the RNA input and 1/42 for analysis of protein
input. For each immunoprecipitation, 10/42 of the solu-
ble fraction was diluted with 10 volumes RIPA buffer (150
mM NaCl, 50 mM Tris-HCI pH 7.5, 1% NP40, 1 mM
EDTA ph 7.5, 0.5% sodium deoxycholate, 0.05% SDS)
and 100 u RNaseOUT (Invitrogen). The sample was pre-
cleared by incubation with Gammabind plus sepharose
(GE Healthcare) for 1 h at 4°C. Supernatant was incu-
bated overnight at 4°C with the indicated antibody.
Immune complexes were collected by addition of Gam-
mabind plus sepharose and incubation at 4°C for 1 h. The
resin was washed 5x with 1 ml of RIPA buffer and then
resuspended in 100 pl of RIPA. RNA was extracted from
150 pl of the resin slurry [59] and 50 pl of slurry was used
for protein analysis following addition of 50 ul 2x disso-
ciation buffer. Isolated RNA was subsequently used in
RPA assays as outlined previously.

http://www.retrovirology.com/content/5/1/97

Statistical analysis

The data are presented as mean +/- one standard devia-
tion. Data were compared using Student's t-test. * indi-
cates a p-value < 0.05. ** indicates a p-value < 0.01.
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