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ABSTRACT

Motivation: Eukaryotic gene expression (GE) is subjected to precisely

coordinated multi-layer controls, across the levels of epigenetic,

transcriptional and post-transcriptional regulations. Recently, the

emerging multi-dimensional genomic dataset has provided unprece-

dented opportunities to study the cross-layer regulatory interplay. In

these datasets, the same set of samples is profiled on several layers of

genomic activities, e.g. copy number variation (CNV), DNA methylation

(DM), GE and microRNA expression (ME). However, suitable analysis

methods for such data are currently sparse.

Results: In this article, we introduced a sparse Multi-Block Partial

Least Squares (sMBPLS) regression method to identify multi-

dimensional regulatory modules from this new type of data. A

multi-dimensional regulatory module contains sets of regulatory fac-

tors from different layers that are likely to jointly contribute to a local

‘gene expression factory’. We demonstrated the performance of our

method on the simulated data as well as on The Cancer Genomic

Atlas Ovarian Cancer datasets including the CNV, DM, ME and GE

data measured on 230 samples. We showed that majority of identified

modules have significant functional and transcriptional enrichment,

higher than that observed in modules identified using only a single

type of genomic data. Our network analysis of the modules revealed

that the CNV, DM and microRNA can have coupled impact on expres-

sion of important oncogenes and tumor suppressor genes.

Availability and implementation: The source code implemented by

MATLAB is freely available at: http://zhoulab.usc.edu/sMBPLS/.

Contact: xjzhou@usc.edu
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1 INTRODUCTION

Eukaryotic gene expression (GE) is a complex process controlled

at multiple levels, including epigenetic, transcriptional and

post-transcriptional regulation. Dynamic and precise coordin-

ation of these regulatory processes is essential to maximize the

efficiency and specificity in GE. Recent studies support the view

that, rather than a simple ‘step-by-step’ production line, the GE

machine is governed by multiple, complex and extensively

coupled networks (Maniatis and Reed, 2002; Moore, 2005;

Orphanides and Reinberg, 2002).
The development of high-throughput genomic technologies

has enabled researchers to obtain a global view of gene regula-

tion. Microarray and sequencing technologies can not only meas-

ure genome-wide GE levels but also profile DNA modifications

(e.g. CNV [copy number variation]), epigenetic regulation

(e.g. DNA methylation [DM] and histone modifications) and

post-transcriptional regulation (e.g. microRNA expression

[ME]). However, most genome-wide studies have been restricted

to only one aspect of regulation such as studies based on GE

profiles (Alter et al., 2000; Omberg et al., 2007; Tamayo et al.,

2007). Recently, a new type of large-scale multi-dimensional gen-

omic dataset has been gaining in popularity. In these datasets,

the same set of samples is profiled on several layers of genomic

activity, e.g. CNV, DM, GE and ME. The Cancer Genomic

Atlas (TCGA) (McLendon et al., 2008) project and the NCI60

(Shoemaker, 2006) project provide this type of comprehensive

genomic characterization for a cohort of cancer samples and

cancer cell lines, respectively. Multi-dimensional datasets provide

unprecedented opportunities to discover connections between the

different layers of GE regulation.
The emerging large-scale multi-dimensional genomic data calls

for novel computational methods. In fact, as the cost of sequen-

cing falls, multi-dimensional characterization of samples will

soon become standard practice. However, suitable analysis meth-

ods are currently sparse. In particular, since the different types of

genomic data have different scales and units, we cannot simply

aggregate them for analysis. Previous relevant effort has mostly

focused on two-dimensional genomic datasets. For example,

various eQTL methods can jointly analyze single-nucleotide

polymorphism (SNP) and GE data to identify regulatory SNPs

(Zhang et al., 2010); multivariate regression can correlate GE

and transcription factor (TF) binding data to associate TFs

with their target genes (Gao et al., 2004); and the Ping-Pong

algorithm integrates GE and drug–response data (Kutalik

et al., 2008). Recently, several methods have been developed to

analyze genomic datasets with more than two dimensions. For

example, the multivariate model developed by Mankoo et al.

(2011) and the sparse regression method proposed by Witten

and Tibshirani (2009), both can learn multi-dimensional genomic
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data in the supervised manner. Another relevant method,

cMonkey, is a multi-species biclustering method that was applied

to analyze GE matrices from different species (Waltman et al.,

2010). In addition, there have been a series ofmultiple kernel learn-

ing methods designed for integrating heterogeneous genomic data

(Alpaydin, 2011; Hamid et al., 2012; Yu et al., 2010). These meth-

ods combinemultiple kernels (each ofwhich is transformed froma

data type) into a single kernel, known as kernel fusion, which is

then used for prediction, regression or feature selection.
In this article, we used a novel approach for supervised module

discovery from R-dimensional genomic data (R � 3), a topic that

was not covered by the aforementioned methods. In particular,

we aim to identify multi-dimensional gene regulatory modules,

which from R-dimensional genomic data (R � 3). In this appli-

cation, a regulatory module contains sets of regulatory factors

from different layers that are likely to contribute jointly to a local

‘gene expression factory’. Without losing generality, assume that

we are given a four-dimensional dataset consisting of GE, copy

number variation (CNV), DNA methylation (DM) and

microRNA expression (ME) profiles measured on the same K

samples (Figure 1). Considering CNV, DM and ME as the input

variables and GE as the response variable, we represent this

dataset as four matrices: Xi 2 R
K�Ni , where i¼ 1, 2, 3 and

Y 2 R
K�M. In each matrix the rows correspond to the same sam-

ples. The columns of the matrices correspond to measurements

of different types. We aim to identify subsets of the three types of

variables (CNV, DM andME) that jointly explain the expression

of a subset of genes, in all or a subset of the samples. The union

of these four subsets of the different types of variables are termed

a ‘Multi-Dimensional Regulatory Module (MDRM)’ (Figure 1).

In our matrix representation, such a module consists of k rows,

and ni (i¼ 1, 2, 3) and m columns for the CNV, DM, ME and

GE data. This approach captures the association between differ-

ent types of variables (CNV–DM–ME) in terms of their joint

impact on GE and facilitates the reconstruction of the regulatory

network across different layers.
To identify multi-dimensional regulatory modules, we intro-

duced a sparse Multi-Block Partial Least Squares (sMBPLS)

regression method. Partial least squares (PLS) is a class of re-

gression methods for finding the fundamental relations between

an input matrix (X) and a response matrix (Y). Instead of finding

hyperplane of maximum variance between the input and re-

sponse variables, it finds a linear regression model by projecting

both variables to a new space (Boulesteix and Strimmer, 2007;

Fornell and Bookstein, 1982; Lê Cao et al., 2008; Liu and

Rayens, 2007; Tenenhaus et al., 2005). MBPLS method is an

expansion of the PLS for the regression analysis of input

variables that are blocked into multiple subsections (Wangen
and Kowalski, 1988; Wold et al., 1987). MBPLS was initially

developed for the chemometrics analysis and has been rarely

applied to Bioinformatics (Hwang et al., 2004; Li and Chan,

2009). The multi-dimensional genomic data provide a new op-

portunity for its application. In this article, we further expanded

the MBPLS method by imposing sparse constraints to identify

multi-dimensional modules. In particular, we imposed sparse

constraints in both genomic variables and the sample dimen-

sions. Different from the original MBPLS whose objective is
the regression analysis of the whole data blocks, the sMBPLS

aims to decompose the whole data blocks into a collection of

smaller building blocks—MDRMs.

We demonstrated the performance of our method on both
simulated data and the multi-dimensional TCGA datasets. The

simulation study showed that the sMBPLS method can accur-

ately identify embedded multi-dimensional modules and remark-

ably outperforms the non-sparse approach. We applied sMBPLS

method to a suite of TCGA data including the CNV, DM, ME

and GE data on 230 ovarian cancer samples. We showed that

majority of identified modules have significant functional and

transcriptional enrichment, higher than that observed in modules

identified using only a single type of genomic data. Our network
analysis of the modules revealed that the multi-dimensional gen-

omic components are tightly connected and the CNV, DM and

microRNA can have combinatorial impact on expression of

important oncogenes and tumor suppressor genes. Finally, we

compared our sMBPLS approach to the commonly used

approach in which all input data blocks were aggregated into a

single block for module discovery. We found that almost half of

modules from the single-block approach are not multi-

dimensional, demonstrating the importance of our ‘multi-block’
approach in capturing functional relationships of variables from

multiple dimensions.

2 METHODS

2.1 Definition of the MDRM

Given three input blocks X1,X2,X3 and a response block Y, a

multi-dimensional module is defined by satisfying the criterion ‘‘the pro-

files extracted from ni columns across k rows of Xi (i¼ 1, 2, 3) has strong

association with (or has similar and coherent pattern with) those from m

columns across the same k rows of Y’’ (Fig. 1). Such association between

two submatrices from Xi and Y can be measured by the covariance of

their ‘summary vectors’. The coincidence of these associations appearing

in the same k samples establishes the strong signals that multiple types of

input variables explain the response variables. Such distinct covariance

structure in subspaces of multiple blocks can be identified by the sparse

version of the MBPLS regression framework.

2.2 Objective function

We first introduce the covariance function of measuring the association

between two matrices. Let X and Y be input and response matrices on the

same K samples, respectively. To summarize columns of a matrix X, we

introduce a ‘summary’ vector t which is a linear combination of all col-

umns of X, i.e. t¼X w (w being the weights of input variables/columns).

Similarly, u is a summary vector of Y columns, i.e. u¼Y q (q being the

weights of response variable/columns). Thus, the larger the covariance of

Fig. 1. Illustration of a ‘multi-dimensional regulatory module’. A subsets

of CNVs, DMs andMEs exhibit similar profiles as a subset of GEs across

a subset of samples
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two summary vectors t and u are, the more similar two matrices look like

and the higher the association of two matrices is (Figure 2A). This asso-

ciation measure can be extended to multiple blocks of input variables.

Consider three input blocks Xi 2 R
K�Ni (where i¼ 1, 2, 3), each of

which contains a set of Ni centered (zero-mean) input variables on the

same K samples, and let Y 2 R
K�M be the response data withM centered

variables on the same K samples (Figure 2B). We used the weighted sum

t ¼
P3

i¼1 biti of ‘summary vectors’ ti ¼ Xiwi (i¼ 1, 2, 3) of the three sets

of input variables. The block weights b1,b2,b340 indicate the contribu-

tion of each data block to the covariance structure of the input and

response data. Therefore, the covariance between t and u¼Y q measures

the association between three input data blocks and a response data

block. The maximization of covariance between t and u can reveal the

associations between from X1,X2,X3 and Y, which lead to the discovery

of a multi-dimensional module (Figure 2B). The problem is formally

expressed as follows:

maxcov ðt,uÞ with ti ¼ Xiwi, u ¼ Yq, and t ¼
X3
i¼1

biti ð1Þ

subject to k wi k
2¼ 1, k q k2¼ 1, and k b k2¼ 1. This is also the objective

of the MBPLS regression problem (Wangen and Kowalski, 1988) which

seeks to best explain the covariance structure between multiple groups of

input variables and response variables. ti and u are also called the ‘latent

variables’ of the ith block Xi and block Y, respectively, and wi and q are

their associated ‘loading vectors’.

Although the solution to this objective can identify a multi-

dimensional module by selecting those variables and samples with large

absolute values from wi,q,t, such module may not be the most distinct. As

shown in our simulation study, the MBPLS regression approach often

fails to identify distinct association signals of coherent structures. To

address this problem, we added the sparsity penalties to the above

objective.

2.3 Sparsity penalization

Sparsity penalization has recently attracted intense interest in regression

analysis (Friedman, 2008), variable selection (Chun and Keles, 2010; Lê

Cao et al., 2008), matrix factorization (Kim and Park, 2007; Shen and

Huang, 2008) and module discovery. The concept of sparsity (also called

sparse coding in the literature) refers to a representational scheme

(e.g. loading vector) where only a few elements are effectively used to

represent data. Such sparsity is attractive from a data analysis viewpoint

and makes representational scheme easy to interpret, as it selects the

important elements and discards the rest. In effect, this implies most

elements taking values close to zero while only few take significantly

non-zero values. In our sparse version of the MBPLS problem, we

searched the sparse representations of loading vectors whose non-zero

elements can form a multi-dimensional module. It is achieved by

adding sparsity penalties or regularizations to the optimization problem.

Specifically, we adopted the widely used ‘lasso penalization’ (Tibshirani,

1996), which has been successfully applied in many fields. Let x be the

vector to be computed in the optimization problem. The lasso regular-

ization of x, denoted P�ðxÞ ¼
P

i p�ðxiÞ ¼
P
i

2�jxij can be added to en-

force sparsity on the solution of x. Our maximization problem becomes

Fig. 2. Illustration of (A) the covariance function for measuring the association of two matrices and (B) the problem formulation of multi-dimensional

module discovery. To search a multi-dimensional module, columns of each block are represented by a ‘summary’ vector, e.g. ti summarizing Xi and u

summarizing Y. Then the association between each input dimension Xi and the response dimension Y is measured by the covariance of their each

summary vectors, i.e. covðti,uÞ. The maximum covariance between summary vectors of Xi and Y reveals a distinct association representing the coherent

profiles of Xi and Y. The maximization can be achieved by how we construct the summary vectors by weighting variables and samples. This discovery

process is equivalent to the sparse version of the MBPLS problem
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maxwi ,q,ti ,u�ðt,u,wi,q,bÞ ¼ covðt,uÞ �
X3
i¼1

P�i ðwiÞ � P�4 ðqÞ

with ti ¼ Xiwi, u ¼ Yq, and t ¼
X3
i¼1

biti

subject to k wi k
2¼ 1, k q k2¼ 1, k b k2¼ 1

ð2Þ

where the objective function �ð�Þ contains sparsity penalizations of the

loading vectors wi (i¼ 1, 2, 3) and q.

2.4 Sparse multi-block PLS algorithm

To solve the problem in equation (2), we propose a sparse multi-block

PLS (sMBPLS) regression algorithm. In this algorithm, sparse() is the

soft thresholding function sparse�ðxÞ ¼ signðxÞðjxj � �Þþ that is used

to optimize the objective function with lasso penalties p�ðxÞ. We prove

that the sMBPLS algorithm can provide the maximizer of the sparse

multi-block PLS problem (see Supplementary material).

sMBPLS Algorithm

(1) Initialize: Apply the MBPLS algorithm to X1,X2,X3,Y and obtain

the latent variable u�. Set u ¼ u�.

(2) Update:

(a) wi ¼ sparse�i ðX
T
i u), norm wi (i ¼ 1, 2, 3)

(b) ti ¼ Xiwi (or ti ¼ sparse�ðXiwiÞ) (i ¼ 1, 2, 3)

(c) T ¼ ½t1,t2,t3�

(d) b ¼ TTu, norm b

(e) t ¼ T b

(f) q ¼ sparse�4 ðY
TtÞ, norm q

(g) u ¼ Yq (or u ¼ sparse�ðYqÞ)

(3) Repeat Step 2 until convergence of t.

In this algorithm, u is regressed on each block Xi to give the

loading vector wi of the block, which are then multiplied through

the block to provide the latent variable ti. All three latent variables

t1,t2,t3 are combined into the super block T and a classic PLS iterative

cycle between T and Y is performed to give the block weights b and

the combined latent variable t. We repeat this until convergence on t.

The computational complexity of one sMBPLS iteration is

Oð
P3

i¼1 NiKþMKÞ. We are also interested in selection over the

sample dimension. Specifically, we want to identify a multi-dimensional

module whose input variables have the maximum covariance with re-

sponse variables across a subset of samples. To achieve this goal, we

impose the sparse� function on Step 2(b) and Step 2(g) of the

sMBPLS algorithm to select samples.

The iterative procedure of the sMBPLS algorithm can be used to

obtain the first set of sparse loading vectors wi,q and latent variables t.

The non-zero elements of converged loading vectors and latent variable

(t) identify a multi-dimensional module that contains subsets of input and

response variables and a subset of samples. After we identify a module,

we deflate the matrix by subtracting the signal of current set of loadings

and latent variables from the data matrices. Subsequent modules, or sub-

sequent sets of sparse loadings and latent variables, can be obtained se-

quentially by maximizing covariance on the deflated matrices. We used

the following deflation formula to remove the module’s signal from each

block:

� ¼ f�i X
T
i ti=ðt

T
i tiÞ

� �
, Xi  Xi � ti�

T, ði ¼ 1,2,3Þ

 ¼ f�4 YTu=ðuTuÞ
� �

, Y Y� u T

where f�ðxÞ ¼
x, for jxj � �

0, otherwise
:

�

2.5 Tuning parameter selection

The sMBPLS algorithm is developed for fixed �1,�2,�3,�4 (with the

option of including �). We tune these parameters using the

cross-validation procedure that was also used in recently proposed meth-

ods such as sparse PCA (Shen and Huang, 2008) and sparse PLS (Lê Cao

et al., 2008). Tuning these parameters is equivalent to choosing the

‘degree of sparsity’, i.e. the number of non-zero components in each

loading vector and latent variable. Note that setting the degree of sparsity

to j (15j5M) (taking the loading vector q as an example) is equivalent to

setting �4 2 ½jY
TtjðjÞ,jY

Ttjðjþ1Þ�, where jY
TtjðjÞ is the jth-order statistic of

YTt. Our computational framework allows different vectors to have dif-

ferent degrees of sparsity. To simplify notations, we use �1,�2,�3,�4 and �

to denote the degrees of sparsity of loading vectors and latent variables in

the rest of the article. The cross-validation procedure is presented below.

(1) Randomly place the samples into L roughly equal groups. Each

group has a corresponding matrix from each block of data. That is,

the matrix of the ith genomic block data with only samples in the lth

group is denoted Xl
i; let X

�l
i be the matrix composed of data from

all other samples. The same notation applies to the response block

data Y, which is divided into Yl and Y�l for each group.

(2) For each combination of degrees of sparsity, �i 2 f2,3, . . . ,Nig

(i¼ 1,2,3), �4 2 f2,3, . . . ,Mg and � 2 f2,3, . . . ,Kg

(a) For l ¼ 1, . . . ,L, apply the sMBPLS algorithm on

X�l1 ,X�l2 ,X�l3 ,Y�l, to derive loading vectors of independent vari-

ables: w�l1 ,w�l2 ,w�l3 and the loading vector of response variables

q�l. Next, project Xl
1,X

l
2,X

l
3,Y

l onto w�l1 ,w�l2 ,w�l3 and q�l to

obtain the projection coefficients as �li ¼ Xl
iw
�l
i and

�l ¼ Ylq�l, respectively.

(b) Calculate the L-fold CV score defined as

CV ¼
X3
i¼1

XL
l¼1

k Xl
i � �

l
iw
�lT

i k2

KlNi
þ
XL
l¼1

k Yl � �lq�l
T

k2

KlM
ð3Þ

where Kl is the number of samples in the lth group.

(3) Select the combination of degrees of sparsity f ~�1, ~�2, ~�3, ~�4, ~�g whose

CV score is the smallest.

L and the number of combinations of degrees of sparsity will impact

the computational efficiency. In practice, L is usually chosen to be 5 or 10

for large datasets. Naturally, a different random grouping in Step 1 may

result in different degrees of sparsity. Usually, the larger the value of L,

the more stable the degrees of sparsity selected by CV. In our study, we

use L¼ 5, which is large enough for a stable selection of parameters. The

number of combinations of degrees of sparsity for the thresholds �i (i¼ 1,

2, 3, 4) and � is large for large-scale data. Therefore, in practice, we used

a subset of combinations in the cross-validation procedure.

3 RESULTS

To assess the performance of sMBPLS, we first applied the

sMBPLS to a variety of simulated data, generated with various
complexities. We then applied sMBPLS to the multi-dimensional

TCGA ovarian cancer data to gain insights into the multi-layer

coordination of GE regulations. To reveal the advantages of

sMBPLS, we also compared our methods to several competing
methods includingMBPLS, sparse PLS and biclustering methods.

3.1 Simulation study

The simulation data were generated by extending scenarios pro-

posed in the recent literature on sparse PLS methods (Chun and
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Keles, 2010; Lê Cao et al., 2008) to multi-dimensional data
(see Supplementary material for details). The scenario follow
the general model of Y ¼

P3
i¼1 biXi�i þ�, where � is the

Gaussian noise and the settings of bi and �i refer to the
Supplementary material. Xi is generated with various complexity:
different sizes, hidden component structures, correlation struc-

tures and even the presence of multicolinearity (simulated from a
multivariate normal with a first-order autoregressive process’s
covariance matrix with auto-correlation � ¼ 0:9).
In order to discover the multi-dimensional modules by using

MBPLS, an intuitive two-step procedure can be performed: first
applying MBPLS to the data, then selecting the top-ranking
input and response variables to form a module by ordering the

absolute values of the loadings and weight vectors. A more in-
tuitive comparison way is to sort the loadings and latent variable
from either MBPLS or sMBPLS, then to visualize X1,X2,X3,Y

whose rows and columns are reordered by the sortings of their
loadings and weight vectors. The multi-dimensional module
would appear in the left-top and right-bottom corners (whose

corresponding variables and samples have large absolute values
of weights) in the reordered blocks. For example, the reordered
blocks by MBPLS as shown in Figure S1(B)-panel2 (in Supple-

mentary material) are observed to have no clear modular sub-
matrices in corners, while a multi-dimensional module can be
observed in reordered blocks by sMBPLS in Figure S1(B)-

panel3 and zoomed out in Figure S1(C).
We further systematically compared two methods by simulat-

ing data 50 times. We found that MBPLS always failed for all 50

simulation data in that it assigns totally different variables and
samples to the discovered module. In contrast, all modules iden-
tified by sMBPLS have significant overlaps with predefined mod-

ules. (Details of overlap significance test for modules can be
found in Section S3 of Supplementary material.) An example is
detailed in Figure S1. Since the MBPLS method maximizes the

covariance between all input and response variables across all
samples as shown in Figure S1(B), it overlooks embedded mod-
ules when the module’s signal is overwhelmed by background

noise. On the contrary, the sparsity penalty forces sMBPLS to
focus on ‘local’ (i.e. across a small subsets of variables and sam-
ples) peaks in the covariance, which correspond to (multi-

dimensional) modules of relatively small size. Our results show
that the sMBPLS method is more accurate at identifying mod-
ules in noisy data, and thus more suitable for biological

applications.
We also compared the sMBPLS with the sparse version of

PLS which is applied to the combined single input block

(i.e. X1,X2,X3 merged to a single block X). The same 50 times
of simulation data were used. The result showed that all modules
identified by sparse PLS have at least one dimension missing,

56% modules have two dimensions missing and none of these
modules module has significant overlap with predefined module.
The lack of such power for the single-block approach may attri-

bute to the unbalanced covariance structures across multiple
blocks, i.e. the covariance signals of some blocks may be over-
whelmed by those of other blocks. The result is even worse when

we compared with a popular biclustering algorithm ‘SAMBA’
(Tanay et al., 2002) which is applied to the single block by mer-
ging X1,X2,X3,Y. All modules identified by SAMBA have at

least one dimension missing, and 84%/34% modules have at

least two/three dimensions missing. None of these modules has

overlaps with predefined modules.

3.2 Identifying MDRM in TCGA ovarian cancer data

We applied the sMBPLS method to the TCGA ovarian cancer

genomic data. We included four types of genomic data profiled

on the same 230 samples: CNV, DM, ME and GE. The data

were downloaded from http://cancergenome.nih.gov/. Detailed

preprocessing procedures can be found on the TCGA website

(we used the Level 3 data). We filtered out genomic variables

with little variation across the whole sample (j�=	j50:5, where �
and 	 are the mean and standard deviation of each variable),

resulting in a final dataset with the expressions of 799

microRNAs and 15 846 genes, the CNV profiles of 31 324 loci

and the DMs of 14 735 marks (see Section S5 of Supplementary

material). We repeated the iterative cycle of sMBPLS to identify

the modules one by one, until no further significant gain is

achieved on the covariances between input and response vari-

ables of the identified modules. In the following, we perform

further analysis on the top 100 modules. The details of the 100

modules can be found on the supplementary website.
On average, each module contains 30 samples, 45 CNV loci,

42 methylation marks, 5 microRNAs and 44 genes (see the figure

of the distribution of module sizes in Supplementary material).

We used the overlap significance test on the identified 100 mod-

ules to investigate how distinct these modules are. Our results

showed that only one pair of modules has significant overlap at

the level of P-value after Bonferroni correction 50.05

(see Section S8 of Supplementary material). Figure 3 shows the

heat maps of two example modules, demonstrating the high

degree of (anti-)correlation between the four dimensions. As ex-

pected, genomic profiles of most CNV marks are positively cor-

related with the expression levels of genes. But we can also see

that genomic profiles of the methylation marks are sometimes

partially anti-correlated with the expression levels of genes. We

should note that our problem formulation shown in Figure 2(B)

is the covariance maximization between u (from Y) and the

weighted sum of ti (from Xi), so it can well capture the holistic

Fig. 3. Heat map for feature profiles of CNV, DM, microRNA and GE

in modules across the same small set of samples for (A) Module 23 and

(B) Module 83. Each row represents a sample and each column represents

a genomic feature
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correlations between response block and all input blocks. This

formulation can work well but cannot guarantee to identify those

modules in which each of input dimensions is highly correlated

with the response dimension. Therefore in some cases such as

shown Figure 3(B), there does exist some input dimension that

may not have expected correlation with the response dimension.

In addition to identifying multiple types of variables that jointly

explain the expression of a set of genes, sMBPLS also provides

the relative weights (i.e. the block weights b ¼ ½b1,b2,b3�) of each

dimension in contributing to the observed covariance. The

weight bi (i¼ 1, 2, 3) is proportional to the correlation of ti
and u in the sMBPLS model. Among the 100 modules, we

observed a significant correlation between the latent variables

ti of the CNV, DM and ME dimensions and that u of the GE

dimension in 63, 100 and 91 modules, respectively (P-value

50:01, computed from a Student’s t distribution for a trans-

formation of the Pearson’s correlation). In reality, it is not ne-

cessary for all dimensions to be equally important. The block

weight information can help to identify important regulatory

factors from the selected variables. To evaluate how robust

these identified modules are, we randomly remove 10% samples

from the dataset and then performed the same procedure to

identify 100 modules. By using the overlap significance test, we

checked the overlaps between them and the 100 modules identi-

fied from full set of samples. The 74 modules identified from

90% samples show significant overlaps over at least three dimen-

sions with 79 modules identified from full set of samples. This

result indicates good robustness of our method.

Because none of conventional methods can solve our problem,

we could only resort to comparing with those well-established

methods that can approximately arrive at our target. We used

two classes of conventional methods: (1) biclustering algorithms,

which identify correlated subsets of features across subsets of

samples from a single block (e.g. combined X and Y) and

(2) sparse PLS methods, which make regression analysis over

two blocks X and Y. The former is unsupervised learning for

exploratory data analysis while the latter is supervised learning.

We used SAMBA, a popular adopted biclustering algorithm

(Tanay et al., 2002), to perform on the block X combining all

four dimensions (CNV, DM, ME and GE). Out of the top 100

modules identified by SAMBA, 59% of the modules missed at

least one type of variables and 22% of the modules missed at

least two types of variables. We further compared our sMBPLS

approach to the sPLS approach in which we combined three

types of input data, CNV, DM and ME into a single combined

block X. Out of the top 100 modules identified by sPLS, 47% of

the modules missed at least one type of input variables and 17%

of the modules were only one-dimensional. This result showed

the unique advantage of multi-block modeling in capturing mod-

ules that elucidate relationships of variables from multiple

dimensions.

3.3 MDRMs reveal synergistic functions across multiple

dimensions

To evaluate the biological relevance of those identified

multi-dimensional modules, we first test the functional homogen-

eity for each dimension of them. A set of genes is defined as

functionally homogenous if it is enriched in at least one GO

category (Ashburner et al., 2000) with a q-value 50:05 (the

q-value is the P-value after a false discovery rate multiple testing

correction). This was often the case. The GE dimension is

functionally homogenous with respect to genes in 36% modules;

the CNV dimension with respect to CNV-harbored genes in

24% modules; the DM dimension with respect to Methylation

mark adjacent genes in 13% modules and the ME dimension

with respect to microRNA in 9% modules (microRNA function

was predicted based on the functions of their target genes), which

are significantly higher than the 1.24%, 1.48%, 2.32% and

0.35% modules after randomization (Figure 4A), respectively.
Moreover, in 17 of those miRNA modules, miRNAs were

enriched with members from the same miRNA clusters

(q-value 50:1 after multiple testing correction), where a

miRNA cluster is defined as a set of miRNAs located within

50 kb in the genome (Baskerville and Bartel, 2005). miRNAs in

a cluster are expected to play related functional roles (Yuan

et al., 2009). For example, the Module 96 includes five

miRNAs (miR-let-7e, miR-125a, miR-150, miR-200c and

miR-141). Two of these, let-7e and 125a, are members of a

miRNA cluster in chromosome 19, while miR-200c and

miR-141 belong to another miRNA cluster in chromosome 12.

It can also be shown that many modules contain genes targeted

by miRNAs in the same modules (see Section S6 in

Supplementary material). Members of the let-7-family have

been extensively reported to suppress ovarian cancers

(Koturbash et al., 2010). Also, miR-125a, miR-200c and

miR-141 were reported to be dys-regulated in ovarian cancer.

To take another example, Module 45 covers three miRNAs

(miR-27a, miR-23a and miR-205). Interestingly, miR-27a and

miR-23a are clustered in the genome and both have been re-

ported to be up-regulated in ovarian cancer (Koturbash et al.,

2010). In addition, miR-205 has been extensively studied in

Fig. 4. Comparison of (A) functional homogeneity and (B) transcrip-

tional homogeneity between gene sets from identified modules (blue

bars) and randomized gene sets (red bars). The gene set of an identified

module is either from each individual dimension (GE, CNV, DM or ME)

of the module or from genes combining all dimensions of the module.

Shown are percentages of gene sets that are functionally or transcription-

ally enriched with q-value 50:05
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relation to cancers of the bladder, lung, pancreatic, breast,
esophagus and prostate.
While the individual dimensions of those modules already ex-

hibit significant level of functional homogeneity, combining all
dimensions reveals an even stronger functional synergy. When
we consider all genes in the GE dimension, CNV-harbored genes,

methylation adjacent genes and microRNAs, 48 out of the 100
modules were found to be functionally homogenous (Figure 4),
compared to 3.8%modules in randomized data. This result high-
lights the power of multi-dimensional modules in grouping func-

tionally relevant factors from different regulatory layers. In
addition, we further compared the q-values of GO terms enriched
for modules identified by either our method or the sparse PLS

method by following the comparison procedure described in
(Costa et al., 2008; Ernst et al., 2005). The result indicates that
our method can identify more functionally homogeneous

modules with more diverse GO terms (see Section S7 of
Supplementary material). Many of the identified modules are
enriched of the biological processes such as cell cycle, cell acti-

vation, immune system process and so on, implying their possible
involvement in cancer. Also, they contain many important genes
(or microRNAs) known to be related to ovarian cancer. For

example, Module 37 includes four HOX family genes (HOXB2,
HOXB4, HOXB6 and HOXB7) that all have been extensively
reported to be related with ovarian cancer (Cheng et al., 2005;

Ota et al., 2009; Widschwendter et al., 2009; Wu et al., 2007). In
addition, the module contains a DM mark adjacent to HOXA9
that was reported to be significantly hypermethylated in ovarian

cancer patients (Widschwendter et al., 2009; Wu et al., 2007). In
addition, the member genes FGF19, GAS2, BMP7, TNFSF11,
and FGFR3 are all known to play important roles in tumor

genesis and progression. In the Module 76, miR-214, known to
be involved in cell cycle, has been reported to be dys-regulated in
ovarian cancer (Iorio et al., 2007; Nam et al., 2008; Yang et al.,

2008), and CDH13 is a potential epigenetic biomarker for ovar-
ian cancer (Wu et al., 2007).
We then test the transcriptional homogeneity for each dimen-

sion of the identified multi-dimensional modules. We used the
191 ChIP-seq profiles generated by the Encyclopedia of DNA
Elements (ENCODE) consortium (Thomas et al., 2007). This

dataset includes the genome-wide binding of 40 TFs, 9 histone
modification marks and 3 other markers (DNase, FAIRE and
DM) on 25 different cell lines (see Supplementary material).

These data provide a set of potential targets of regulatory fac-
tors. A set of genes is defined as ‘transcriptional homogenous’ if
it is enriched in the targets for any regulatory factor with a q-

value 50:05. We achieved similar results as those of functional
homogeneity analysis (Figure 4B). These modules are enriched of
the TFs such as SRF, STAT1 andH3K27me3. SRF regulates the

activity of many immediate-early genes and thereby participates
in cell cycle regulation, apoptosis, cell growth and cell differen-
tiation. STAT1 enhances inflammation and innate and adaptive

immunity, triggering in most instances anti-proliferative and
pro-apoptotic responses in tumor cells (Pensa et al., 2009).
Particularly, STAT1 negatively regulates the cell cycle by indu-

cing p21 WAF1/CIP1 in ovarian cancer (Burke et al., 1999).
H3K27me3 has been evaluated as a prognostic indicator for clin-
ical outcome in patients with breast and ovarian cancers (Wei

et al., 2008).

3.4 MDRMs facilitate the regulatory analysis

Our method has provided sets of genomic features from different

regulatory layers that are likely to be synergistic in their impact

on GE. To further elaborate the relationships between

those implicated features, we used the Ingenuity Pathway

Analysis (IPA) system (Redwood City, CA, USA) to build mo-

lecular interaction networks. From each multi-dimensional

module, we formed a set consisting of genes involved in the

GE dimension, CNV-harbored genes, methylation-adjacent

genes and microRNAs. Using this set as the input, IPA con-

structs networks based on literature-derived relationships be-

tween genes (or microRNAs) and computes a ranking score

�logðpÞ for each network. The P-value indicates the likelihood

that the genes in the input network would be found together due

to random chance. All of the multi-dimensional modules lead to

statistically significant interaction networks (P-value 5 1.0E-20)

by this analysis, which indicates the significant associations

among them.

Below, we provide in-depth descriptions of the heterogeneous

regulatory networks that affect a key tumor suppressor gene

(EGR1) and an oncogene (AKT) in ovarian cancer. EGR1 is a

cancer-suppressing gene known to be down-regulated in ovarian

cancer (Lamber et al., 2010). The network derived from the

Module 4 reveals that complex connections of heterogeneous

factors control the expression of EGR1 (Figure 5A). A direct

regulation on ERG1 comes from PITX2, a gene adjacent to a

DM mark in our module and known to be essential for the

expression of EGR1 in rat (Suh et al., 2002). Multiple indirect

influences on EGR1 are transmitted by the TF NFkB, by GNA15

and GNA11 (genes hosted by CNVs in the module) and by

FCER2 (genes adjacent to the methylation marks in the

module). In particular, WT1 (regulated by DM) is known to

positively regulate AMH (Nachtigal et al., 1998) (which is also

regulated by a CNV), which in turn positively regulates EGR1

via NFkB. In addition, EGR1 is regulated by both TMEM173

and ENTD1 (adjacent to methylations) via ERK and P38

MARK, respectively. The disruption of multiple neighbor

nodes to EGR1 by different regulatory mechanisms highlights

the complex nature of the controls on this key suppressor gene

for ovarian cancer. As another example, from Module 61 we

derived a multi-layer coordinated network (Figure 5B) regulating

AKT, a key oncogene for ovarian cancer (Altomare et al., 2004;

Fig. 5. The molecular interaction networks (constructed by IPA) that

center around the genes (A) EGR1 and (B) AKT. The networks consist

of affected genes (gray nodes), CNV-sharbored genes (red nodes) and

DM-adjacent genes (blue nodes). The solid lines represent direct inter-

actions and the dashed lines represent indirect interactions
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Yuan et al., 2000) and an important component of the

PI3-kinase/AKT pathway. The expression of AKT is positively

regulated by the loss of a CNV-containing PTEN, which would

otherwise down-regulate the expression of AKT (Pore et al.,

2003). Moreover, AKT is activated by CDH2 (Rieger-Christ

et al., 2004), the expression of which, in turn, is increased by

EDN3 (Bagnato et al., 2004). AKT is further up-regulated due

to the methylation of RASSF1 (a tumor suppressor gene), which

is consistent with the previously observed over-expression of

AKT in RASSF1A-depleted cells (Dallol et al., 2005). Additional

regulations are exerted by the loss of KSR1 (CNV), the methy-

lated STAT5A and the expression ofMAG, among others. These

factors, intertwined together, paint complex mechanisms leading

to the activation of the important oncogene AKT in ovarian

cancer.
In addition to the two examples detailed above, we observed

multi-layer coupled regulatory networks around multiple onco-

genes or tumor suppressor genes (e.g. PIK3CA and CCNE1).

The results of this analysis clearly illustrate and illuminate the

complex genetic origins of ovarian cancer. In fact, CNV, methy-

lation and microRNA regulation are only few of the many

expression regulatory mechanisms, and much more sophisticated

coordination likely exists in the origins of this illness. The algo-

rithm proposed in this study takes the first steps along the path

to effectively integrate multi-dimensional data to explore the

complex regulatory mechanisms.

4 CONCLUSIONS

In this study, we developed a sMBPLS regression method to

identify multi-dimensional regulatory modules in diverse types

of genomic data measured on the same set of samples.

Classical eQTL analysis can only be applied to relate one type

of genomic marker (e.g. SNP) to GE. In contrast, sMBPLS can

identify combinations of multiple types of genomic markers that

jointly impact the expression of a set of genes. We have applied

the sMBPLS method to a suite of genomic profiles from 230

ovarian cancer samples, including CNV, DM, microRNA and

GE data. The algorithm identified 100 modules, many of which

display a high degree of functional homogeneity in at least one

genomic dimension. If all dimensions of data are considered to-

gether, the modules exhibit an even greater degree of functional

synergy. A detailed network view of individual modules reveals

that many genomic features would remain isolated if we only

considered one type of data. By combining diverse types of

data, sMBPLS links the different regulatory layers and thus dis-

covers more coherent and connected regulatory networks.

Furthermore, our method derives weights for the dimensions

of CNV, methylation and microRNA in each module, which

indicate their relative contributions to the expression of individ-

ual sets of genes. We have demonstrated that multiple heteroge-

neous factors in a module can have combinatorial effects on GE.

We should note that (1) this does not necessarily reflect the direct

causal mechanisms for GE, but the revealed modules can be a

good start point to further study the underlying mechanisms;

(2) sMBPLS outperforms most existing algorithms in analyzing

more than two data blocks, although it may not possibly im-

prove the results when applied to only two blocks X and Y.

In summary, we expect that there will soon be a rapid increase

of multi-dimensional data, and developing methods for such

data will become an active research area. We have proposed a

promising tool to extract coherent substructures from large-scale,

complex datasets, greatly facilitating downstream biological

analysis. Interpreting such complex modules is still a major

challenge, given our limited knowledge of multi-layer coordin-

ation in biological systems. However, the rapid accumulation of

multi-dimensional data and the knowledge derived from them

will definitely accelerate a positive cycle of the knowledge

discovery.
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