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Abstract
At specific genomic loci, miRNAs are in clusters and their association with copy number variations (CNVs) may exhibit 
abnormal expression in several cancers. Hence, the current study aims to understand the expression of miRNA clusters 
residing within CNVs and the regulation of their target genes in bladder cancer. To achieve this, we used extensive bioinfor-
matics resources and performed an integrated analysis of recurrent CNVs, clustered miRNA expression, gene expression, 
and drug–gene interaction datasets. The study identified nine upregulated miRNA clusters that are residing on CNV gain 
regions and three miRNA clusters (hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) are correlated 
with patient survival. These clustered miRNAs targeted 89 genes that were downregulated in bladder cancer. Moreover, 
network and gene enrichment analysis displayed 10 hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, KDR, NOTCH1, 
PTEN, and ZEB1) which have significant potential for diagnosis and prognosis of bladder cancer patients. Interestingly, 
hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 cluster candidates showed significant differences in their expression in 
stage-specific manner during cancer progression. Downregulation of NOTCH1 by hsa-mir-200c/mir-141 may also sensitize 
tumors to methotrexate thus suggesting potential chemotherapeutic options for bladder cancer subjects. To overcome some 
computational challenges and reduce the complexity in multistep big data analysis, we developed an automated pipeline 
called CmiRClustFinder v1.0 (https://​github.​com/​msls-​bioin​fo/​CmiRC​lustF​inder_​v1.0), which can perform integrated data 
analysis of 35 TCGA cancer types.
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Introduction

Carcinoma in the epithelial lining of the urinary bladder has 
been increasing over the years (Sarkis et al. 2020). Globally, 
573,278 bladder cancer (BCa) cases and associated 212,536 
deaths were reported in 2020 (Sung et al. 2021). Traditional 

techniques for the diagnosis, prognosis, and monitoring 
of BCa include imaging tests (ultrasound, computerized 
tomography (CT), magnetic resonance imaging (MRI)), 
cystoscopy, and urine cytology. However, these methods 
fall short of expectations due to high cost, poor cytology 
sensitivity, high invasiveness of cystoscopy, and significant 
inter and intra-observer variability in tumor stage and grade 
interpretation (Su et al. 2019). The food and drug adminis-
tration (FDA) has approved urinary biomarkers include BTA 
Stat, BTA Trak, nuclear matrix protein 22 (NMP22), UroVy-
sion, ubiquitin C (UBC), and other assays such as immuno-
cytochemistry (uCyt+ and DD23) and fluorescence in situ 
hybridization (FISH) being widely used for patient follow-
up, though with lesser potency in low-grade cancer detec-
tion (Charpentier et al. 2021). BCa is generally managed 
with classical approaches such as chemotherapy, surgery, or 
radiation (Dobruch and Oszczudłowski 2021). Genetic and 
epigenetic alterations such as aberrant DNA methylation, 
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altered chromatin remodeling, and dysregulated non-coding 
RNAs drive several molecular events during pathogenesis 
thereby contributing to varied clinical behavior in cancer 
recurrence and progression (Li et al. 2016; Martinez et al. 
2019). Collectively, identifying novel biomarkers for prog-
nosis and therapy is crucial to improving BCa patient care.

MicroRNAs (miRNAs) are approximately 20–23nt long, 
highly conserved, and non-coding RNAs that play an impor-
tant role in the regulation of gene expression. The miRBase 
(v22.1) currently consists of 2654 mature miRNAs coded 
from 1917 precursor miRNAs. Recent studies have shown 
that the human genome contains 159 miRNA clusters that 
comprise 468 miRNAs (Kozomara et al. 2019). A miRNA 
cluster consists of two or more miRNAs located in physi-
cally adjacent regions and transcribed in the same orienta-
tion. Differentially expressed clustered miRNAs have been 
reported. For example, cluster hsa-mir-143/mir-145 on chro-
mosome location 5q32 is downregulated in several cancers 
(Das and Pillai 2015). Clinical and mechanistic studies have 
shown that the deregulated clustered miRNA expression may 
play a crucial role in the pathogenesis of BCa (Braicu et al. 
2019). Therefore, differentially expressed clustered miRNAs 
can be used for diagnostic and prognostic purposes in BCa.

Recent studies have reported that copy number variations 
(CNVs) are associated with aneuploidies and chromothrip-
sis (Ben-David and Amon 2020) and are being recognized 
as an important risk factor for cancer, as they can alter the 
expression of their resident coding and non-coding genes 
(Shao et al. 2019). The miRNAs which reside on the CNV 
loci show a significant difference in expression patterns, 
especially in cancer conditions (Anauate et al. 2019). More 
than 50% of the miRNA genes are reported to overlap with 
the cancer-hotspot genomic regions and form a central regu-
latory unit in cancer development pathways (Farazi et al. 
2013). The systematic array-based study by An et al. (2013) 
reported upregulation of two miRNA clusters (hsa-mir-
23a/mir-24-2 and hsa-mir-181c/mir-181d) at chromosomal 
region 19p13.13 due to CNV amplification in gastric can-
cer. Overexpression of the largest human miRNA cluster 
‘C19MC’ has been linked to a variety of cancers, including 
breast cancer (Jinesh et al. 2018), brain tumors (Sin-Chan 
et al. 2019) and thyroid adenomas (Rippe et al. 2010). The 
co-localization of moderately explored CNVs and miRNAs 
has indicated the potential of CNV-mediated variation in 
C19MC miRNA dosage (Vaira et al. 2012).

However, there are no comprehensive studies on CNV 
regulated clustered miRNA expression and its contribu-
tion to BCa. Hence, we performed an integrated analysis 
to identify potential clustered miRNAs to screen BCa. To 
meet the objectives, we performed an integrated analysis 
using a) clustered miRNAs residing on CNVs, b) patient 
survival, c) miRNA targeted genes, d) gene function and e) 
drug–gene interaction. We have developed a user-friendly 

computational pipeline named ‘CmiRClustFinder v1.0’ by 
integrating R and shell scripts. The pipeline can be effec-
tively used for high throughput data analytics and to identify 
biomarkers for cancer diagnosis.

Materials and methods

Acquisition of miRNA expression and CNV data 
from bladder carcinoma

Level 3 miRNA expression datasets of BCa were interro-
gated from the TCGA database (https://​portal.​gdc.​cancer.​
gov/​proje​cts/​TCGA-​BLCA). We analyzed 412 BCa patients 
data, of which 304 are males and 108 are females. The data 
belong to White (327 samples), Asian (44), Black or Afri-
can-American (23) populations, and 18 samples popula-
tion information was not available. Pre-computed Somatic 
copy-number alterations (SCNA) data without germline 
copy number amplification (CNA) was obtained from the 
Broad Institute’s FireBrowse portal (http://​fireb​rowse.​
org/). Further, 468 miRNAs belonging to 159 clusters were 
retrieved from the miRBase V22.1 (http://​www.​mirba​se.​
org/) database.

Identification of SCNA and miRNA cluster 
co‑occurrence

Recurrent SCNAs in the TCGA-BLCA samples were ana-
lyzed using Bioconductor package GAIA 3.10 (https://​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​gaia.​html). 
Recurrent CNV was defined by false discovery rate (FDR) 
Q < 0.15 derived from 10 iterations. The segment mean of 
0.3 was set as the threshold to identify the copy number 
gain/loss. The regions with segment mean > 0.3 and ≤ 0.3 
thresholds were considered as a copy number gain (amplifi-
cation) and loss (deletion) respectively. Finally, the genomic 
SCNA plot was generated using an R script with the cut-off 
value < 0.15 FDR. The GAIA uses human genome assembly 
Hg19 for all the analyses. Hence, we used the UCSC LiftO-
ver (https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) option to 
lift all SCNA genomic coordinates to match with the Hg38 
build. Further, the functionality of BEDTools (Quinlan and 
Hall 2010) was used to intersect the genomic coordinates of 
miRNA clusters onto the recurrent significant CNV regions 
identified from GAIA analysis.

The miRNA differential expression analysis

We used various functions of the ‘TCGAanalyze_DEA’ and 
TCGAbiolinks packages (Robinson et al. 2010) to identify 
differentially expressed miRNAs (Normal vs. Tumor). 
Further, using the false discovery rate (FDR) correction, 

https://portal.gdc.cancer.gov/projects/TCGA-BLCA
https://portal.gdc.cancer.gov/projects/TCGA-BLCA
http://firebrowse.org/
http://firebrowse.org/
http://www.mirbase.org/
http://www.mirbase.org/
https://bioconductor.org/packages/release/bioc/html/gaia.html
https://bioconductor.org/packages/release/bioc/html/gaia.html
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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the p value was adjusted to shortlist the top differentially 
expressed miRNAs. The logFC > 1 and FDR < 0.05 thresh-
old were considered to be significant.

Identification of clustered miRNA expression 
residing on CNV

Following criteria were used to identify the differentially 
expressed miRNA clusters residing on CNV regions: (i) at 
least two miRNAs must be differentially expressed from 
a cluster, and (ii) differentially expressed miRNA clusters 
must reside on copy number amplified or deleted regions. 
Inversely correlated cluster expression with CNVs and clus-
ters with non-significant expression were excluded from the 
further analysis.

Identification of prognostic signatures

The BCa samples were classified into low and high expres-
sion groups to identify the prognostically significant miRNA 
clusters according to the median miRNA expression levels. 
The Kaplan–Meier plotter hosted by the miRpower tool 
(Lánczky et al. 2016) was used to determine the relapse-
free survival (RFS) with different clinical parameters. For 
miRNA cluster expression analysis, an unpaired t test was 
performed using MedCalc version 15.0 (Schoonjans et al. 
1995). The p value < 0.05 was considered statistically 
significant. The plotted curves such as receiving operator 
characteristic (ROC) and areas under ROC (AUROC) were 
evaluated by comparing the values from tumor and normal 
tissues.

miRNA target prediction and regulatory network 
analysis

The target genes of survival correlated miRNAs were 
obtained from miRTarBase (Huang et al. 2020), TargetScan 
(Garcia et al. 2011), DIANA-TarBase (Vlachos et al. 2015), 
mirDIP (Tokar et al. 2018), and miRDB (Chen and Wang 
2020). Target genes commonly found in these five databases 
were only considered for further downstream analysis. The 
target gene expression and gene promoter methylation infor-
mation were mined from the UALCAN database (http://​
ualcan.​path.​uab.​edu/). Networks of downregulated genes 
targeted by clustered miRNAs were plotted. Further, these 
genes were examined for DNA promoter methylation to con-
firm the miRNAs target effect on gene expression. Using the 
beta value given in the UALCAN web server, DNA meth-
ylation was estimated in a range of 0 (unmethylated) to 1 
(methylated).

Protein–protein interaction (PPI) network analysis

The clustered miRNAs and their target genes network 
interaction were analyzed with GeneMANIA (https://​
genem​ania.​org/) to explore the co-expression, co-locali-
zation, and shared protein domain information. The PPI 
networks were constructed using STRING V11.0 (Szklarc-
zyk et al. 2017) with a medium confidence score ≥ 0.40 to 
predict the most interactive genes. The PPI network was 
imported and visualized using the Cytoscape plugin Strin-
gApp (Doncheva et al. 2018). Using CytoHubba (Chin 
et al. 2014), the top 10 hub genes were identified based on 
the distribution of network node degrees.

Gene set enrichment analysis

We performed the functional enrichment analysis for 89 
target genes using DAVID (https://​david.​ncifc​rf.​gov/) plat-
form. The p value calculated using the Benjamini–Hoch-
berg method and ≤ 0.05 threshold was considered statisti-
cally significant.

Tissue, molecular‑subtype, and clinical traits specific 
expression analysis

The present study used bladder cancer (404 samples) 
and normal tissue (28 samples) datasets available at the 
GEPIA server (Tang et al. 2017). The hub genes differ-
entially expressed with a p value < 0.01 were considered 
statistically significant. The boxplot was used to illustrate 
the association between cancer and normal tissues. We 
used 412 BCa patient data available at the TCGA-GDC 
portal for the molecular subtype-specific expression analy-
sis. These datasets comprised into five subtypes, basal-
squamous (n = 142), luminal-papillary (n = 142), luminal-
infiltrated (n = 78), luminal (n = 26), neuronal (n = 20) and 
four samples were uncategorized. To gain better insights, 
we have studied the BCa subtype-specific expression pro-
file for three miRNA clusters and 10 hub genes. Tobacco 
smoking is a high-risk factor for carcinogenesis, and it 
can affect various organs such as the head, neck, lungs, 
and urinary bladder. Also, smoking induces the expression 
of various miRNAs, which post-transcriptionally silence 
the function of tumor suppressors and promote cancer 
(Fujii et al. 2018). Altered miRNA expression contributes 
to tumor growth and plays a critical role in response to 
chemotherapy (Li et al. 2013). Hence, we have studied 
the clustered miRNA and hub gene expression profiles in 
patients categorized into (i) smokers and non-smokers, (ii) 
chemotherapy responders, and non-responders.

http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
https://genemania.org/
https://genemania.org/
https://david.ncifcrf.gov/
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In silico validation of miRNA and gene expression

To validate the expression of clustered miRNAs and their 
target genes, we have used one miRNA—GSE36121 (Ratert 
et al. 2012); and three mRNA datasets—GSE40355 (Hecker 
et al. 2013), GSE27448 (Lambrou et al. 2013), GSE52519 
(Borisov et al. 2018). These datasets were considered as the 
comprehensive reference for the miRNA and gene expres-
sion studies in urothelial carcinomas (Normal vs Tumor). 
The R package Limma-based online program GEO2R 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) was used to 
perform differential expression. The p value < 0.05 and 
logFC > 1 considered as significant.

Hub‑genes and drug interaction

The hub genes were analyzed with the DGIdb database 
(http://​www.​dgidb.​org/)  to understand the interrelation 
between drug candidates and genes. The analysis was 
restricted to the drugs approved by the Food and Drug 
Administration (FDA). Further, the PanDrugs (https://​
www.​pandr​ugs.​org/) database was used to identify poten-
tially druggable molecular alterations and prioritization of 
anticancer drugs.

Results

Identification of CNV driven miRNA clusters

The GAIA analysis of BCa-SCNA data resulted in 4119 
significant CNV aberrations, of which 1824 regions were 
amplified, and 2295 regions were deleted (Supplementary 
Table S1, Fig. 1A). The mapping of 159 miRNA clus-
ters on CNV regions showed overlapping of 61 clusters 
with CNV regions (Supplementary Table S2). Of the 61 
miRNA clusters residing on CNV regions, 33 and 28 were 
located on amplified and deleted regions, respectively. 
Further, the expression analysis of quantile normalized 
BCa vs normal samples displayed 661 upregulated and 
33 downregulated miRNAs. Using an integrated analy-
sis, we identified 41 miRNAs belongs to nine upregulated 
miRNA clusters (hsa-mir-7113/mir-4691, hsa-mir-200c/
mir-141, hsa-mir-3913-1/mir-3913-2, hsa-mir-657/mir-
1250, hsa-mir-512-1/mir-526a-1, hsa-mir-371a/mir-373, 
hsa-mir-6804/mir-6803, hsa-mir-217/mir-216a and hsa-
mir-15b/mir-16-2) which reside on the CNV gain regions 
(Supplementary Tables S3 & S4). However, no statistically 
significant expression was observed for miRNA residing 
on CNV deleted regions.

Fig. 1   The distribution of recurrent copy number amplification and 
deletion in BCa. a The circos representation of CNV regions resid-
ing on human chromosomes (red: amplification; green: deletion). b 

Representation of three miRNA clusters (hsa-mir-200c/141, hsa-mir-
216a/mir-217 and hsa-mir-15b/mir-16-2) residing on CNV amplified 
regions

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.dgidb.org/
https://www.pandrugs.org/
https://www.pandrugs.org/
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Identification of the prognostic signature

The Kaplan–Meier survival analysis was performed to iden-
tify the impact of CNV driven miRNA clusters on survival 
rate of BCa patients. We have compared survival analysis 
and hazard ratio with populations designated as miRNA clus-
ters high and low risk in the TCGA database. The combined 
KM and ROC curve analysis identified three prognostically 
important miRNA clusters hsa-mir-200c/mir-141, hsa-mir-
216a/mir-217, and hsa-mir-15b/mir-16-2 (Fig. 1B). The 
three miRNA clusters consist of six miRNAs were found to 
be upregulated (Supplementary Table S4). The overall sur-
vival rate of candidates of the hsa-mir-200c/mir-141 cluster 
is—hsa-mir-200c: HR = 0.57, CI = 0.42–0.78, p = 0.00036; 
hsa-mir-141: HR = 0.62, CI = 0.46–0.084, p = 0.0019. The 
candidate miRNAs of cluster hsa-mir-216a/mir-217 is—hsa-
mir-216a: HR = 1.76, CI = 1.3–2.37, p = 2e-04; hsa-mir-217: 
HR = 1.39, CI = 1.03–1.88, p = 0.032 and for cluster hsa-mir-
15b/mir-16-2 is—hsa-mir-15b: HR = 0.88, CI = 0.65–1.19, 
p = 0.42; hsa-mir-16-2: HR = 0.81, CI = 0.6–1.1, p = 0.18. 
The hsa-mir-200c/mir-141 and hsa-mir-216a/mir-217 (hsa-
mir-200c: 2.01 LogFC; hsa-miR-141: 3.09 LogFC; hsa-mir-
216a: 2.69 LogFC; hsa-mir-217: 2.45 LogFC) showed a sig-
nificant correlation in the BCa patient survival (Fig. 2A, B). 
On the other hand, the hsa-mir-15b/mir-16-2 (hsa-mir-15b: 
1.49 LogFC, hsa-mir-16-2: 1.52 LogFC) was not statisti-
cally significant for the survival of BCa patients (Fig. 2C). 
The higher expression of the hsa-mir-200c/mir-141 corre-
lated with a better survival rate. However, hsa-mir-216a/
mir-217 overexpression lead to a significant reduction in 
patient’s survival. We evaluated diagnostic value of CNV 
clusters by ROC curve analysis. The results indicated that 
the candidates of miRNA clusters hsa-mir-200c/mir-141 
and hsa-mir-15b/mir-16-2 exhibited high diagnostic value 
(Fig. 2D, E). The area under the ROC curve (AUROC) for 
candidate miRNAs of these clusters were 0.784 (hsa-mir-
200c), 0.894 (hsa-mir-141), 0.726 (hsa-mir-15b) and 0.752 
(hsa-mir-16-2). The hsa-mir-216a/mir-217 cluster candidates 
harbored lower specificity and sensitivity (Fig. 2F) than the 
other two clusters. The conclusive KM and ROC results indi-
cated that the prognostic model of members of these three 
clusters was robust in predicting the progression of cancer 
cell growth in BCa patients.

Prediction of miRNA target genes and construction 
of regulatory networks

The CNV driven, overexpressed three miRNA clusters tar-
get 180 genes. Promoter methylation (beta value) levels and 
the expression profile for all the target genes were given 
in Supplementary Tables S5 & S6. Among these, 64 genes 
were upregulated, and 27 were hyper-methylated. Hence, 
these 91 target genes were excluded from further analysis. 

The 89 genes downregulated in BCa targeted by clustered 
miRNAs from CNV gain regions are illustrated in Fig. 3. 
We assume that these genes were downregulated due to the 
upregulation of miRNA clusters. The expression of 89 target 
genes was cross-checked with BCa patient data available 
in GEO cohorts. Interestingly, 74 genes were significantly 
downregulated in BCa datasets (Supplementary Table S6). 
However, expression data for 15 genes were not found in the 
selected GEO datasets.

PPI network construction and identification of hub 
genes

We used the strength of existing network-based tools to 
study the protein–protein interaction and biological signifi-
cance. The GeneMANIA resulted in genes and protein net-
work shown in Fig. 4A highlights the functional association. 
Functionally associated interactions of 89 genes targeted by 
three miRNA clusters are given in Supplementary Table S7. 
According to STRING results, the PPI network of hsa-mir-
200c/mir-141 cluster targets consists of 31 nodes and 36 
edges, hsa-mir-216a/mir-217 cluster targets comprised 20 
nodes and nine edges, and cluster hsa-mir-15b/mir-16-2 con-
sists of 40 nodes and 23 edges. The connectivity degree of 
each node was calculated in these PPI networks and node 
degree > 10 was considered for hub genes (CCND2, ETS1, 
FGF2, FN1, JAK2, JUN, KDR, NOTCH1, PTEN, and 
ZEB1). All the hub genes showed a strong association with 
their node proteins (Fig. 4B). However, among these hub 
genes, PTEN showed the highest node degree (20), which 
is targeted by both the candidates of cluster hsa-mir-216a/
mir-217. Among these hub genes, PTEN and ZEB1 are tar-
geted by both the members of hsa-mir-216a/mir-217 and 
hsa-mir-200c/mir-141 clusters, respectively. Interestingly, 
mir-200c alone targets five of these hub genes (ETS1, FN1, 
JUN, KDR, and NOTCH1).

GO term enrichment and KEGG pathway analysis

Gene ontology enrichment analysis of 89 genes targeted by 
three miRNA clusters is given in Supplementary Table S8. 
These genes are associated with 64 biological processes 
(BP), notably positive and negative regulation of cell pro-
liferation, cell migration, signaling pathways, and positive 
regulation of gene expression. The enriched molecular func-
tions (MF) include DNA binding, RNA binding, protein 
kinase activity, growth factor activity, metal ion binding, 
zinc ion binding, and translation repression. The enriched 
cellular component (CC) includes cytosol, cytoplasm, nucle-
oplasm, nucleus, centrosomes, membrane-bound vesicles, 
and cell projection. Furthermore, these genes were signifi-
cantly associated with 14 pathways, including cancer sign-
aling pathways such as p53, PI3K-Akt, MAPK, Wnt, and 
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Fig. 2   Prognostic feature analysis of three miRNA cluster candidates 
in BCa patients. The Kaplan–Meier survival curves show overall sur-
vival outcomes of miRNA cluster candidates. a mir-200c/mir-141, 
b mir-216a/mir-217, c mir-15b/mir-16-2 according to their expres-
sion in high and low-risk patient groups (black: low expression; 

red: high expression). The ROC curve showing diagnostic values of 
miRNA cluster candidates, d mir-200c/mir-141, e mir-15b/mir-16-2, 
and f mir-216a/mir-217. The ROC and AUROC curves are generated 
through MedCalc software
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cAMP. The functional enrichment analysis of the top 10 hub 
genes belongs to the key cell signaling pathways such as 
p53, Ras, PI3K-Akt, prolactin signaling, and other carcino-
genesis cascades. The hub genes associated with biological 
processes, molecular functions, cellular components, and 
enriched pathways are listed in Fig. 5.

Tissue, molecular‑subtype, and clinical traits specific 
expression analysis

Alongside this, the present study estimated the tissue-spe-
cific expression of hub genes in normal and bladder cancer 
tissues. The analysis also highlighted that ZEB1, CCND2, 
FGF2, JAK2, and JUN hub genes were significantly down-
regulated in BCa tissues (Fig. 6). Further, the examination 
of the CNV status of 10 hub genes showed that five genes 
reside on CNV regions (amplified: CCND2, KDR, and 
ZEB1; deleted: FN1 and PTEN). Hence, we hypothesize 
that the combined effect of CNV loss and miRNA binding 
might be responsible for the downregulation of FN1 and 
PTEN in BCa tissues. Subtype-specific expression patterns 
of clustered miRNA and hub genes were analyzed in BCa 

patients (Supplementary Fig. 1, 2). Proportionally, the total 
number of patients having downregulation (subtype-spe-
cific) of hub genes is more except FN1 (Basal Squamous & 
Luminal Infiltrated), KDR (Luminal, Luminal Infiltrated & 
Luminal Papillary), NOTCH1 (Basal Squamous). Expres-
sion profile analysis based on the smoking history of BCa 
patients vs. normal samples showed significant upregula-
tion of mir-200c/141 and mir-15b/16-2 clusters in all the 
categories. We have observed expression trends of cluster 
targeted 10 hub genes are significantly downregulated in 
all categories of smoking history (Supplementary Fig. 3A). 
The BCa patient’s chemotherapy response trait information 
was procured for 236 samples from TCGA-GDC. Three 
miRNA clusters were upregulated in the responders and 
non-responders category except a miRNA mir-217 from 
mir-216a/217 cluster, which did not show a significant dif-
ference in expression compared with normal (Supplemen-
tary Fig. 3B). Interestingly, in the partial response group, 
NOTCH1 showed significant downregulation, but in the 
progressive and stable disease category, the expression was 
higher. Except for FN1, all other hub genes were downregu-
lated in the therapy response category.

Fig. 3   Interaction network of 
CNV driven miRNA clusters 
candidates and their mRNA tar-
gets. High confidence miRNA 
cluster targets were predicted 
with the help of five databases 
(miRTarBase, TargetScan, 
DIANA-TarBase, mirDIP and 
miRDB). The miRNA-mRNA 
regulatory networks were visu-
alized by using Circos tool
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Fig. 4   Protein–protein interaction network of CNV driven miRNA 
cluster targeted proteins. a Physical network of CNV driven miRNA 
cluster targeted proteins plotted with GeneMANIA (edge color: 
showing different interaction types; edge thickness: interaction 

strength; node: CNV driven miRNA cluster targets). b The interac-
tion network of top 10 hub genes generated through CytoHubba 
plugin

Fig. 5   Functional enrichment analysis of the top 10 hub genes tar-
geted by three miRNA clusters. a GO-BP (biological processes) 
enrichment, b GO-MF (Molecular functions) enrichment, c GO-CC 

(Cellular Component) enrichment, and d signaling pathway analysis 
was shown. The visual representation of functional enrichment analy-
sis generated through GOPlot, a package of R
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Fig. 6   The differential expression of the top 10 hub genes in normal vs bladder cancer tissues (p value < 0.01). Expression data was procured 
from GEPIA, an online resource for gene expression profiling
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Hub‑genes and drug interactions

The integrated analysis of drug–gene interactions showed 
an association of seven hub genes with 20 potential FDA-
approved drugs (Supplementary Table S9). Further, hub 
genes were analyzed for prioritizing the drugs and their 
clinical actionability for cancer therapy. Using this analy-
sis, a total of 242 experimental drugs, 25 clinical trials, 
and one FDA-approved potential drug (methotrexate) were 
interacting with hub genes (Supplementary Table S10). 
These results could provide an opportunity for the repur-
posing of the drugs to treat BCa.

Utility of the miRNA clusters for BCa staging

We have explored the expression pattern of CNV driven 
miRNA clusters in different stages of BCa (Supplemen-
tary Fig. 4). The stage-wise expression profile of both the 
candidates of hsa-mir-200c/mir-141 showed distinct sig-
natures among BCa stages when compared to normal tis-
sues (Supplementary Fig. 4A). The hsa-mir-15b/mir-16-2 
candidates showed differences in the expression patterns in 
each stage of cancer progression (Supplementary Fig. 4C). 
Our analysis indicated that the candidate miRNA expres-
sion signature of hsa-mir-200c/mir-141 and hsa-mir-15b/
mir-16-2 could differentiate healthy tissues from malig-
nant phenotypes.

CmiRClustFinder v1.0

Big data analytics through command line computation may 
be a daunting task to life science researchers. Hence, to over-
come the computational challenges and reduce the complex-
ity of multistep Commandline computing, we developed 
an automated pipeline called CmiRClustFinder v1.0 that 
computes the integrated data within five steps (Fig. 7). The 
installation script will download all the necessary resources 
and prepare the pipeline for use in the first step. In the sec-
ond step, the GAIA package finds frequent aberrations in 
chromosomal regions among cancer patients’ datasets. In 
the third step, the LiftOver tool matches the genomic build 
for RCNVs and user-defined genetic elements. We have 
integrated BEDTools to find co-localization of significant 
RCNV and genomic elements in the fourth step. Lastly, the 
Circalize package generates a circos representation of the 
data. The source code for CmiRClustFinder v1.0 is publicly 
available at https://​github.​com/​msls-​bioin​fo/​CmiRC​lustF​
inder_​v1.0. The manual for the pipeline execution is avail-
able in the portal.

Discussion

Abnormal changes in miRNA expression may play a cru-
cial role in the initiation, development, and progression of 
various cancers (Farazi et al. 2013). Since miRNA clusters 

Fig. 7   Five steps working process of the CmiRClustFinder v1.0 automated pipeline

https://github.com/msls-bioinfo/CmiRClustFinder_v1.0
https://github.com/msls-bioinfo/CmiRClustFinder_v1.0
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contain multiple miRNAs encoding genes, their abnormal 
expression may collectively show a more severe impact on 
the cell signaling pathways than the individual miRNA. 
Recent reports have demonstrated clustered miRNAs coop-
erative and synergistic activity in various cancers (Cantini 
et al. 2019; Rui et al. 2020). Therefore, it is essential to 
explore the biological processes and cell signaling pathways 
affected due to dysregulated clustered miRNAs. Anauate 
et al. (2019) demonstrated copy number gain associated 
miRNA cluster of four miRNAs (miR-1207-3p, miR-
1205, miR-1207-5p, and miR-1208) at 8q24 were upreg-
ulated ~ 50% of gastric tumors (Anauate et al. 2019). Our 
analysis identified 61 miRNA clusters that are localized 
within the CNV regions in BCa. To the best of our knowl-
edge, this is the first comprehensive in silico study investi-
gating the effect of recurrent CNV aberrations on miRNA 
cluster expression in BCa.

We identified prognostically significant three miRNA 
clusters, hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and 
hsa-mir-15b/mir-16-2 from BCa patients. Each cluster com-
prises of two miRNAs localized within the recurrent CNV 
gain regions were overexpressed. The aberrant expression 
of hsa-mir-200c/mir-141 has been reported in many human 
malignancies, where it participates in a variety of cellular 
processes such as epithelial-mesenchymal transition (EMT), 
proliferation, migration, invasion, and drug resistance (Sen-
fter et al. 2016). Additionally, this cluster has been estab-
lished as a potential diagnostic and prognostic biomarker 
for various carcinomas such as ovarian cancer (Gao et al. 
2015), breast cancer (Choi et al. 2016), and lung adenocar-
cinoma (Tejero et al. 2014). Although the prognostic impact 
of hsa-mir-216a/mir-217 and hsa-mir-15b/mir-16-2 candi-
dates’ dysregulation has been confirmed in several types of 
cancers (Aqeilan et al. 2010; Lovat et al. 2015; Azevedo-
Pouly et al. 2017; Erener et al. 2021). However, there is no 
explicit evidence for these clusters can be used as a marker 
for BCa diagnosis.

Here, log-rank test-based Kaplan–Meier survival analysis 
showed hsa-mir-200c/mir-141 and hsa-mir-216a/mir-217 to 
be significantly correlated with the overall survival rate of 
BCa patients. The overexpression of mir-200c and mir-141 
is strongly associated with a better prognosis in bladder can-
cer patients. Our findings are consistent with Mei et al. 2020, 
with additional evidence for CNV-induced overexpression 
of hsa-mir-200c/mir-141. ROC/AUROC analysis indicated 
high diagnostic accuracy for hsa-mir-200c/mir-141 and 
hsa-mir-15b/mir-16-2 cluster members. On the other hand, 
members of the hsa-mir-216a/mir-217 cluster exhibited no 
substantial sensitivity or specificity.

Further, members of these three miRNA clusters were 
subjected to target prediction, miRNA-mRNA network 
construction, PPI network analysis, pathway enrichment, 
and molecular function analysis to gain more insights. The 

study plotted a functional enrichment analysis of 89 genes 
that were targeted by three miRNA clusters to illustrate 
their association with different cancer signaling pathways. 
Network genes were filtered based on the number of nodes, 
and the top 10 higher degree node genes were denoted 
as hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, 
KDR, NOTCH1, PTEN, and ZEB1). The GO term and 
KEGG pathway enrichment analysis results indicated that 
these hub genes were related to the classical cancer signal-
ing pathways. This includes previously defined p53, Ras, 
PI3K-Akt, and prolactin signaling. These pathways are 
closely correlated with proliferation, migration, invasion, 
and differentiation of the cancer cells (Sever and Brugge 
et al. 2015).

Following tissue-specific gene expression analysis from 
the GEPIA, GEO, and ULCAN datasets, the hub genes were 
shown to be considerably downregulated. The DNA pro-
moter methylation analysis showed that these hub genes are 
not hyper-methylated in BCa. We observed that CCND2, 
KDR, and ZEB1 genes are residing on the CNV gain region 
while FN1 and PTEN are on CNV loss. The combined effect 
of CNV loss and miRNAs binding might be downregulat-
ing FN1 and PTEN in BCa tissues. The target identification 
studies showed that 109 non-clustered miRNAs are also tar-
geting these 10 hub genes. However, the expression of these 
109 non-clustered miRNAs was not statistically significant 
or less expressed in BCa tissues when compared to the six 
clustered miRNAs (Supplementary Table S11). Hence, the 
integrated analysis hypothesizes that miRNA clusters resid-
ing on CNV gain regions are potential regulators for bladder 
cancer.

Tobacco smoking is one of the most important risk fac-
tors for BCa with an attributable risk of approximately 50% 
(Cumberbatch et al. 2016). Tobacco-rich compounds such 
as aromatic amines and N-nitroso can induce DNA damage 
in the form of double-strand breaks, base modifications, or 
bulky adduct formation (Stern et al. 2009). Recent studies 
have suggested the possibility of tobacco smoking-induced 
oncogenic or antioncogenic gene expression by miRNA reg-
ulation in BCa (Cumberbatch et al. 2018; Navratilova et al. 
2020). Hence, the analysis of the effect of recurrent genetic 
aberration in smoking and non-smoking groups of patients 
is essential. Considering this, BCa patients were grouped 
into five smoking categories (Lifelong Non-Smoker; Cur-
rent Smoker; Current Reformed Smoker > 15 Years; Cur-
rent Reformed Smoker ≤ 15 Years and Current Reformed 
Smoker; duration not specified) and expression analysis was 
performed. The members of mir-200c/mir-141 and mir-15b/
mir-16-2 showed significant upregulation in each category. 
In comparison, no significant category-wise difference in 
mir-216a/mir-217 expression was identified. With the excep-
tion of FN1, the expression of other hub genes was signifi-
cantly downregulated in all smoking groups.
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The upregulated hsa-mir-200c/mir-141 targeted six hub 
genes: ETS1, FN1, JUN, KDR, NOTCH1, and ZEB1; all of 
which were downregulated in BCa. However, cancer stage-
wise analysis showed decreased expression for hsa-mir-200c/
mir-141 from stages 1 to 4 (Supplementary Fig. 4). In BCa, 
cluster hsa-mir-200c/mir-141 is frequently overexpressed 
and associated with early-stage (T1) bladder tumors (Han 
et al. 2011). Martínez-Fernández et al. (2015), suggested 
that increased expression of polycomb group protein BMI1 
and EZH2 may contribute to the downregulation of hsa-
mir-200c/mir-141 in high-grade stage BCa tumors through 
transcriptional repression. Downregulation of hsa-mir-200c/
mir-141 leads to a subsequent upregulation of EMT promot-
ing transcription factors (ZEB1 and ZEB2) and thus favors 
the invasive behavior of the tumor cells and cancer progres-
sion (Martínez-Fernández et al. 2015). Overexpression of 
hsa-mir-200c/mir-141 showed an improved survival rate in 
BCa patients with high specificity and sensitivity, suggesting 
it as a potential marker for BCa diagnosis.

The hsa-mir-15b/mir-16-2 cluster targeted CCND2 
and FGF2 genes, were downregulated in BCa. The hyper-
activation of CCND2 is generally considered as increased 
oncogenic activity in various tumors (Takano et al. 1999, 
2000). Methylation of promoter region mediated silencing 
of CCND2 expression associated with a few cancer types 
progression is also reported (Evron et al. 2001; Wang et al. 
2016). In the current analysis, identified CCND2 is unmeth-
ylated and resides on the CNV gain region in the tested blad-
der carcinoma datasets. Hence, we strongly assume that 
the downregulation of CCND2 might be due to the aber-
rant overexpression of hsa-mir-15b/mir-16-2 in malignant 
tumors.

The detailed functional annotation revealed that hsa-mir-
216a/mir-217 targeted two hub genes (PTEN and JAK2), 
which act as tumor suppressors in numerous cancers (Qian 
et al. 2011; Lu et al. 2016). Studies have been reported that 
miRNAs can perform an oncogenic role by suppressing 
the function of PTEN in BCa (Feng et al. 2014), and the 
PTEN gene found to be associated with the CNV loss region. 
Therefore, the actual mechanism behind the downregula-
tion of PTEN genes needs to be further investigated. Col-
lectively, these findings strongly suggest that CNV driven 
overexpressed clustered miRNAs play an important role in 
regulating BCa signaling genes.

Resistance to treatment is one of the key problems 
associated with BCa patient survival. According to recent 
reports, miRNAs can also play a crucial role in the chemo-
resistance mechanism in BCa (Senfter et  al. 2016; Cai 
et al. 2019). Using drug–gene interaction analysis, we have 
identified 20 potential FDA-approved drugs interacting 
with miRNA clusters and their targeted genes in BCa. The 
PanDrugs drug–gene interactions analysis suggests that 
molecular alterations in the NOTCH1 gene are associated 

with high sensitivity to methotrexate (MTX). The MTX 
is commonly used as an anti-metabolite and chemother-
apy for several cancer types (Hagner and Joerger 2020). 
High expression of Notch signaling genes has a vital role 
in many tumor cell’s resistance to methotrexate, while its 
downregulation increases drug sensitivity (Ma et al. 2013; 
Zhao et  al. 2020). In the analysis of therapy responder 
and non-responder patients, we observed an upregulated 
expression of NOTCH1 in progressive and stable disease 
groups. Interestingly, in the disease progression group, the 
mir-200c/mir-141 was slightly downregulated. It suggests 
that the expression of mir-200c/mir-141 and NOTCH1 is 
inversely correlated. Also, in the partially responded group, 
NOTCH1 expression was downregulated. Hence, we assume 
that has-mir-200c/mir-141 cluster has a regulatory impact on 
NOTCH1, which may sensitize BCa cells to methotrexate.

In this in silico study, we have demonstrated the relation-
ship between recurrent CNVs gain and their effect on the 
upregulation of miRNA clusters in BCa. The BCa stage-wise 
expression pattern of miRNA cluster candidates of has-mir-
200c/mir-141 and hsa-mir-15b/mir-16-2 showed a distinct 
signature to differentiate healthy individuals from malignant 
phenotypes. These miRNA signatures can be used as poten-
tial prognostic BCa markers and cancer treatment. Collec-
tively, the miRNA clusters upregulated by CNV gain may 
downregulate several cancer signaling genes and sensitize 
cancer cells to methotrexate.

Here, we report the first version of CmiRClustFinder, a 
computational pipeline that integrates multi-omics datasets 
such as CNV, miRNA, and gene expression to infer CNV 
driven clustered miRNAs from the TCGA cancer types. The 
CmiRClustFinder can be effectively utilized to identify novel 
miRNA biomarkers for various cancer types.

Conclusion

Multi-omics approaches provided a large volume of genetic 
data for life science knowledge discovery. The study ana-
lyzed clustered miRNAs residing on CNV regions and devel-
oped an automated pipeline for the integrated data analysis. 
The integrated CNV-miRNA clusters data analysis identified 
61 miRNA clusters (consisting of 153 miRNAs) residing 
on the CNV gain/loss region. The CNV driven, three prog-
nostically significant miRNA clusters (hsa-mir-200c/141, 
hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) showed 
2–fivefold increased expression in bladder cancer. Further, 
hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 clusters 
showed stage-wise difference in cancer progression. Inter-
estingly, these clustered miRNAs targeted top 10 hub genes, 
the expression of which was downregulated in BCa tissues. 
Functional annotation indicates these hub genes have a key 
role in BCa and significantly impact patient survival and 
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diagnosis. Hence, we hypothesize that these dysregulated 
clustered miRNAs can be used to screen bladder cancer pro-
gression as a potential diagnostic and prognostic indicator. 
Moreover, our integrated in silico results highlight a poten-
tial therapeutic application of clustered miRNA-based thera-
pies for bladder cancer. The integrated analysis observed 
silencing of NOTCH1 by mir-200c/mir-141 improves meth-
otrexate treatment and could benefit the BCa patient’s sur-
vival. The CmiRClustFinder pipeline can be used to identify 
novel clustered miRNAs to diagnose various cancer types.
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