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Immune classifier‑based signatures provide 
good prognostic stratification and predict 
the clinical benefits of immune‑based therapies 
for hepatocellular carcinoma
Chen Xue, Xinyu Gu and Lanjuan Li*   

Abstract 

Background:  Hepatocellular carcinoma (HCC) is an aggressive cancer with a high rate of death globally. The use of 
bioinformatics may help to identify immune cell-related genes both as targets for potential immunotherapies and for 
their value associated with predicting therapy responses.

Methods:  In this study, mRNA expression profiles of HCC samples from The Cancer Genome Atlas (TCGA) database 
were subjected to gene enrichment, cell type abundance, immune cell infiltration, and pathway enrichment analy-
ses to determine immune cell gene features, cell type abundance, and functional annotation characteristics. We also 
evaluated their prognostic values using Cox regression and Kaplan–Meier analyses and assessed potential responses 
to chemotherapy. Four subgroups (Groups 1–4) were identified. Group 4 was associated with advanced clinical char-
acteristics, high immune cell enrichment scores, and the poorest outcomes.

Results:  Differentially expressed genes (DEGs) in the HCC samples were enriched in the following pathways: antigen 
binding, cell surface receptor signal transduction of the immune response, and cell surface activated receptor signal 
transduction of the immune response. Highly expressed genes in Group 4 were enriched in elements of the WNT 
signalling pathway. We identified five immune-related genes (SEMA3A, TNFRSF11B, GUCA2A, SAA1, and CALCR) that 
were significantly related to HCC prognosis. A prognostic model based on these five genes exhibited good predictive 
value, with 1-year and 5-year area under the curve (AUC) values of  >  0.66. Group 4 was also potentially more sensitive 
to EHT 1864, FH535, and lapatinib chemotherapies than the other groups.

Conclusions:  We identified and validated four HCC subgroups based on immune system-related genes and identi-
fied five genes that may be used for an immune-based prognostic model for HCC treatment.
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Background
Liver cancer ranks fifth in neoplasm frequency and has 
the second highest rate of cancer-associated mortal-
ity worldwide [1, 2]. Hepatocellular carcinoma (HCC) 
accounts for 80% of primary liver cancers and 90% of 
non-metastatic liver tumours [3–5], with approximately 
8,54,000 new cases and 8,10,000 deaths per year glob-
ally [6, 7]. The pathology of HCC is multifactorial and 
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involves many steps [8]. It has been reported that viral 
hepatitis infection, aflatoxins, alcohol, altered transcrip-
tional regulation, and genetic susceptibility/polymor-
phisms are all considered significant factors (individually 
or synergistically) that contribute to the aetiology of 
HCC. The poor prognosis of HCC is mainly due to a lack 
of sensitive detection methods at its early stages and a 
high frequency of both recurrence and metastasis [9]. 
Currently, resection surgery, transplantation, targeted 
chemotherapy, radiation therapy, interventional therapy, 
and gene therapy are all effective alternative options for 
HCC [10, 11]. Although other advanced treatments have 
been explored, local and regional therapies are still rec-
ommended for early-stage disease because few effective 
options exist for advanced-stage HCC. Recently, how-
ever, immune system-associated therapies have been suc-
cessfully tested in the clinic.

Tumour immunotherapy has revolutionized cancer 
treatments and has consistently been the focus of atten-
tion because of its promising outcomes for advanced 
HCC [12, 13]. Active and passive immunotherapies, 
immune checkpoint inhibitors (ICIs), and therapies tar-
geting the tumour microenvironment constitute major 
breakthroughs for cancer treatments [13, 14]. Accumu-
lating evidence has demonstrated that ICIs [e.g., those 
targeting programmed cell death ligand 1 (PD-1), T cell 
immunoglobulin mucin domain-containing-3 (TIM3), 
and cytotoxic T lymphocyte antigen 4 (CTLA4)] in 
combination with conventional therapies exhibited 
enhanced anti-tumour effects and broad applicability 
for cancer patients [15–17]. Despite these considerable 
achievements, questions remain as to how to improve 
the efficacy of immunotherapies, how to broaden their 
application range, and how to better predict immune 
responses [17, 18]. Immune system-based models can 
provide detailed mechanistic insights and be used to 
categorize patients into low, medium, and high immune 
response subgroups.

Bioinformatic analyses allow the identification of 
potential immune-sensitive therapeutic biomarkers, 
prognostic models can be constructed based on immune 
system-related genes [19, 20]. In this study, we performed 
a comprehensive analysis of HCC-related immune infil-
tration and constructed a gene-based immune response 
model for predicting immunotherapy responses and 
for identifying potential biomarkers for HCC-targeting 
therapies.

Methods
Cell culture
The normal human liver cell line L02 and the HCC cell 
line Hep3B were purchased from the Chinese Academy 
of Sciences (Shanghai, China) and cultured in DMEM 

(Gibco, Carlsbad, CA, USA) supplemented with 10% foe-
tal bovine serum and 1% penicillin. Cells were cultured at 
37 °C in a 5% CO2 atmosphere.

Quantitative reverse‑transcription PCR (qRT‑PCR)
Total RNA was extracted from cells using an RNeasy 
Mini Kit (Qiagen, Valencia, USA) and then reverse tran-
scribed into cDNA using the PrimeScript™ RT reagent 
Kit according to the manufacturer’s instructions. Rela-
tive mRNA expression levels were determined on an 
ABI 7500 Fast PCR instrument. GAPDH was used as 
the internal control. Relative expression levels of IL6, 
CCR3, SAA1, and GCG​ were quantified using the 2−
ΔΔCt method. The primers are listed in Additional file 1: 
Table S1.

Public databases
We collected gene expression profile data (RNA-seq) 
from HCC patient samples in The Cancer Genome Atlas 
(TCGA) database (https://​cance​rgeno​me.​nih.​gov/). In 
total, data from 371 patients with follow-up, status, and 
gene expression data were included in the liver hepato-
cellular carcinoma (LIHC) cohort. An additional 212 
HCC datasets were downloaded from the International 
Cancer Genome Consortium (ICGC-LIRI-JP, https://​
dcc.​icgc.​org/​proje​cts/​LIRI-​JP) for further validation. The 
ICGC-LIRI-JP dataset was used to verify the prognosis-
related immune biomarker genes in the HCC cohort.

Identification of immune cell‑associated genes
We downloaded immune cell-related gene profiles from 
the ImmPort database [21] (http://​www.​immpo​rt.​org). 
Immune cell-related genes were classified into different 
subgroups based on different immune cell characteris-
tics, including cell type, functions, and associated path-
ways [22].

Single‑sample gene set enrichment analysis (ssGSEA)
To evaluate immune cell infiltration characteristics in 
HCC patient samples, we performed ssGSEA to evalu-
ate the degree of immune cell enrichment in the different 
samples. ssGSEA was performed using the gene set varia-
tion analysis (GSVA) package in R software [23].

Assessments of immune scores and stromal scores 
and identification of differentially expressed genes (DEGs)
We utilized the Estimation of STromal and Immune 
cells in MAlignant Tumour tissues using Expression 
data (ESTIMATE) method [24], as well as the CIBER-
SORT tool [25] and other algorithms to estimate cell 
type abundance from bulk tissue transcriptomes and to 
assess tumour immune scores and immune cell puri-
ties. The Microenvironment Cell Populations-counter 
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(MCP-counter) [26], accessed through Connectivity Map 
at https://​porta​ls.​broad​insti​tute.​org/​cmap/, was used 
to predict potential drug sensitivities. In addition, the 
DESeq package [27] in R software was applied to deter-
mine differential gene expression in HCC tumour tissue 
and adjacent normal tissue from the raw CGA datasets. 
We defined the false discovery rate (FDR) to be no more 
than 0.05 and the |log2 (fold change)| to be no less than 
one as the cut-off value.

Pathway enrichment analysis
To identify immune cell-related pathways, we utilized 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) analyses. Biological process 
(BP), molecular function (MF), and cellular component 
(CC) pathway analyses were included in the GO analysis. 
These analyses were performed using the clusterProfiler 
package in R software [28, 29].

Protein–protein interaction (PPI) analysis
To investigate the key regulatory genes and validate the 
connections between differentially expressed genes, a PPI 
network was constructed from gene expression datasets 
from the HCC cohort. We constructed the PPI network 
based on known and predicted PPIs. Furthermore, we 
defined the confidence score as  ≥  0.7, and the maxi-
mum number of interactors was identified as 0. These 
selected genes were input into Cytoscape (version 3.6.1) 
under the following parameters: degree cut-off  =  2, hair-
cut on, node score cut-off  =  0.2, k-core  =  2, and max. 
depth  =  100.

Cox regression analysis
We used single-factor Cox regression analysis to iden-
tify prognosis-related genes and to assess the effects of 
the immune status on patient prognoses [30]. We set a 
p value  <  0.01 as the significance level for immune cell-
related genes. Multivariate Cox analysis was performed 
to calculate the risk scores. The median was defined as 
the dividing line between the high and low scores.

Evaluation of responses to clinical immunotherapies
Both a submap and the Tumour Immune Dysfunction 
and Exclusion (TIDE) algorithm were used to predict 
potential responses to ICIs [31].

Chemotherapy response predictions
A dataset from the Genomics of Drug Sensitivity in Can-
cer (GDSC, https://​www.​cance​rrxge​ne.​org/) [32] data-
base was used to screen for potential chemotherapeutics 
for the treatment of HCC. We estimated the half-maxi-
mal inhibitory concentrations (IC50s) for these drugs 
using the pRRophetic package in R software.

Statistical analysis
All statistical analyses were performed using SPSS 25 
(IBM Corporation, Armonk NY) and R software (version 
3.6.1). All statistical results with p  <  0.05 were consid-
ered significant.

Results
Immune cell‑related gene selection, scoring, clustering, 
and classification
To construct an immune cell gene-based classifier, we 
performed ssGSEA and consistent cluster analysis. Based 
on the different gene scores, we obtained four immune 
cell gene subgroups (Groups 1–4) (Fig.  1A). Advanced-
stage HCC was mainly found in Group 4. A total of 16 
immune cell-related gene clusters with high scores were 
also clustered in Group 4, corresponding with the acti-
vated immune subgroups. To further explore the prog-
noses associated with these four different subgroups, we 
conducted Kaplan–Meier analysis of overall survival, and 
the results demonstrated that the prognoses of patients 
in Group 4 were worse than those of patients in the other 
groups (Fig.  1B). Specifically, the prognoses of patients 
in Group 1 were better than those of patients in Group 
4 (p  =  0.00023) (Fig.  1D); Group 2 had more favour-
able overall survival times than Group 4 (p  =  0.00018) 
(Fig. 1D); and the prognoses of patients in Group 3 were 
better than those of patients in Group 4 (p  =  0.0015) 
(Fig.  1E). We identified four HCC sample subgroups 
based on the immune scores, and Group 4 was associated 
with the most advanced clinical stages and significantly 
poorer prognoses than the other groups.

Immune cell infiltration in the different subgroups
To further investigate immune cell infiltration in the four 
subgroups, we applied the CIBERSORT algorithm to 
the data and confirmed that the different subgroups also 
had significantly different levels of immune cell infiltra-
tion. There were significant differences in the proportions 
of naïve B cells, plasma cells, M0 macrophages, and rest-
ing dendritic cells. Group 4 had the lowest proportions 
of naïve B cells, plasma cells, and resting dendritic cells 
but the highest proportion of macrophages (Fig. 2A). The 
MCP-counter algorithm was used to assess the infiltration 
levels of immune cells in the HCC samples. The results 
showed that the infiltration levels of CD8+ T cells and 
cytotoxic lymphocytes were significantly different. Group 
1 had higher degrees of CD8+ T cell and cytotoxic lym-
phocyte infiltration than the other groups (Fig.  2B). We 
also used the ESTIMATE method and found that Group 
2 had the highest immune purity, with significant differ-
ences from that of Group 4 (Fig. 2C). Group 2 also had the 
lowest immune scores, and these scores were significantly 

https://portals.broadinstitute.org/cmap/
https://www.cancerrxgene.org/
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different than those of Group 4 (Fig. 2D). Overall, the four-
group classifier of immune system-related genes showed 
significant differences in immune scores, immune cell infil-
tration levels, and immune-based prognoses. Group 4 had 
higher levels of immune cell infiltration, was associated 
with advanced HCC stages, and had shorter overall sur-
vival times. Therefore, tumour immune escape might occur 
in samples from Group 4, with high immune infiltration, 
representing disabled and exhausted immune functions.

Correlations between the immune‑based classifier 
and human leukocyte antigen (HLA) and interactions 
with immune checkpoint molecules
Immune checkpoint blockade (ICB) has been widely 
applied to treat a variety of tumours and shown 

significant favourable therapeutic effects [33]. HLA mol-
ecules are crucial for immune system function and are 
very clinically significant in immunotherapy [34]. The 
functional diversity of HLA genes is closely related to 
cancer genomics and cancer progression [35]. Impor-
tantly, responses to ICIs rely on the evolved efficiency 
of HLA-mediated immunity [36, 37]. We next investi-
gated the internal relationship between the four groups 
of immune subgroups and HLA genes and identified 
several immune regulatory molecules, including HLA-
A, HLA-E, and HLA-DRB5 (Fig. 3A). To further support 
correlations between immune checkpoint molecules and 
our immune-based classifier, we also determined that 
CD244, ICOS, ADORA2A, CD70, PD-L1 (CD274), and 
TIGIT molecules showed significant differences among 

Fig. 1  ssGSEA based on the immune system-related gene classifier and prognostic analyses. a Immune system-related gene clustering and 
classification of Groups 1–4. b Overall survival analyses of the four groups, with Group 4 showing the poorest prognoses. c Prognostic analysis 
comparing Group 1 to Group 4, showing that Group 1 had better prognoses than Group 4. d Group 2 also demonstrated longer overall survival 
times than Group 4. e Group 3 also demonstrated better overall prognoses than Group 4
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Fig. 2  Immune cell infiltration and differences among the four immune-based subgroups. a Immune cell infiltration levels in the four subgroups. b 
The levels of CD8+ T cells and cytotoxic lymphocytes were significantly different among the four groups. Group 1 had the highest levels of CD8+ T 
cell and cytotoxic lymphocyte infiltration. c ESTIMATE analysis indicated that Group 2 had the highest immune purity. Group 2 also had significantly 
higher immune purity than Group 4. d The immune scores demonstrated that Group 2 had the lowest immune scores and were significantly 
different from those of Group 4

Fig. 3  Correlations between the immunophenotype and expression of HLA genes and immune checkpoint molecules. a HLA genes (HLA-A, HLA-E, 
HLA-DPB1, and HLA-DRB5) were differentially expressed in the different groups. b Immune checkpoint genes, including BTLA, LAG3, ICOS, ADORA2A, 
CD70, PD-L1 (CD274), and TIGIT, were differentially expressed in the different groups
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the different immune-based subgroups (Fig.  3B). These 
results indicate that HLA genes and immune checkpoint 
molecules play crucial roles in the different subgroups 
and that they may be valid therapeutic targets for cancer 
therapies.

Correlations between immune subgroups and interferon‑γ 
(IFN‑γ) pathways
The tumour microenvironment is crucial for tumouri-
genesis and tumour development, and the CD8+ T 
cell-mediated anti-tumour response has been shown 
to be significantly increased through the production of 
cytokines such as INF-γ [38]. Accumulating evidence 
has shown that immune cells, such as CD8+ T cells, can 
facilitate the upregulation of immune checkpoints and 
enhance anti-tumour immune responses [39]. To anno-
tate IFN-γ and T helper cell-related genes, we performed 
cluster analysis and found that the immune response 
has a crucial relationship with IFN-γ-related regulatory 
pathways (Fig. 4A). More importantly, Group 4 had sig-
nificantly high expression levels of IFN-r-, IFNGR2-, 
IFNGR1-, JAK1-, and JAK2-related genes, with IFNG 
showing significant differences among the subgroups 
(Fig.  4B). Group 4 had higher IFNG expression levels 
than Group 2 (Fig. 4C).

Relationship between the immune subgroups 
and 5‑methylcytosine (m5C) regulators
mRNA and its transcription play an important role in 
immune-related gene regulation [40, 41]. The m5C meth-
ylation of RNA modifies the transcription of multiple 
genes, regulates protein expression, and affects cell phe-
notypes, and nucleoside modifications have been shown 
to suppress the potential for RNA to activate innate 
immune cells [42]. Here, m5C regulators were associated 
with all four groups. The NSUN7 regulator was expressed 
at low levels in all of these subgroups (Fig. 5B), and the 
overall levels of m5C regulator expression showed obvi-
ous differences between Group 2 and Group 4 (p  <  0.01) 
and less obvious differences between Group 1 and Group 
4 (p  <  0.05) (Fig. 5B). The mRNA expression of NSUN4 
was remarkably different among the immune subgroups 
(Fig. 5C).

Functional annotations of the DEGs
We used the DESeq package in R software to identify 
and classify immune system-related DEGs. The upregu-
lated DEGs in Group 4 were positively correlated with 
the immune classifier-based genes, and the upregu-
lated DEGs in Groups 1, 2, and 3 were negatively corre-
lated with the immune classifier-based genes (Fig.  6A). 

Fig. 4  Associations between the immunophenotype and IFN-γ pathways. a Correlations between immune responses and IFN-γ pathway-related 
genes. The IFN-γ, IFNGR2, IFNGR1, JAK1, and JAK genes were highly expressed in Group 4. b There were significant differences in IFN-γ expression 
among the four subgroups. c The expression level of IFN-γ in Group 4 was significantly higher than that in Group 2
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To further explore the regulatory roles of these DEGs, 
we used the clusterProfiler package in R software to 
characterize the associated genes. GO pathway analy-
sis indicated that these DEGs are involved in a variety 
of cell regulation pathways, including the regulation of 
membrane potentials, neurotransmitter transport, and 
those for the regulation of blood pressure. CC analysis 
indicated that these DEGs play crucial roles in synaptic 
membranes, the presynapse, the ion channel complex, 
and transmembrane transporter pathways. MF analysis 
showed that the regulatory mechanisms for the DEGs 
are mainly enriched in receptor-ligand activity, signal-
ling-receptor activator activity, and other such pathways 
(Fig. 6B). KEGG pathway annotations showed that Group 
4 was enriched in WNT signalling pathway elements. 
The downregulated DEGs were enriched in immune 
response-related pathway elements (Fig. 6C).

To gain a deeper contextual understanding of their 
possible interactions, we constructed a PPI network and 
identified four hub genes (IL6, CCR3, SAA1, and GCG​
; Fig.  7A). To further identify HCC prognosis-related 
genes, Cox regression analyses were performed and 
yielded 45 DEGs. After applying stringent screening 
conditions (p  <  0.01), we identified five immune-related 

genes that demonstrated significant differences related 
to prognosis (SEMA3A, TNFRSF11B, GUCA2A, SAA, 
and CALCR). In addition, the expression levels of IL6, 
CCR3, SAA1, and GCG in the HCC cell line (Hep3B) and 
control cell line (L02) were determined by qRT-PCR. As 
shown in Fig. 7B, C, the expression of IL6 and CCR3 was 
higher in the HCC cell line (Hep3B) than in the control 
cell line (L02). The expression level of SAA1 was lower in 
Hep3B cells than in L02 cells (Fig. 7D). There was no sig-
nificant difference in GCG expression between the HCC 
cell line and the control cell line (Fig. 7E). Using multivar-
iate Cox regression for further analysis, we constructed a 
risk-coefficient model using these five genes. This model 
demonstrated that the subgroup with the highest risk 
scores had poorer prognoses than the subgroup with the 
lowest risk scores (p  =  0.014; Fig. 7F).

To further validate these five immune gene-based bio-
markers, Cox regression analyses were applied to data-
sets from the International Cancer Genome Consortium 
(ICGC-LIRI-JP). These alternate independent analyses 
showed that the group with the highest risk scores also 
had poorer prognoses than the group with the lowest 
risk scores (Fig. 7G). Area under the curve (AUC) analy-
ses (Fig.  7H), which were used to quantify and evaluate 

Fig. 5  Relationship between the immune system-based classifier and the expression of m5C mRNA methylation regulators. a All four groups 
exhibited significant m5C regulator activities. b, c mRNA expression of the m5C regulator NSUN4 was significantly different among the four groups, 
with Group 4 having higher NSUN4 expression than Groups 1 and 2
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diagnostic accuracy, showed that the AUC value for 
the five gene-based prognostic model was 0.71 (95% 
CI  =  61.01–81.94).

Assessment of immunotherapy responses
Further studies were performed to explore the rela-
tionship between the four immune subgroups and 
immunotherapy responses by evaluating the clinical 
immunotherapy responses to PD-1 and CTLA4. Inter-
estingly, Group 4 was characterized as T cell-deficient 
and had the highest immune deficiency scores (Fig. 8A). 
These studies confirmed that immune deficiency is 
involved in tumour immune escape, especially in Group 
4.

Chemotherapy responses
To comprehensively examine the responses of the differ-
ent immune subgroups to chemotherapeutic agents, we 
used the pRRophetic algorithm in R software. The results 
indicated that the half-maximal inhibitory concentration 
(IC50) values of Group 4 were significantly different than 
those of the other subgroups (the corresponding drugs 
are listed in Fig. 8B–S), but not all of these drugs exhib-
ited highly sensitive responses. Only EHT 1864, FH535, 
and lapatinib exhibited higher sensitivities in Group 4, 

demonstrating the limited selection of drugs for treating 
advanced-stage HCC tumours.

Discussion
HCC is a very aggressive type of cancer with highly 
heterogeneous malignancies [43]. The tumour micro-
environment plays a crucial role in immune cell regula-
tion and cytokine production and plays a central role in 
cancer development and progression [44]. The emerging 
field of immunotherapy has increasingly been applied to 
HCC [14, 43]. However, compared to other cancers, HCC 
immunotherapy is still in its infancy, and there are still 
many challenges that need to be addressed, especially for 
expanding its indications and increasing its benefits [45, 
46]. Therefore, personalized immunotherapy strategies 
and multiple therapy combinations may be required for 
effective HCC treatment [16, 47]. In the present study, we 
comprehensively described HCC subgroups based on the 
expression of immune system-related genes and identi-
fied five genes for a prognostic prediction model. A better 
understanding is still necessary for the criteria required 
for patient selection and for optimizing any combination 
strategies to maximize the potential of these approaches.

Previous studies have shown that the liver is a relatively 
immune-tolerant organ with a high level of immune cell 

Fig. 6  Identification of differentially expressed genes (DEGs) and pathway enrichment analyses in the four subgroups. a DEGs in Groups 1–3 and 
in Group 4. b GO analysis indicated that the majority of DEGs (based on different immunotypes) were enriched in cell surface receptor signalling 
pathways that regulate the immune response and in cell surface receptor signalling pathways that activate the immune response. c KEGG pathway 
analysis showed that the DEGs in Group 4 were enriched in elements of the WNT signalling pathway, whereas the downregulated DEGs were 
enriched in elements of immune-related response pathways
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infiltration [48, 49]. Moreover, a variety of immune sys-
tem regulators are involved in HCC carcinogenesis and 
progression [14, 50, 51]. To better elucidate the biologi-
cal functions of HCC immune system-related genes, we 
identified four groups (Groups 1–4) based on different 

degrees of immune system gene expression. Based on 
this classifier, we demonstrated that Group 4 was closely 
related to the clinical characteristics of advanced HCC, 
a high level of macrophage infiltration, low immune 
purity, and poor overall survival. For this type of HCC, 

Fig. 7  PPI network analysis, the identification of five key immune system-related genes, and a prognostic model based on these five genes. a 
The PPI network analysis revealed four hub genes (IL6, CCR3, SAA1, and GCG) that were closely related to the immune classifier-based DEGs. b–e 
qRT-PCR was performed to determine the relative expression of IL6, CCR3, SAA1, and GCG in the HCC cell line (Hep3B) and the control cell line 
(L02). f The key immune system-related genes (SEMA3A, TNFRSF11B, GUCA2A, SAA1, and CALCR) and the prognostic model based on these genes 
demonstrated that the group with high risk scores had shorter overall survival times than the group with low risk scores. g The biomarkers were 
validated using the ICGC-LIRI-JP dataset. The five-gene-based prognostic model showed that the group with high risk scores had worse prognoses 
than the group with low risk scores. h Area under the curve (AUC) analyses showed that this predictive model demonstrated good prognostic value
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the results indicate high levels of immune cell infiltration 
with few immune cells contributing to anti-tumour func-
tions and activities.

Recently, immunotherapies that have targeted differ-
ent immune checkpoints have achieved great successes 
in treating HCC. Such regulation of the immune system 
facilitates mast cells and activates HLA-G molecules, 
which are involved in the pathology of chronic hepatitis 
[52]. HLA molecules are also crucial for T cell-mediated 
immune surveillance in HCC patients, and HLA-medi-
ated immunomodulatory functions have been observed 
in numerous pathological conditions, including cancer 
[35]. HLA-G has shown both prognostic potential and 

diagnostic value in HCC patients, and HLA molecules 
have been reported to play crucial roles in the patho-
genesis of HCC [53]; therefore, they may be useful as 
part of an overall immunotherapy strategy against HCC 
[54]. Accordingly, we found that the subgroups with 
high immune scores and Group 4 (with high levels of 
immune cell infiltration) may have better immunother-
apy responses.

Furthermore, we assessed the immune classifier and 
IFN-γ and m5C regulators in the different groups. Group 
4 exhibited both high IFN-related pathway activation 
and modifications in m5C regulator genes. We also iden-
tified four immune system-based hub genes that play 

Fig. 8  Potential therapeutic drugs for Group 4 based on T cell expression. a Group 4 had a higher level of T cell dysfunction than the other 
subgroups. b–s Eighteen drugs with obvious differences in sensitivity in Group 4. These results indicate that Group 4 is more sensitive to EHT 1864, 
FH535, and lapatinib chemotherapy than the other groups
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crucial roles in immune system-related gene mechanisms 
that participate as regulators of a variety of gene func-
tions. The five most important immune system DEGs 
were identified and used as the basis for constructing a 
prognostic model. This model system was significantly 
associated with HCC prognoses and may provide better 
predictions of HCC prognoses when applied clinically.

Conclusions
The gene expression classifier described in the pre-
sent study provides a comprehensive understanding of 
immune system-related genes and HCC characteris-
tics. The resulting prognostic model for predicting HCC 
outcomes may facilitate the determination of clinically 
relevant and reliable prognostic indicators for immuno-
therapy responses.
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