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Abstract: We present results showing the capability of concrete-based information processing sub-
strate in the signal classification task in accordance with in materio computing paradigm. As the
Reservoir Computing is a suitable model for describing embedded in materio computation, we pro-
pose that this type of presented basic construction unit can be used as a source for “reservoir of
states” necessary for simple tuning of the readout layer. We present an electrical characterization
of the set of samples with different additive concentrations followed by a dynamical analysis of
selected specimens showing fingerprints of memfractive properties. As part of dynamic analysis,
several fractal dimensions and entropy parameters for the output signal were analyzed to explore
the richness of the reservoir configuration space. In addition, to investigate the chaotic nature and
self-affinity of the signal, Lyapunov exponents and Detrended Fluctuation Analysis exponents were
calculated. Moreover, on the basis of obtained parameters, classification of the signal waveform
shapes can be performed in scenarios explicitly tuned for a given device terminal.

Keywords: concrete; memristors; chaos; reservoir computing; signal classification

1. Introduction

The upcoming era of the Internet of Things may require an energy-efficient pre-
processing of signal in order to relieve microprocessors, especially in the case of relatively
simple and routine processes. This part of computation can be delegated to solid state
computational platforms based on materials, which are not associated with computation,
e.g., various construction materials and other parts of the infrastructure. Here, we present
a new approach towards unconventional in-materio computation using one of the most
ubiquitous materials—Concrete. Small concrete blocks, containing admixtures of dopants
(at micro and nanoscale) are demonstrated to present significant computational power to
differentiate various waveforms utilizing the principles of reservoir computing. Complex
dynamic response of concrete (doped and undoped) can be utilized for computation, and
conversely—The dynamic response to known waveforms can be also used for detection of
concrete defects, which, in far-fetched vision, can be used for self-monitoring of concrete
structures and prevention of fatal accidents.

In developed countries, technology begins to encompass more and more aspects of
life. Approximately 87% of humanity has access to electricity, according to the International
Energy Agency [1]. In turn, less than half of the population has continuous access to the
Internet [2]. Both these percentages increase every year, indicating progressing technologi-
cal advancement of the human race. Nowadays, a technology that surrounds people with
devices connected to the Internet—So-called Internet-of-things (IoT)—is beginning to gain
increasing recognition [3]. It can take the form of “smart home”, with connected home
appliances, heating, lighting, and wearables of inhabitants with a smartphone or smart
speakers in an attempt to increase comfort and security of human life (e.g., in the form of
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“elder care”). Other applications of IoT include healthcare, transportation, manufacturing,
agriculture, or the military. The global market for IoT was valued at 164 mld $ in 2018 [4]
and it is predicted that the global market of “smart homes” can reach 58 mld $ in 2020 [5].
At the same time, broadband access to the Internet as well as processing and storage of
huge amount of data is extremely important. Fast information processing and storage,
however, is an extremely energy-demanding technology. Therefore, at least some of the
data processing should be delegated into substrates other than silicon, operating much
slower, but at the same time consuming less energy. Alternatively, the waste heat produced
during computing can be utilized for heating purposes in colder seasons. This may help to
reduce the carbon footprint of computing, which nowadays accounts for 3.2% of the total
anthropogenic carbon dioxide emissions [6].

Combination of ideas of in materio computing [7–11] and smart houses [12–15] im-
mediately leads to the concept of computational concrete—Smart material combining
construction and information processing features. If successful, such material should
render each building an energy-efficient supercomputing device. What if walls would
not only support the roof, but at the same time perform advanced, decentralized, and
distributed computation? Each building block would sense itself and the environment,
monitor safety of the construction, environmental pollution, and interact with humans in
an intelligent way. This far-fetched vision has been already proposed and supported with
some preliminary experimental and theoretical investigations [16]; however, long-term
changes in concrete-based materials, which may lead to significant changes in electric prop-
erties of this material, should be taken into account in the case of out-of-lab applications.
The selection of concrete as a computational medium seems shocking at the first glance.
On the other hand, various unorthodox substrates have been already reported to perform
advanced computation, including liquid marbles [17,18], slime molds [19,20], mycelia and
fungi [21,22], algae [23], and photochromic solutions [24,25]. In principle, any physical
system of sufficiently complex, structure, dynamics, and responsiveness to external stimuli
can be utilized for information processing [26,27]. Because of the above, the choice of con-
crete as a ubiquitous computational medium seems reasonable. Furthermore, concrete is
easily and readily prepared and fabricated in all sorts of shapes and structural systems. Its
great simplicity lies in the fact that its constituents are ubiquitous and are readily available
almost anywhere in the world. As a result of its ubiquity, functionality, and flexibility, it
has become by far the most popular and widely used construction material in the world.
It is particularly suitable for nano- or micro-modifications due to its peculiar internal
structure. The ingredients can be selected, proportioned, and engineered to produce a
concrete of specific strength and durability or other multifunctional properties, so it is “fit
for purpose” for the job for which it is intended [28]. It can be produced in the form of
precast products or as ready-mixed concrete, which is delivered in the familiar rotating
concrete lorry. Currently, ingredients are optimized to make concrete strong, light-weight,
low-thermally conductive, and durable when exposed to the environment. However new
investigations are focused on concrete with embedded sensing [29–33].

Current IoT technology includes a broad set of topics such as sensors, embedded
systems and machine learning (ML). ML methods can be used to improve the performance
and security of intelligent infrastructure through the prediction of inhabitants’ actions
based on their daily behavior [34,35]. This is realized by advanced network systems and
software implementation of ML, whereas the building structure acts only as a skeleton
to ensure its durability and insulation. Through the use of efficient ML methods, such as
Reservoir Computing (RC), it becomes possible to develop intelligent infrastructure based
on the building blocks capable of embedded, distributed information processing [16].

RC paradigm can be regarded as an extension of artificial neural networks (ANN)
encompassing in its framework various physical substrates and processes [36–38]. Its main
strength is the so-called “reservoir of states” possessing rich configuration state space of
internal dynamics and performing nonlinear transformation of input signals. Thanks to its
operation, simplification of the training process of ANN can be achieved, as probing of a
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reservoir at the readout layer is the only part of the system that needs tuning [39,40]. Prob-
ing different features of the reservoir can enable the implementation of pattern recognition,
assuming that the given configuration state space is diverse enough [41].

It has been shown by Wlaźlak et.al. that a pure hardware RC system based on a single
memristive nonlinear node operating in the delayed feedback loop can be used in the
simple classification of signal amplitudes [42,43]. A more complex RC setup based on
memristor array (supporting reservoir of states) with ANN software readout was studied
as an image recognition system [44] and similar systems were considered for waveform
recognition [45]. Therefore appropriate doping, which can induce memristive properties in
concrete-based materials is desired. In our recent work, we have suggested the possibility
of implementing RC concepts based on hybrid construction material—A “computing
concrete” based infrastructure, that could potentially work as a massively interconnected
parallel processor [16]. This assumption was drawn on the basis of rich and nonlinear
responses of the device to the electrical stimulation. It was theorized that highly nonlinear
response arose due to many different pathways for charge carriers and superimposition
of capacitive behavior of the device with internal ionic movement. Buildings based on
this type of embedded hardware could then possess multisensory properties and support
forms of information processing.

This work is aimed at a demonstration that concrete, the most ubiquitous construction
material can be used as a computational medium. While semiconducting materials, carbon
nanomaterials and various polymers definitely offer better performance [46–48], concrete
is the most ubiquitous construction material; therefore, despite very limited computational
performance, it may be explored and ultimately utilized for some computational tasks. The
inherent randomness of concrete seems to be a severe drawback, but materials with a certain
degree of irreproducibility can be also studied as a computational medium [49]. Due to
limited memristive properties and rather poor internal electrical dynamics, computational
tasks in doped concrete can be performed only under a heterotic approach—in materio
computation must be accompanied by advanced signal analysis using a conventional,
software-based approach. Nevertheless, concrete proves to be a useful computational
medium capable of basic signal classification.

2. Materials and Methods

The base material used in this experiment was ready-to-use concrete mix procured
from Leroy Merlin and steel shavings supplied by POCh (Gliwice, Poland). Antimony
sulfoiodide nanowires (SbSI) were synthesized in the following procedure. The reactants
weighed and added in a ratio of 1 g Sb, 0.265 g S, and 1 g I2. All reactants were mixed
in a 100 mL flask using 50 mL isopropanol as a solvent. The whole was placed in the
ultrasonic bath previously heated to 50 ◦C for 6 h. The resulting product was isolated by
centrifugation at 5000 rpm and washed three times with isopropanol and 2-fold with water
after that product was left to dry.

The reference sample consisting of only concrete, as well as modified samples ad-
ditionally containing 1%, 5%, and 10% of either SbSI, steel shavings, or half and half
mixture by weight of both, were created using the following steps. In the bottom of a
plastic container, holes 1cm apart were made, creating a 3 × 3 grid. Those holes served as
an insertion point for silver wires that would go through the bulk of the material. After
preparing the mold, the material was poured in. The whole was firmly shaken to remove
pockets of air and allow content to settle within the container. Water was poured until all
concreate was sufficiently saturated. Excessive water was drained through entry points
of silver wires. The whole was repeatedly shaken to remove any air bubbles that might
have appeared. The samples were left to settle and dry at ambient temperature for a
week (Figure 1). Samples have been stored and measured in an air-conditioned room with
constant temperature (22 ◦C) and humidity (25%) in order to prevent excessive drying or
accumulation of moisture.
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View Tek, Shenzhen, Guangdong, China) to two chosen terminals of the sample as indi-
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Figure 1. Schematic view of the computing concrete sample (a), pinouts for voltammetric (left) and
signal processing experiments (b) and a real photo of an experimental setup (c). WE and CE stands
for working and counter electrodes, respectively. IN1 and IN2 are signal input connectors, OUT1 and
OUT2 output ones, GND is a common ground.

Voltammetric and spectroscopic measurements were performed on SP-300 potentiostat
(BioLogic, Seyssinet-Pariset, France). Cyclic voltammetry was measured in a −5 V/5 V po-
tential window with a scan rate of 100 mV/s. Electrochemical impedance spectroscopy (EIS)
was measured in the 7 MHz–100 mHz frequency window, with 50 mV AC perturbation.

To perform signal mixing in the computing concrete system, two separate arbitrary
signals from a dual-channel arbitrary waveform generator (TG5012, Aim-TTi, Hunting-
don, Cambridgeshire, UK) were applied via the WA301 waveform amplifier (Aim-TTi,
Huntingdon, Cambridgeshire, UK) and impedance matching baluns (1VP-C, Top-View
Tek, Shenzhen, Guangdong, China) to two chosen terminals of the sample as indicated
in Figure 1. One channel was tuned to 300 Hz with a sinusoidal wave shape, whereas
the second channel was tuned to 290 Hz, 280 Hz, and 275 Hz with three different wave
shapes for each of these frequencies (sinusoidal, triangular, and square). Application of
symmetrical AC signals is crucial, as any DC component of potential higher than that of
water electrolysis (approximately 1.23 V) may lead to irreversible changes in the material,
even lower DC components may result in electrode corrosion. In that scenario, the sinu-
soidal signal could be perceived as a base probing signal to classify the second signal of
unknown shape in a classification task. Both signals were 10Vpp in amplitude. Processed
waveforms were recorded on a digital oscilloscope (DSO-X2014A, Agilent Technologies,
Santa Clara, CA, USA). Examples of recorded time series are shown in Figures S1 and S2
(Supplementary Materials).

Signals recorded at OUT1 terminal were of higher quality, less scattered and were used
for further processing. Only in one case (Petrosian fractal dimension), the OUT2 signals
were used along with OUT1 ones. Signal processing and analysis were performed in Python
(Python Software Foundation, Beaverton, OR, USA). Nolitsa module was used for the time
delay (Delayed Mutual Information method) and embedding dimension (False Nearest
Neighbors and Average False Neighbors) estimation. By using Nolds (Python module for
nonlinear dynamics study) Correlation Dimension, maximum Lyapunov exponent and
Detrended fluctuation analysis (DFA) scores were calculated. Further study of dynamical
parameters (Petrosian and Katz fractal dimensions, as well as sample and approximate
entropy) was performed using the EntroPy Python module for a one-dimensional time
series analysis. All analysis was carried out for normalized time series.

3. Results

Initially, all obtained samples have been characterized with cyclic voltammetry within
±5 V window. All samples have shown moderate conductivity and currents up to 2.5 mA
have been recorded for samples doped with both semiconducting nanowires and metal
shavings (Figure 2). It was found that undoped concrete, as well as concrete with low
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content of any dopant, shows a predominant capacitive hysteresis loop (characteristic for
ferroelectric materials) [50–53] superimposed on Ohmic current. This behavior should
be expected for mixed oxide materials [54,55]. The strongest features characteristic for
ferroelectric materials has been observed in the case of 10% of SbSI admixture, which is
fully consistent with pronounced ferroelectric properties of this material [56–58], but this
non-ideal capacitive behavior was observed in the majority of cases, the complex character
of I/E curves may be interpreted in terms of mixed ferroelectric/antiferroelectric character
of studied samples [59]. In light of the complex chemical and phase structure of samples,
this may be fully justified.
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Figure 2. Voltamperometric characteristics of undoped concrete sample (top, dark green) and
concrete containing various amounts of dopants: M—Metal shavings, S—Antimony sulfoiodide
nanowires, SM—1:1 mixture of both dopants. Some samples show pinched hysteresis loops typical for
memristive devices (red) whereas the others are of capacitive character (blue). The most pronounced
memristive behavior was observed in the case of 10% SM sample, highlighted in yellow.

Detailed analysis of these phenomena is, however, out of scope of this study. In just
few cases memristive behavior was observed, with the most pronounced resistive switching
in the case of 10% SM sample (Figure 2). Therefore, this combination of both dopants was
selected for further investigations and for the reservoir computing experiments.

Capacitive properties of selected samples were further addressed using impedance
spectroscopy. The junction capacitances are low, which can be seen as a decrease of
impedance at high frequency region. This effect is less pronounced for doped materials.
Moreover, it was found that the Ohmic component increases with increasing concentration
of the dopant (Figure 3a). Furthermore, undoped concrete show relatively high phase shift
angle at low frequencies (Figure 3b), which can be associated with a Warburg impedance
related to a slow diffusion process within a ceramic matrix. Increasing concertation of
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dopant reduces this contribution because other transport mechanisms start to dominate
(Figure 3c).
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Figure 3. Impedance spectra of undoped and metal+semiconductor doped concrete samples: Nyquist plot (a) phase
shift angles (b) and Bode plots (c). A simplified equivalent circuit is also shown. The linear Warburg component at low
frequencies is visible only in the case of the undoped sample, whereas increased doping is correlated with a decrease of
impedance results as well as with significant curvature of the low-frequency arm in Nyquist plots.

Based on registered signals (Figures S1 and S2), further information processing and
analysis were performed based on several methods mentioned vide supra. Due to the lack
of control over the spatial arrangement of 3d semiconductor/metallic grains suspended
in a cement matrix, geometric change of the place from which we read the signals also
changes to some extent the calculated parameters. For this reason, the signal readout layer
must be properly calibrated to enable signal classification.

3.1. Estimation of Time Delay and Embedding Dimension Parameters

At first, Augmented Dickey–Fuller (ADF) test was calculated to check data stationarity.
Results show that for a sample size T = 500 the critical values were not exceeded in any
case, the highest p-value was obtained for sin/square pair (no more than 1.25%), which
means that the null hypothesis can be rejected (that the data possess “unit root” —the
presence of stochastic trend) and the time series are in fact stationary [60].

According to the Taken’s theorem (which was also shown independently by Packard
et al. [61]), single time series can be used to reconstruct so called “delay-coordinate map”
based on chosen displacement (time delay) [62–64]. Reconstructed attractors possess the
same mathematical properties (e.g., Lyapunov exponents, fractal dimensions of the attrac-
tor or eigenvalues of a fixed point) as the original manifolds of a given dynamical system
(usually obtained on the basis of a set of ordinary differential equations). It comes down to
the proper selection of a set of the adjacent coordinates with an equal time offset between
them. Classical methods of determining the time delay measure the independence of subse-
quent points in the phase space. Basically, for infinite, noise-free time series, the selection of
time delay can be chosen almost arbitrary [62], but for experimental data, it is good practice
to determine its appropriate value. The time delay for the unfoldment of the attractor
was estimated using the Delayed Mutual Information (DMI) [65] and Autocorrelation
methods [64]. By applying information theory (for which Shannon provided mathematical
formalism [66]) to strange attractors, we can quantify the degree of “surprise” new message
provides—in the case of attractors these messages are in the form of values given attractor
will take during measurement. The DMI method is based on the quantitative approach
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to uncertainty about time delayed coordinates given the measure of a chosen coordinate.
The first minima of calculated functional of joint probability distribution indicates the
suitable τ value (Figure 4a). In turn, the first zero of the autocorrelation function gives
proper time delay. The autocorrelation method yields the most suitable delay value of
three, whereas the DMI method, which is more reliable, yields τ = 4. To inspect the validity
of the calculated τ value, several delay times were used to reconstruct attractors in the
phase space for a randomly selected data set (Figure S3). It can be observed, that τ = 4
is optimal for the unfoldment of the attractors. It is good practice to choose the smallest
time delay required, to avoid phenomena called the irrelevance and redundancy [64,67].
Irrelevance occurs when the reconstructed attractor folds over on itself thus making it more
complicated than the original manifold, whereas redundancy means the concentration
of attractor shape on the diagonal set. The plot of delayed mutual information versus
time delay (Figure 4a) clearly indicates significant chaotic character of all recorded time
series with a contribution of a stochastic component. These curves present oscillatory
character (fingerprint of chaotic character) and a steep slope as small τ values (stochasticity
fingerprint) [68].
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Based on a calculated time delay, time-delay embedded trajectories have been plotted
(Figures S4 and S5) [68]. On both sets of trajectories, highly complex system dynamics can
be observed. Frequency ratio of applied stimulation influences irregularities in observed
traces, which is represented in beats present in the waveforms (Figures S2 and S3) and
recurring decimal in these frequency ratios. For 300 Hz/290 Hz, recurrence of decimal
place is observed for 28 digits, for 300 Hz/280 Hz for seven digits and for 300 Hz/275 Hz
frequency ratio for two digits. The attractors are more regular for the cases where there is
a smaller number of periodic digits, as well as for a smaller period of observed beats in
the registered waveforms. Moreover, with the progressive deviation from the shape of the
basic sinusoidal signal, more and more irregular trajectories can be observed (which may
be associated with a greater number of harmonic components of the triangular and square
wave signals).

In order to analyze the nonlinear dynamics of the recorded time series, the appropriate
embedding dimension was determined using the False Nearest Neighbor (FNN) method
proposed by Kennel et. al. [69] (Figure 4b) and the Average False Neighbors (AFN) method
proposed by Cao [70] (Figure 4c). The FNN method tests whether neighboring points of
a specific trajectory in a given embedding dimension are actually neighbors due to the
system dynamics or whether they are next to each other only because of the insufficient
dimensionality of the phase space. By examining how the number of neighbors changes
as a function of dimension, one can determine the appropriate embedding dimension for
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further analysis. To check the percentage of false neighbors relative to real neighbors, three
criterions are used—the first criterion increases the embedding dimension and tests the
ratio of Euclidean distance between pairs of points compared to the distance between
points with previous embedding dimension value, the second criterion compare relation
between reconstructed attractor in higher dimensions and its original size, whereas the
third criterion uses both previous tests. Both criteria are compared to a heuristically chosen
threshold, values of which are suggested in the original work of Kennel et al. The second
condition tries to eliminate the situation where the limited amount of data and the noise
present in them causes that the points that are not next to each other are treated as neighbors.
To overcome possible problems with choosing proper threshold values in FNN test, Cao
proposed his modified FNN method, called AFN or Cao’s test. The main difference is
that instead of calculating relative distance ratios separately, a mean value of all of these
distances is analyzed between a subsequent increase of embedding dimension (E1(d) in
Figure 4c). Cao further defines another testing criterion (E2(d) in Figure 4c), where ratio
of mean distances between subsequent embedding dimensions is calculated for the time
delayed one dimensional time series and not for reconstructed vectors as in E1(d) criterion.
Previously estimated time delay from DMI and autocorrelation methods was used to form
time delayed vectors needed in FNN and AFN methods.

FNN results show that the number of false neighbors for all test criteria drops to 0%
starting from the embedding dimension of 4 (Figure 4b). This outcome is consistent with
the results obtained by the AFN method, where both criteria—E1 and E2—reach saturation
starting from the same embedding dimension as in the one indicated in the FNN test
(Figure 4c). For this reason, further analysis of nonlinear dynamics was made using the
embedding dimension of 4. For a practical reason, however, the trajectories are depicted
for embedding dimension of 3 (Figures S4 and S5). These figures can be considered as 3D
projections of 4D trajectories obtained by the removal of the fourth coordinate.

The complex character of the recorded time series was further characterized with non-
linear dynamics methods (largest Lyapunov exponent), self-similarity methods (detrended
fluctuation analysis, fractal dimensions), and disorder-based methods: dynamic (sample
entropy) and structural (permutation entropy) entropy-based methods [71].

3.2. Analysis of Non-Linear Dynamics

Lyapunov exponents are one of the main indicators of chaos in the study of data
possessing non-linear properties [72–74]. It probes the rate of divergence of concomitant
trajectories in phase space. The exponential rate of divergence of two chaotic trajectories
can be described as follows [75] Equation (1):

∆(t) ∼ ∆0eλt (1)

where λ is the Lyapunov exponent, and ∆0 is the initial separation vector. Due to differences
in initial conditions based on a given separation vector, one can obtain a spectrum of
Lyapunov exponents. It is common to refer to the largest one as the Maximum Lyapunov
exponent (MLE) that is used to probe the predictability and stability of the given data
sample. To characterize trajectory instability, MLE can be defined as follows Equation (2):

λ = lim
t→∞

lim
∆0→0

1
t

ln
∆(t)
∆0

(2)

Positive MLE strongly indicates the chaotic nature of system dynamics, especially the
sensitivity to the initial conditions, which is known as the “Butterfly effect” [76]. Calculated
MLE shows, that for seven cases, an un-doped sample presents chaotic behavior (positive
MLE) in registered waveforms. In contrast, the doped sample exhibits chaotic behavior
in five cases overall (Figure 5a). This is generally consistent with the delayed mutual
information dependence on a time delay (Figure 4a), which also indicates chaotic features
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of the recorded time series. An overall increase of MLE can be observed for sine waveforms,
whereas an overall decrease in MLE is present for the square wave shapes.
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Detrended Fluctuation Analysis (DFA) is a method for determining the statistical
self-affinity of a signal [77,78]. Self-affinity can be regarded as a property of a fractal time
series [79]. Using this parameter, one can easily distinguish whether the stimulated sample
was doped or not (Figure 5b). Results indicate correlated (α > 0.5) and anti-correlated
(α < 0.5) character of the registered time series for undoped and doped samples respectively.
Both scaling factors α lie between 0 and 1, indicating the stationary character of the time
series (in accordance with ADF results, vide supra). Furthermore, those results indicate the
presence of memory in registered time series, [77] which is consistent with the presence of
measured memristive traces. The anti-correlated character of time series registered from
doped samples may originate from the possibility of flipping resistive state, observed in
CV measurements (Figure 2).

Another parameter used in the study of chaotic and dynamical systems is the correla-
tion dimension (ν) [80]. It is used to probe dimensionality of the space occupied by a set of
random points and is often referred to as a type of fractal dimension. For time series of
points described as Equation (3):{

−−→
X(i)

}
i=1

≡
{
−−−−−−→
X(t + iτ)

}
i=1

(3)

where τ is arbitrary, but fixed time increment. The correlation integral is defined as
Equation (4):

C(r) = lim
N→∞

1
N2

N

∑
i,j=1

Θ

(
r−

∣∣∣∣∣−−→X(i) −
−−→
X(j)

∣∣∣∣∣
)

(4)

where Θ(X) is a Heaviside step function. For small number r, correlation integral behaves
according to a power law, Equation (5):

C(r) ∼ rv (5)

where v is interpreted as a fractal dimension [80,81]. As can be seen in Figure 5c, the
change of correlation dimension is strongly correlated with the shape of mixed signals. The
correlation dimension is only shifting downwards for the mixing of sin/sin signals, only
upwards for triangle signals, whereas for square (280–290 Hz) it shifts downwards and
for 275 Hz v shifts upwards. Based solely on this fact, classification of signal shape can be
performed (overall v decrease: sine, overall v increase: triangle, mixed v trend: square).
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3.3. Classification of a Waveform on the Basis of the Decision Tree Method

As was already mentioned, changing the readout terminal influences obtained dy-
namical parameters. With this change, analysis of obtained parameters allows for different
classification scenario. Analysis of Sample Entropy [82,83] and fractal dimensions (vide
infra) gives an alternative approach towards signal classification. Sample entropy is a
technique used for probing regularity/complexity (unpredictability of fluctuations) of time-
series signals. It possesses desirable characteristics in the form of data length independence
and relatively trouble-free implementation. It is defined as a negative natural logarithm of
conditional probability between distances of two sets of points taken from template vector
which acts as a representation of a given data sample.

For time series, Equation (6):

N = {x1, x2, x3, . . . , xN ,} (6)

the template vector takes a form of Equation (7):

Xm(i) = {xi, xi+2, xx+2, . . . , xi+m−1,} (7)

where m is embedding dimension. Based on this, sample entropy can be described as
Equation (8):

SS = − ln
A
B

(8)

where A and B are numbers of template vector pairs having distance (d[Xm+1(i), Xm+1(j)]
and d[Xm(i), Xm(j)], for A and B, respectively) lower than given tolerance r (which is taken
as a factor of standard deviation).

If analyzed data is ordered, then templates for m points are also similar for m+1 points,
and A/B approaches unity [83]. In that case, the negative logarithm will approach 0. Results
show, that in most cases (Figure 6a, apart from 300 Hz/290 Hz sin-square), obtained time
series are more ordered for doped sample, which may be associated with less noise present
in the signal (cf. Figures S1 and S2).

Materials 2021, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. A set of dynamics indices for recorded time series. Sample entropy for different input frequencies/waveforms 
(a). Permutation entropy for different input frequencies/waveforms combinations (b). Values of Katz fractal dimension 
score for doped and un-doped sample different input frequencies/waveforms (c). Arrows indicate the direction of 
changes upon doping. 

Trends observed in sample entropy changes (Figure 6a) do not allow unambiguous 
classification of waveforms, therefore other criteria must be used in parallel. 

Permutation entropy is considered as a natural measure of time series complexity 
via reconstruction of a phase space of any dynamic system [84,85]. Here it was calculated 
according to Yan et al. [86] according to the Takens–Maine theorem. The phase space of 
a time series  {𝑥𝑥(𝑖𝑖), 𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁} can be reconstructed as Equation (9): 

⎩
⎨

⎧
X(1)={x(1),x(1+τ),…,x(1+(m-1)τ)}

…
X(i)={x(i),x(i+τ),…,x(i+(m-1)τ)}…

X(N-(m-1)τ)={x(N-(m-1)τ),x(N-(m-2)τ),…,x(N)}

 (9) 

where m is the embedded dimension and τ is the time delay. Then, the m number of real 
values contained in each 𝑋𝑋(𝑖𝑖) can be arranged in an increasing order as Equation (10): 

{𝑥𝑥(𝑖𝑖 + (𝑗𝑗1 − 1)𝚤𝚤) ≤ 𝑥𝑥(𝑖𝑖 + (𝑗𝑗2 − 1)𝚤𝚤) ≤ ⋯ ≤ 𝑥𝑥(𝑖𝑖 + (𝑗𝑗𝑚𝑚 − 1)𝚤𝚤)} (10) 

If there exist two or more elements in 𝑋𝑋(𝑖𝑖)  that have the same value, e.g., 
𝑥𝑥(𝑖𝑖 + (𝑗𝑗1 − 1)𝚤𝚤) = 𝑥𝑥(𝑖𝑖 + (𝑗𝑗2 − 1)𝚤𝚤) , their original positions can be sorted in such a way 
that for 𝑗𝑗1 ≤ 𝑗𝑗2 the relation 𝑥𝑥(𝑖𝑖 + (𝑗𝑗1 − 1)𝚤𝚤) ≤ 𝑥𝑥(𝑖𝑖 + (𝑗𝑗2 − 1)𝚤𝚤) will be obtained. Hence, 
any vector 𝑋𝑋(𝑖𝑖) can be mapped onto a group of symbols, Equation (11): 

𝑆𝑆(𝑙𝑙) = (𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑚𝑚) (11) 

where l = 1, 2, …, k ≤ m!. 𝑆𝑆(𝑙𝑙) is one of the m! symbol permutations, which is mapped 
onto the m number symbols (𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑚𝑚) in m-dimensional embedding space. If P1, P2, 
…, Pk are used to denote the probability distribution of each symbol sequences, respec-
tively, and the condition described by Equation (12): 

∑ 𝑃𝑃𝑙𝑙 = 1𝑘𝑘
𝑙𝑙=1   (12) 

is fulfilled, the permutation entropy of a time series {𝑥𝑥(𝑖𝑖), 𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁} can be de-
fined as a Shannon entropy for the k symbol sequence, Equation (13): 

𝑆𝑆𝑝𝑝(𝑚𝑚) = −∑ 𝑃𝑃𝑙𝑙 ln𝑃𝑃𝑙𝑙𝑘𝑘
𝑙𝑙   (13) 

As the maximum value of 𝑆𝑆𝑝𝑝(𝑚𝑚) for a uniform probability distribution is equal to 
ln𝑚𝑚!, it is usually given as a normalized value, Equation (14): 

𝑆𝑆𝑝𝑝(𝑚𝑚) =
−∑ 𝑃𝑃𝑙𝑙 ln𝑃𝑃𝑙𝑙𝑙𝑙𝑘𝑘

𝑙𝑙

ln𝑚𝑚!
 (14) 

Figure 6. A set of dynamics indices for recorded time series. Sample entropy for different input frequencies/waveforms
(a). Permutation entropy for different input frequencies/waveforms combinations (b). Values of Katz fractal dimension
score for doped and un-doped sample different input frequencies/waveforms (c). Arrows indicate the direction of changes
upon doping.

Trends observed in sample entropy changes (Figure 6a) do not allow unambiguous
classification of waveforms, therefore other criteria must be used in parallel.

Permutation entropy is considered as a natural measure of time series complexity
via reconstruction of a phase space of any dynamic system [84,85]. Here it was calculated
according to Yan et al. [86] according to the Takens–Maine theorem. The phase space of a
time series {x(i), i = 1, 2, 3, . . . , N} can be reconstructed as Equation (9):
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X(1) = {x(1), x(1 + τ), . . . , x(1+(m− 1)τ)}

. . .
X(i) = {x(i), x(i + τ), . . . , x(i+(m− 1)τ)}

. . .
X(N−(m− 1)τ) = {x(N−(m− 1)τ), x(N−(m− 2)τ), . . . , x(N)}

(9)

where m is the embedded dimension and τ is the time delay. Then, the m number of real
values contained in each X(i) can be arranged in an increasing order as Equation (10):

{x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ . . . ≤ x(i + (jm − 1)τ)} (10)

If there exist two or more elements in X(i) that have the same value, e.g., x(i + (j1 − 1)τ) =
x(i + (j2 − 1)τ) , their original positions can be sorted in such a way that for j1 ≤ j2 the
relation x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) will be obtained. Hence, any vector X(i) can be
mapped onto a group of symbols, Equation (11):

S(l) = (j1, j2, . . . , jm) (11)

where l = 1, 2, . . . , k≤ m!. S(l) is one of the m! symbol permutations, which is mapped onto
the m number symbols (j1, j2, . . . , jm) in m-dimensional embedding space. If P1, P2, . . . , Pk
are used to denote the probability distribution of each symbol sequences, respectively, and
the condition described by Equation (12):

∑k
l=1 Pl = 1 (12)

is fulfilled, the permutation entropy of a time series {x(i), i = 1, 2, 3, . . . , N} can be
defined as a Shannon entropy for the k symbol sequence, Equation (13):

Sp(m) = −∑k
l Pl ln Pl (13)

As the maximum value of Sp(m) for a uniform probability distribution is equal to
ln m!, it is usually given as a normalized value, Equation (14):

Sp(m) =
−∑k

l Pl ln Pl l

ln m!
(14)

The values of permutation entropy serve as a measure of time series randomness.
Smaller values indicate less chaotic behavior whereas values approaching the unity indicate
highly chaotic behavior and thus unpredictability of time series. These data suggest that
time series recorded for sine and triangle waveforms are significantly more ordered (i.e.,
less chaotic) than those for square waves, which may be utilized as a classification tool
(Figure 6b).

Analysis of Petrosian [87] and Katz fractal dimensions [88] allows a different approach
for signal classification. Katz fractal dimension (DK) calculates the fractal dimension of
data directly from the waveforms without the need for their abstract representation. It is
defined as Equation (15):

DK =
log10 n

log10
d
L + log10 n

(15)

where d is calculated fractal dimension, n = L/a (n is used for normalization of distances
—L is the total sum of lengths of the successive points, and a is averaged distance between
successive points) and d is the maximum distance between the first point and any other
point within the data set. DK is known to overestimate probed fractal dimension, hence
large differences in obtained DK and correlation dimension scores [89]. Figure 5c shows
calculated Katz fractal dimensions of attractors for various waveform and frequency
combinations.
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Another approach in probing fractal dimension of time series was suggested by
Petrosian [87]. Petrosian fractal dimension (DP) is calculated for binarized time series. It is
defined as follows in Equation (16):

DP =
log10 N

log10 N + log10
N

N+0.4Nδ

(16)

where N is the length of the time series, and Nδ is the number of sign changes in the signal
derivative. It can be observed in Figure 7, that Petrosian fractal dimensions increase in the
series sine<triangle<square for both output signals and both materials. There is, however,
a significant change in the undoped/doped difference, as indicated by black arrows in
Figure 7.
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4. Discussion

Each individual dynamics index cannot serve as a reliable classification index for
waveform discrimination. Therefore, observed trends, taken collectively, constituted a
set of criteria that can be used for waveform discrimination on the basis of the signal
dynamics in pristine and heavily doped concrete blocks. These criteria, along with the
dynamic analysis presented above, can be regarded as a readout layer of the reservoir
computing system.

Based on different trends of change of the given parameter between doped and
undoped samples (Table 1), one can classify signal shapes in a decision tree manner. A
decision tree could be constructed as follows:
√

If calculated permutation entropy decreases and Katz fractal dimension is of mixed
trends, then the signal is of the triangle wave shape.√
If calculated Petrosian fractal dimension is increasing, then the signal is of sinu-
soidal shape, if its decreasing (and was increasing in the previous step), then it is of
square shape.
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Table 1. A list of trends observed between different shapes of mixed signals for different methods of
analysis. Trends are shown for the doped sample in relation to the un-doped one.

Chaos Index Sine Triangle Square

Permutation entropy increases decreases increases
Katz fractal dimension increases mixed increases

Petrosian fractal dimension increases decreases decreases

As already mentioned, changing the readout terminal influences obtained dynamical
parameters (vide supra). With this change, the analysis of obtained parameters allows
for different classification scenarios. Based solely on the Petrosian fractal dimension of
registered time series but analyzed from two different device terminals (OUT1 and OUT2,
Figure 7) another classification variant of a decision tree manner can be obtained.

A decision tree based on trends summarized in Table 2 could be constructed as follows:

1. If the calculated Petrosian fractal dimension (OUT1) is increasing, then the signal is of
sinusoidal shape, if its decreasing (and was increasing in the previous step), then it is
of square or triangular shape.

2. If calculated Petrosian fractal dimension (OUT2) is increasing, then the signal is of
triangular shape, if its decreasing (and was decreasing in the previous step), then it is
of square shape.

Table 2. A list of trends observed between different shapes of mixed signals for different methods of
analysis. Trends are shown for the doped sample in relation to the un-doped one.

Chaos Index Sine Triangle Square

Petrosian fractal dimension (OUT1) Increases Decreases Decreases
Petrosian fractal dimension (OUT2) Decreases Increases Decreases

Along with various trends (changes in various dynamic parameters upon transition
from pristine to doped concrete) another classification system, based on the whole col-
lection of time series can be also derived (Figure 8). Three selected criteria provide the
best classification of waveforms, and also provide means for the classification of concrete
material. Interestingly, detrended fluctuation analysis yields exponent α, which can dif-
ferentiate between doped and undoped concrete, but does not provide means for signal
classification. Time series recorded for pristine concrete are much higher (α > 0.50) than
for doped concrete (α < 0.25). This indicates a statistically higher correlation of time series
for pristine material and anticorrelation for doped one. This may be associated with quite
different dielectric responses of both materials. Sample entropy (Ss) is not a useful classifi-
cation criterion, both due to the same trend over all samples (vide supra) and due to very
scattered values (Figure 8). Petrosian fractal dimension for sine and triangular waveforms
are significantly lower than for square signals, therefore it may serve as a crude criterion
for detection of square wave signals. Finally, the permutation entropy provides a weak
classification tool for all waveform shapes: sine waves yield the lowest values, triangular
waves the intermediate ones, whereas square waves the highest values of Sp. This criterion
should be considered as a fuzzy one, as the boundary between sine and triangular waves
is not well defined.
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Despite the requirement of a complex numerical processing of the data in order to
extract the classification parameters the results presented here clearly indicate that compu-
tation with appropriately prepared concrete blocks is possible. Surprisingly, concrete—one
of the most ubiquitous construction materials—shows complex chaotic dynamics when
stimulated with acoustic frequency electrical signals. Moreover, these dynamics can serve
as a classification tool. The selection of a wider range of frequencies and waveforms should
lead to more complex classification patterns. It seems, that concrete itself presents inter-
nal electrical dynamics so complex, that in principle it should be capable of much more
complex computational tasks in real-time. Recently reported speech recognition in coupled
nano vortex oscillators [90] is based on a system of comparable dynamics (however shifter
to radio frequency range). Therefore, any classification of acoustic signals required their
mapping into radio frequencies. The system presented here performs complex classification
tasks directly on amplified signals.

The device presented in this paper (Figure 9) can be regarded as a heterotic reservoir
computing system. The heteroticity originates from combination of in materio reservoir
processing of input signals followed by software algorithms for post-processing. In a
far-fetched vision, an alternative, in materio-based readout should be considered, but
the required complexity of signal processing seems to exceed the state of the art of in
materio reservoir computers. The observed features indicate, that the small concrete blocks
with silver wire electrodes show a set of features sufficient for reservoir computing. The
fading memory feature is represented by capacitive and memristive character of the device,
whereas internal dynamics are provided by the drive signal. It shows the echo state
property, as the output at the selected point reflects features on inner electrical dynamics.
The dynamic response of the system is complex enough to provide sufficient separability
(in the sense of Stone–Weierstrass theorem [91]) of the input data [92]. It also presents
some generalization features, as the observed output space (trends of several criteria) is
much smaller than the (infinite) input space of various signals. Due to the specific task
and material properties of pristine and doped concrete the output layer, especially the
post-processing part, is relatively complex. It should be noted, however, that this was the
requirement for a relatively hard task for memristive reservoir computing systems and
that the memristive properties of deliberately chosen materials were very poor. Despite
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this, the classification task is successfully performed. Future upgrade of this system may
involve fuzzy logic inference engine (or multinary logic), as the output trends are not crisp
values, and therefore the fuzzy descriptors may be more adequate. Interestingly, multinary
and fuzzy logic may be also implemented in related materials [93–95].
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The computational performance of concrete would depend, however, not only on
the doping state but many other factors: humidity, temperature, and the age of samples.
The dependence of performance on environmental factors can be used for various sensing
purposes, while aging processes may irreversibly change the computing performance of
concrete artifacts. Although this may not be beneficial from an information processing
point of view, it is very interesting in itself and may also find applications in the future as a
tool for monitoring the status of concrete structures.

Aging of concrete involved both chemical changes (hydrolysis and corrosion of sil-
icate network) as well as self-weight consolidation of the granular skeleton. This leads
to changes of hydro-mechanical properties and displacements of the ensembles of func-
tional nanoparticles. If the “computing circuits” (i.e., the assemblies of metallic and/or
semiconducting particles) in concrete were fixed the ageing would be detrimental to the
computational properties of the concrete. However, the computing circuits prototypes
presented in this work are highly distributed (hence can be regarded as amorphous), and
therefore deformations or even topological modifications of the ensembles of functional
particles should not significantly affect the computing abilities of the concrete materials.
The interfacial and external computing elements will be continuously adjusting to the
ever-changing morphologies of the concrete. Moreover, a reconfiguration of the embedded
computing circuits during concrete ageing might be advantageous because novel compu-
tational properties will emerge. This may be taken as a distant analogy to the nervous
system, which at different stages of development shows different functionalities: intensive
learning abilities at an early age, peaking classification in adulthood, and slowly declining
memory in older age.

Along with the classification of signals, the concrete-based reservoir computing device
can be used in a reversed way (cf. Figure 8). One can consider the doping state as the input
and the specific responses to electrical stimulation as the output. Due to the fact that the
fading memory echo state machines are universal approximators, as analyzed in detail by
Ortega et al. [91,96,97], they can operate easily in a reversed way. This reversed operation
of reservoir computer may be ultimately used to infer the state of the concrete sample. This
would require a set of standard stimulation protocols along with a database of responses
corresponding to the different states of concrete samples. Although this has not been
addressed experimentally, there are numerous reports on the use of electrical measurements
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(e.g., impedance spectroscopy) for monitoring of concrete elements [98–100]. We can
envision, that combination of classical electrical measurements with signal-processing
features of concrete can lead to more efficient concrete monitoring techniques and may
contribute to increased safety and prevention of fatal accidents. However, this far-fetched
vision requires years of further intense studies in the fields of concrete technologies and
reservoir computing.

5. Conclusions

In this article, the classification of signal shapes was shown based on in materio com-
puting concrete hardware system. Samples present a highly non-linear response in regard
to data transformation, possess rich configuration state space, and their dynamics (when
stimulated with a simple sine wave drive) are represented in the form of four-dimensional
trajectories. These features make them a suitable platform for reservoir computing im-
plementation. Depending on used terminals for the readout layer, different classification
scenarios can be achieved. Moreover, as it can be seen in the case of the detrended fluctua-
tion exponent, some of the chaos indices can be used for the classification of the doping
state of concrete. Whereas this feature has not been explored deeply in this study, in
principle it may constitute a new tool for real-time monitoring of concrete structures, de-
tection of structural degradation and prevention of fatal accidents. The presented results
can be treated as proof of the concept for the possibility of information processing and
classification tasks performed by appropriately doped ubiquitous construction materials.

It should be noted, however, that the performance of concrete-based computing de-
vices is very limited. Classification of waveforms in concrete can be performed only with
the support of time-series processing algorithms operating at classical computers. There-
fore, the presented results can be regarded as an approach towards concrete-based heterotic
computing. On the other hand, the same numerical algorithms cannot perform signal
classification due to fundamental reasons: chaos indices (like Lyapunov exponents, signal
entropies and fractal dimensions) are not suited for the classification of smooth periodic
signals. The concrete samples themselves also cannot perform this type of classification.
Combination of two apparently incompatible approaches results in successful computation.
It also illustrates the theoretical concept addressing the balance between the complexity of
the information processing systems and the interface. In the studied case the processing
system is simplified to the extreme (almost a piece of stone); therefore, the post-processing
and readout must be more complex [41].

Further development of the concept can bring the realization of more aspects of a
multisensory infrastructure capable of information processing based on its embedded
hardware and intelligent computing houses as a far-fetched vision.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14071724/s1, Figure S1: Registered timeseries for undoped concrete sample, Figure S2:
Registered timeseries for doped concrete sample, Figure S3: 2D projections of trajectories (return
plots) of the signal obtained for two sine waves (275 and 300 Hz) in undoped concrete, Figure S4:
Embedded time-delay trajectories of time series recorded for un-doped concrete sample for various
input waveforms and frequencies, constructed with time delay τ = 4, Figure S5: Embedded time-delay
trajectories of time series recorded for doped sample (10% SM) for various input waveforms and
frequencies, constructed with time delay τ = 4.
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