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Abstract

LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocyto-

sis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused

on LRPs in the fields of vascular biology and neurobiology. How these receptors affect can-

cer progression in humans remains largely unknown. Herein, we mined provisional data-

bases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten

common solid malignancies in patients. Our first goal was to determine the abundance of

LRP mRNAs in each type of cancer. Our second goal was to determine whether expression

of LRPs is associated with improved or worsened patient survival. In total, data from 4,629

patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP

was LRP1; however, a correlation between LRP1 mRNA expression and patient survival

was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1

mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR)

mRNA were associated with decreased patient survival in pancreatic adenocarcinoma.

High levels of LRP10 mRNA were associated with decreased patient survival in hepatocel-

lular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the

only LRP for which high levels of mRNA expression correlated with improved patient sur-

vival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene

expression in human cancers and their effects on patient survival should guide future

research.

Introduction

The LDL Receptor (LDLR) gene family includes single-pass, type 1 transmembrane proteins

that share common structural motifs, including EGF-like repeats, cysteine-rich comple-

ment-like repeats, and sequential YWTD-containing repeats that are organized into β-pro-

peller structures [1–5]. Although members of this gene family, which are typically called

LDL Receptor-related Proteins (LRPs), may be more closely or distantly related to the
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LDLR, for the purposes of this study, we consider thirteen LRPs, including the LDLR, LRP1/

CD91, LRP1b, LRP2/megalin, LRP3, LRP4/MEGF7, LRP5, LRP6, LRP8/apolipoprotein E

receptor 2, LRP10, which also has been referred to as LRP9 [6], LRP11/SorLA, LRP12/ST7,

and the VLDL receptor (VLDLR). At the cellular level, LRPs function in endocytosis, cargo

transport, and cell-signaling, and regulate the subcellular localization of other proteins [3–5,

7–9].

Considerable work has focused on the function of LRPs in vascular biology and neurobiol-

ogy. LRPs also have been studied in cancer; however, how these receptors affect cancer pro-

gression in human patients remains largely unknown. Published work on LRP1 provides an

example. Preclinical studies in cell culture and mouse model systems have shown that LRP1

may decrease the aggressiveness of cancer cells by down-regulating the cell-surface abundance

of urokinase-type plasminogen activator receptor (uPAR), by internalizing metalloproteinases

(MMPs), and by activating cell-signaling pathways that counteract β-catenin-signaling [10–

13]. On the other hand, LRP1 may promote cancer progression by serving as a receptor for the

growth factor, midkine, by signaling through ERK1/2 to induce expression of MMPs, and by

facilitating survival of micro-metastases [10, 14–16].

The Cancer Genome Atlas (TCGA) is an open access resource that provides transcriptome

profiling databases for diverse solid malignancies in human patients [17]. TCGA mRNA

expression data collected using RNA next-generation sequencing (RNA-Seq) may be mined to

compare expression of genes within a large dynamic range [18]. The goal of the present study

was to determine whether expression of LRPs within tumor tissue has predictive value with

regard to prognosis and/or outcome in human cancers. We examined a wide scope of com-

mon solid malignancies including bladder urothelial carcinoma, breast invasive carcinoma,

colorectal adenocarcinoma, glioblastoma, renal clear cell carcinoma, hepatocellular carcinoma,

lung adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, and cutaneous

melanoma. Our analysis identified correlations between LRP1 and LRP2 mRNA expression

levels and patient survival, but only in bladder urothelial carcinoma and renal clear cell carci-

noma, respectively. Increased LRP10 mRNA expression was associated with decreased patient

survival in three different malignancies: hepatocellular carcinoma, lung adenocarcinoma, and

pancreatic adenocarcinoma. Increased LDLR mRNA expression was associated with decreased

patient survival in pancreatic adenocarcinoma. These results provide justification for further

research to elucidate the function of LRPs in cancer.

Results

Variation in gene expression in specimens of a single type of cancer and

amongst different cancers

To study expression of LRPs in solid malignancies in humans and determine whether expres-

sion of LRPs is associated with altered patient survival, we mined provisional TCGA datasets.

The types of cancer analyzed and the number of patients in each provisional dataset at the

time of analysis are shown in Table 1. Our first objective was to compare absolute expression

of different LRP mRNAs within each solid malignancy using RNA-Seq data, quantified and

normalized using the RSEM algorithm [19]. The same data were transformed to examine

expression of individual LRPs in different cancers. In this study, we did not compare expres-

sion of LRPs in paired samples from non-malignant tissue adjacent to tumors or normal

tissue.

To provide a framework for interpreting variability in LRP gene expression amongst speci-

mens of a single type of cancer and in different cancers, we mined the ten TCGA datasets to

identify genes that demonstrate the least variability. First, we examined individual cancer

Expression of LRPs in cancer in patients
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datasets. For each gene, the coefficient of variation (CV = SD/mean) in mRNA expression was

determined. The genes were then ranked, beginning with the lowest CV, which indicates the

lowest degree of variability in gene expression from tumor sample to tumor sample. When the

absolute expression level of a gene was below the median expression level for all genes in a

dataset, in three or more of the ten cancers studied, that gene was omitted from the analysis.

Three genes emerged: TARDP (Transcription of RNA activating protein/TAR DNA binding

protein); HNRNPK (Heterogeneous Nuclear Ribonucleoprotein K); and WDR33 (WD Repeat

Domain 33) as having the lowest CVs across the spectrum of cancers (Table 2). For TARDP,

the CVs ranged from 0.118–0.202 (mean of 0.172). For HNRNPK and WDR33, the CVs varied

from 0.141–0.215 (mean of 0.182) and from 0.136–0.252 (mean of 0.210), respectively. For

comparison, the mean CVs for the frequently studied gene expression standards, GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) and ACTB (β-actin), were 0.587 and 0.369,

respectively.

Next, we compared expression of TARDP, HNRNPK, and WDR33 in different cancers. The

mean levels of mRNA expression were averaged and SDs were determined (n = 10). The CVs

were 0.095, 0.106, and 0.109 for TARDP, HNRNPK, and WDR33, respectively, reflecting vari-

ability in gene expression across different categories of cancer that was no greater than the var-

iability observed in different specimens of the same malignancy. These results suggest that

there are genes that are expressed in a fairly consistent manner by cancers of different origin

and derivation.

LRP expression in solid malignancies

Expression of thirteen LRPs was compared in ten solid malignancies (Fig 1). In nine of ten

cancers, LRP1 was the most abundantly expressed LRP at the mRNA level. The CVs for LRP1
mRNA expression in individual cancers ranged from 0.52–0.79. In renal clear cell carcinoma,

LRP2 was the most abundantly expressed LRP. This result is interesting because LRP2/megalin

was first characterized as a protein expressed by proximal tubule and glomerular epithelial

cells in the kidney [20, 21]. Considerable variability in LRP2 mRNA expression was observed

in renal clear cell carcinoma (CV = 0.93). Other LRPs that were expressed at relatively high lev-

els in a number of solid malignancies included LRP10 and LRP5.

Next, we re-organized the mRNA expression data to compare the relative abundance of

specific LRP mRNAs in different cancers. Fig 2 shows results for LRP1, LRP2, LRP5 and

LRP10. We selected these LRPs for presentation in Fig 2 because they were highly expressed in

one or more solid malignancy. Similar comparisons for other LRPs may be derived from the

Table 1. Solid malignancies analyzed using cBioPortal (TCGA, provisional).

Cancer Number of Patients

Bladder Urothelial Carcinoma 408

Breast Invasive Carcinoma 1100

Colorectal Adenocarcinoma 382

Glioblastoma 166

Renal Clear Cell Carcinoma 534

Hepatocellular Carcinoma 373

Lung Adenocarcinoma 517

Pancreatic Adenocarcinoma 179

Prostate Adenocarcinoma 498

Cutaneous Melanoma 472

https://doi.org/10.1371/journal.pone.0186649.t001

Expression of LRPs in cancer in patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0186649 October 31, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0186649.t001
https://doi.org/10.1371/journal.pone.0186649


Table 2. Identification of three novel gene standards for assessing variability in gene expression in human cancer.

TARDBP

Tumor Mean ST DEV CV CV Rank

Urothelial Carcinoma 3828.70 670.66 0.175 1

Breast Invasive Carcinoma 3611.89 546.72 0.151 1

Colorectal Adenocarcinoma 3532.25 615.47 0.174 11

Hepatocellular Carcinoma 3011.73 557.66 0.185 1

Renal Clear Cell Carcinoma 2806.08 520.45 0.185 21

Lung Adenocarcinoma 3165.96 618.77 0.195 2

Cutaneous Melanoma 3258.84 659.13 0.202 1

Pancreatic Adenocarcinoma 3085.40 365.37 0.118 1

Prostate Adenocarcinoma 3398.49 446.96 0.132 2

Glioblastoma 3049.98 607.92 0.199 86

Mean CV = 0.172

Mean expression (±SD) in ten cancers: 3274 ± 312, CV = 0.095

HNRNPK

Tumor Mean ST DEV CV CV Rank

Urothelial Carcinoma 11828.69 2549.08 0.215 4

Breast Invasive Carcinoma 13805.55 2454.08 0.178 2

Colorectal Adenocarcinoma 13099.82 1852.45 0.141 1

Hepatocellular Carcinoma 10051.10 2146.73 0.214 3

Renal Clear Cell Carcinoma 11289.79 1683.60 0.149 1

Lung Adenocarcinoma 11029.18 1969.11 0.179 1

Cutaneous Melanoma 11583.02 2483.32 0.214 3

Pancreatic Adenocarcinoma 10448.15 1493.86 0.143 6

Prostate Adenocarcinoma 12075.11 2317.51 0.192 201

Glioblastoma 10164.33 2021.06 0.199 80

Mean CV = 0.182

Mean expression (±SD) in ten cancers: 11537 ± 1227, CV = 0.106

WDR33

Tumor Mean ST DEV CV CV Rank

Urothelial Carcinoma 1388.32 296.64 0.214 3

Breast Invasive Carcinoma 1350.54 276.37 0.205 5

Colorectal Adenocarcinoma 1434.31 235.41 0.164 3

Hepatocellular Carcinoma 1345.56 307.63 0.229 6

Renal Clear Cell Carcinoma 1299.26 233.45 0.180 15

Lung Adenocarcinoma 1602.65 404.10 0.252 49

Cutaneous Melanoma 1401.42 298.26 0.213 2

Pancreatic Adenocarcinoma 1344.65 182.35 0.136 4

Prostate Adenocarcinoma 1246.94 201.57 0.162 39

Glioblastoma 1027.06 177.02 0.172 11

Mean CV = 0.210

Mean expression (±SD) in ten cancers: 1343 ± 146, CV = 0.109

GAPDH

Tumor Mean ST DEV CV CV Rank

Urothelial Carcinoma 90712 49119 0.541 2790

Invasive Carcinoma 56875 42011 0.739 3907

Colorectal Adenocarcinoma 78335 33163 0.423 3179

Hepatocellular Carcinoma 72330 51516 0.712 2361

(Continued )
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data shown in Fig 1. LRP1 mRNA was most abundant in glioblastoma, hepatocellular carci-

noma, and pancreatic adenocarcinoma. In addition to renal clear cell carcinoma, LRP2 mRNA

was detected in breast invasive carcinoma at fairly high levels but with extremely high variabil-

ity (CV = 2.43). LRP5 mRNA was most abundantly expressed in hepatocellular, colorectal,

lung, and pancreatic carcinoma. LRP10 mRNA was most abundantly expressed in pancreatic,

lung, and colorectal carcinoma. A pitfall that must be considered when analyzing the data pre-

sented in Fig 2 is the contribution of non-malignant cell mRNA to the expression results,

which may be inconsistent in different malignancies. Non-malignant cells also may contribute

differentially to the abundance of mRNAs for different LRPs, impacting the results presented

in Fig 1.

LRP expression in cancer and patient survival

Next, we mined available data to search for correlations between LRP mRNA expression and

patient survival. For each cancer, we examined the LRPs that were most abundantly expressed.

Cases for which survival data were available were stratified based on the expression level of the

LRP of interest. Two comparisons were made. First, cases with mRNA expression levels above

the median (top 50%) were compared with cases with mRNA expression levels below the

median (bottom 50%). Second, cases with mRNA expression levels in the top quartile were

compared with cases with LRP expression levels in the bottom quartile, discarding 50% of the

cases from the analysis. Table 3 summarizes the results of the survival analyses performed.

Although we examined the effects of LRP1 mRNA expression on survival in all ten malig-

nancies, LRP1 mRNA expression demonstrated a significant correlation with patient survival

only in urothelial carcinoma of the bladder. In this cancer, high levels of LRP1 mRNA expres-

sion were associated with decreased survival in the 50%/50% comparison (p<0.0001) and in

Table 2. (Continued)

Renal Clear Cell Carcinoma 116430 64085 0.550 3316

Lung Adenocarcinoma 58154 38372 0.660 3692

Cutaneous Melanoma 122930 83104 0.676 3494

Pancreatic Adenocarcinoma 57592 40059 0.696 3752

Prostate Adenocarcinoma 35117 15528 0.442 2353

Glioblastoma 96437 41842 0.434 2905

Mean CV = 0.587

Mean expression (±SD) in ten cancers: 78488 ± 28134, CV = 0.358

ACTB

Tumor Mean ST DEV CV CV Rank

Urothelial Carcinoma 120546 53994 0.448 1958

Breast Invasive Carcinoma 98226 40396 0.411 1558

Colorectal Adenocarcinoma 113527 29562 0.260 710

Hepatocellular Carcinoma 74583 32199 0.432 1006

Renal Clear Cell Carcinoma 85639 30297 0.354 1628

Lung Adenocarcinoma 121276 43140 0.356 1032

Cutaneous Melanoma 122446 56282 0.460 1834

Pancreatic Adenocarcinoma 120746 38580 0.320 1510

Prostate Adenocarcinoma 65830 24318 0.369 2627

Glioblastoma 135424 39077 0.289 1078

Mean CV + 0.369

Mean expression (±SD) in ten cancers: 105824 ± 23406, CV = 0.221

https://doi.org/10.1371/journal.pone.0186649.t002

Expression of LRPs in cancer in patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0186649 October 31, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0186649.t002
https://doi.org/10.1371/journal.pone.0186649


Fig 1. Relative abundance of LRPs in ten common solid malignancies. RNAseqV2 data for the indicated cancers are presented

as the mean ± SD. Note that the scale for the y-axis is different in the top four graphs compared with the bottom six graphs.

https://doi.org/10.1371/journal.pone.0186649.g001
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the 25%/25% comparison (p<0.0005) (Fig 3). The correlation between LRP1 mRNA expres-

sion and patient survival in urothelial carcinoma was unanticipated because LRP1 mRNA

expression was relatively low in this cancer compared with other malignancies.

In renal cell carcinoma of the kidney, increased LRP2 mRNA expression was associated

with substantially improved patient survival. This is the only cancer in which we detected a

correlation between high levels of expression of an LRP and increased patient survival. We

speculated that LRP2 may represent a biomarker for more differentiated tumors.

Fig 2. Vertical scatter plots comparing LRP expression in different cancers. Results are presented for LRP1, LRP2, LRP5, and LRP10. Each

tumor specimen is represented by a data point. Red horizontal bars mark the mean expression level. To optimize data presentation, a small

number of points demarcating tumors with “off-scale” high mRNA expression were omitted as follows: LRP1: glioblastoma (5), hepatocellular

carcinoma (5), other tumors (3); LRP2: renal clear cell carcinoma (27), breast carcinoma (12); LRP5: breast carcinoma (8), hepatocellular

carcinoma (7), urothelial carcinoma (5), other tumors (6); LRP10: lung adenocarcinoma (9); other tumors (3).

https://doi.org/10.1371/journal.pone.0186649.g002

Expression of LRPs in cancer in patients
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We examined the effects of LRP4 mRNA expression on patient survival in glioblastoma.

We examined the effects of LRP5 mRNA expression on patient survival in six cancers. These

analyses failed to reveal significant correlations. Increased LRP10 mRNA expression was asso-

ciated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and

pancreatic adenocarcinoma. LDLR mRNA expression was associated with decreased patient

survival in pancreatic adenocarcinoma.

Discussion

Numerous studies have analyzed LRP expression and the function of LRPs in cancer; many

of these studies have been performed using preclinical model systems. This paper does not

review these previous studies comprehensively. Instead, we examined existing data regarding

LRP gene family members in large provisional TCGA datasets and focused on mRNA abun-

dance and possible correlations between LRP mRNA expression and cancer progression as

determined by overall patient survival. We did not consider somatic or germline mutations

in LRPs that may alter LRP structure and/or function. We also did not attempt to determine

whether LRP expression varies with cancer properties such as grade. Patient populations are

not stratified based on age, gender, or treatment protocols. These factors all may influence

survival.

Examining glioblastoma in the context of gliomas in general provides an example of how

the approach applied in database mining may influence the conclusions drawn. Glioblastomas

are high-grade or grade-4 gliomas, which are differentiated from less aggressive low-grade

(2/3) gliomas [22]. Ceccarelli et al. [23] recently published a dataset of RNA-Seq mRNA

expression results comparing gliomas of different grades. In this dataset, the absolute abun-

dance of LRP1 mRNA was decreased in grade-4 gliomas or glioblastomas, compared with

grade-2 and grade-3 gliomas. As a result, when the effects of LRP1 mRNA abundance on

patient survival were examined, considering all gliomas comprehensively (grades 2+3+4), high

levels of LRP1 mRNA were significantly associated with improved patient survival. This corre-

lation, however, most likely reflects LRP1 functioning as a surrogate biomarker for low-grade

gliomas. When survival of glioblastoma patients was examined in isolation, using the same

dataset [23], LRP1 mRNA expression failed to be significantly correlated with patient survival,

although there was a trend in which increased LRP1 mRNA was associated with decreased

Table 3. Patient survival analyses.

Tumor LRP1 LRP2 LRP4 LRP5 LRP10 LDL-R

Urothelial p<0.0005 X X NS NS X

Breast NS NS X NS NS X

Colorectal NS X X NS NS NS

Glioblastoma NS X NS X NS X

Renal Cell NS p<0.0001 X X NS X

Hepatocellular NS X X NS p<0.005 NS

Lung NS X X NS p<0.05 NS

Pancreatic NS X X NS p<0.05 p<0.01

Prostate NS X X X NS X

Melanoma NS NS X X NS X

P-values are shown for statistically significant differences in patient survival associated with having tumors in which expression of the indicated LRP is in the

top 25% versus the bottom 25%. Analyses that were performed that did not generate statistically significant results are marked “NS” or “not significant”. An

“X” designates an analysis that was not performed.

https://doi.org/10.1371/journal.pone.0186649.t003
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Fig 3. Patient survival curves that demonstrate significant effects of LRP mRNA expression on survival. Only highly

expressed LRPs were analyzed for their effects on patient survival, as summarized in Table 1. For each gene and cancer, two

curves are shown. The first stratifies the entire provisional dataset so that cases in which the gene of interest is expressed

above the median value (top 50%) are compared with cases in which the gene of interest is expressed below the median

value. In the second graph, populations in which the gene of interest is expressed in the top 25% or in the bottom 25% are

compared. The identical datasets were mined to generate both plots. The cohort size or “n” is shown for each graph. The p-

value is listed.

https://doi.org/10.1371/journal.pone.0186649.g003

Expression of LRPs in cancer in patients
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patient survival. The identical, non-significant trend was apparent in the provisional TCGA

dataset. When we compared glioblastomas that expressed LRP1 mRNA in the top 10% with

tumors that expressed LRP1 in the bottom 10%, increased LRP1 expression was significantly

correlated with decreased patient survival (p = 0.026, n = 106) [23]. These results and the high

level of LRP1 expression in human glioblastoma justify further studies to understand the func-

tion of this receptor in this malignancy.

Expression of LRP2 in renal cell carcinoma has been reported previously [24]. Germ-line

polymorphisms in the LRP2 gene may be associated with increased risk for recurrence in pros-

tate cancer [25] and somatic mutations in LRP2 have been identified in gastric cancer [26].

Our analysis of patient survival data using TCGA datasets demonstrated a correlation between

high levels of LRP2 mRNA expression and increased patient survival in renal clear cell carci-

noma. No correlation was observed in breast cancer. Andersen et al. [27] showed that in mela-

noma cells in culture, LRP2 promotes cell survival and proliferation. We did not observe a

significant difference in patient survival when LRP2 expression was examined in cutaneous

melanomas in patients.

LRP5 and LRP6 are Wnt co-receptors that regulate β-catenin signaling [28–30]. Other

members of this signaling pathway are well-characterized oncogenes and tumor suppres-

sors, which when mutated in the germline or in cancer tissue, regulate carcinogenesis and

cancer progression [31, 32]. Elegant studies have demonstrated regulation of β-catenin

activity by LRP5 and LRP6 [33–37]. Because of its higher abundance, we chose to examine

the effects of LRP5 mRNA expression on patient survival in six different malignancies,

including colorectal adenocarcinoma, and failed to demonstrate a significant effect. By

contrast, high levels of LRP10 mRNA expression correlated with decreased patient survival

in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma.

LRP10 mRNA has been identified in normal brain, muscle, heart, liver, kidney, and lungs

[6, 38].

Very few mechanistic studies have addressed mechanisms by which LRP10 may regulate

cancer progression. It is known that LRP10 traffics between the trans-Golgi network, endo-

somes, and the plasma membrane [39, 40]. LRP10 also has been identified as a negative mod-

ulator of Wnt/β-catenin signaling [41]. LRP10 interacts with Phosphatase of Regenerating

Liver (PRL) gene family members, which are reported to regulate tumorigenesis and cancer

metastasis [42]. The results of our TCGA analysis justify additional work to elucidate the func-

tion of LRP10 in cancer.

In patients with adenocarcinoma of the pancreas, high levels of LDLR mRNA expression

were associated with worsened patient survival. This finding is particularly interesting because

an important role for LDLR has been established previously in a transgenic mouse model of

spontaneous pancreatic ductal adenocarcinoma [43, 44]. Apparently, in mouse pancreatic can-

cer, hypoxia is extensive and activation of lipid metabolism promotes tumor cell survival and

cancer progression. The results presented here suggest that similar pathways may be opera-

tional in humans with pancreatic cancer, a malignancy for which current therapies are gener-

ally inadequate [45].

A unique characteristic of many LRPs, compared with most other receptors, is the ability to

bind numerous ligands [4]. Because of this characteristic, LRPs may be targets for cancer ther-

apeutic design even when expression does not correlate with patient survival. LRP1 provides

an example. By recruiting distinct co-receptors in response to different ligands, LRP1 elicits

ligand-specific cell-signaling responses [46–48]. If different LRP1 ligands are able to generate

distinct signaling responses in cancer cells, it may be possible to design LRP1 ligands that drive

tumor cell physiology in a manner that favors a cure.

Expression of LRPs in cancer in patients
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Materials and methods

Mining The Cancer Genome Atlas (TCGA)

RNA-Seq V2 RSEM gene expression data were mined from TCGA, which is an open-access

resource with datasets on a variety of malignancies. We examined provisional TCGA datasets

using the cBioPortal for Cancer Genomics database [49, 50], which may be accessed at www.

cbioportal.org. These datasets combine published data with data obtained from cancer samples

examined subsequent to publication. The number of patients in each dataset at the time we

mined TCGA is shown in Table 1. TCGA data were downloaded as text files. Bar graphs and

vertical scatter plots were generated in Graphpad Prism 5.

Identification of gene standards

Mean RNA-Seq V2 RSEM expression values and SDs were obtained for each gene in the ten

provisional TCGA datasets, corresponding to the ten solid malignancies of interest. For each

gene and solid tumor, a CV was calculated. The genes were then ranked based on the CV so

that the gene with the lowest CV was number 1. We then averaged the CV rankings of each

gene across the ten solid tumors and identified three genes with the lowest mean CV. These

three genes are presented as standards to display the minimum anticipated variability in gene

expression across different specimens of the same malignancy. To determine variability in

gene expression across different malignancies, the mean expression levels in all ten solid

tumors were averaged. The SDs and CVs were then determined.

Patient survival analyses

For each malignancy, patient survival data are available in TCGA for only a fraction of the

cases. This fraction is indicated in Fig 3. LRPs that were most abundantly expressed in each

cancer were selected for patient survival analysis. Survival was compared for patients in which

expression of the gene in the cancer of interest was in the top 50% versus the bottom 50%. A

second analysis was performed comparing the top 25% and lowest 25%. Survival results were

subjected to Mantel-Cox log-rank test using GraphPad Prism 5 (GraphPad Software). Differ-

ences in survival were considered statistically significant when the analysis achieved p<0.05.
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