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A B S T R A C T   

Currently, vaccination is the most effective medical measure to improve group immunity and prevent the rapid 
spread of COVID-19. Since the individual difference of vaccine effectiveness is inevitable, it is necessary to 
evaluate the vaccine effectiveness of every vaccinated person to ensure the appearance of herd immunity. Here, 
we developed an artificial intelligent (AI)-assisted colorimetric polydopamine nanoparticle (PDA)-based lateral 
flow immunoassay (LFIA) platform for the sensitive and accurate quantification of neutralizing antibodies 
produced from vaccinations. The platform integrates PDA-based LFIA and a smartphone-based reader to test the 
neutralizing antibodies in serum, where an AI algorithm is also developed to accurately and quantitatively 
analyze the results. The developed platform achieved a quantitative detection with 160 ng/mL of detection limit 
and 625–10000 ng/mL of detection range. Moreover, it also successfully detected totally 50 clinical serum 
samples, revealing a great consistency with the commercial ELISA kit. Comparing with commercial gold 
nanoparticle-based LFIA, our PDA-based LFIA platform showed more accurate quantification ability for the 
clinical serum. Therefore, we envision that the AI-assisted PDA-based LFIA platform with sensitive and accurate 
quantification ability is of great significance for large-scale evaluation of vaccine effectiveness and other point-of- 
care immunoassays.   

In 2019, the sudden outbreak of coronavirus disease 2019 (COVID- 
19) spreads rapidly around the world, causing serious harm to the 
human health and global economy (Zhu et al., 2020). According to data 
released by the World Health Organization (WHO) by September 2021, 
the cumulative number of confirmed cases has exceeded 200 million, the 
death toll has exceeded 4 million, and the number of infections is 
increasing by millions every week (https://covid19.who.int). Currently, 

vaccination is the most effective medical intervention to impede the 
development of epidemics and help us to return to normal life (Nel and 
Miller, 2021). Through constant efforts of vaccine development scien-
tists and enterprise, five major vaccines have been available for the 
public (Zhao et al., 2020). However, the effectiveness of existing vac-
cines is still a concern and the corresponding individual difference is 
inevitable (Ibarrondo et al., 2021; Lv et al., 2020). Therefore, it is 
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necessary to evaluate the vaccine effectiveness for every vaccinated 
person to ensure the herd immunity (Heaton, 2021). 

Considering the large number of vaccinated people, the ideal eval-
uation method for vaccine effectiveness should be cheap, fast and easy- 
to-operate. For now, the popular method to evaluate the vaccine effec-
tiveness is to test the neutralizing antibodies, since neutralizing anti-
body is the key molecule to inhibit the binding of virus to host cells 
(Earle et al., 2021). At present, there are several neutralization test (NT) 
methods. For instance, the plaque reduction neutralization test (PRNT) 
is one kind of traditional method of neutralizing antibodies test. How-
ever, due to its low throughput and long duration, PRNT is not practical 
for large-scale serodiagnosis and vaccine evaluation (Muruato et al., 
2020). To address this, a fluorescent-based high-throughput assay was 
developed to detect COVID-19 neutralizing antibodies that yields 
equivalent results to the traditional PRNT assays (Muruato et al., 2020). 
Furthermore, a chemiluminescence reduced neutralization test 
(CRNT)-based antibody detection system was also developed to measure 
the neutralizing antibodies to SARS-CoV-2 under BSL2 conditions (Tani 
et al., 2021). However, NT methods not only require severe experi-
mental conditions and professional persons, but also need a long process 
of cell culture. ELISA is the most commonly used antibody detection 
method with high sensitivity and specificity, which could be completed 
within several hours. For example, a neutralizing antibody detection 
method was developed that does not require any live virus or cells and 
can be completed in 1–2 h on an ELISA plate with 95–100% sensitivity 
(Tan et al., 2020). Additionally, the S1 structural domain of the spike 
protein is also used to detect IgG antibodies against COVID-19 in an 
indirect ELISA for the detection of immune responses in vaccinated 
people over 1 h (Krahling et al., 2021). Although the ELISA method is 
high throughput, it still needs hours to output the results and severely 
depends on large equipment and skilled operators. Moreover, its high 
cost also hiders the applications for large scale evaluation of vaccine 
effectiveness (Berg et al., 2015). 

Recently, lateral flow immunoassay (LFIA) has attracted wide 
attention, due to its advantages of simple operation, rapid detection, low 
cost, enabling on-site testing without aid of large equipment (Moham-
mad Lukman et al., 2018). Therefore, the LFIA is superior to ELISA for 
large-scale evaluation of vaccine effectiveness in aspects of detection 
cost (11–16 dollors for LFIA vs. ~50–65 dollors for ELISA), detection 
time (<20 min for LFIA vs. 1–2 h for ELISA) and operation process (one 
step for LFIA vs. 8 steps for ELISA) (Mohit et al., 2021). For instance, a 
gold nanoparticle (AuNP)-based LFIA was developed for monitoring 
early immune responses to COVID-19 and for large-scale screening to 
assess SARS-CoV-2 vaccine efficacy (Roda et al., 2021). Another 
Surface-Enhanced Raman Scattering (SERS) based-LFIA was also 
developed to achieve accurate and rapid screening of COVID-19 and to 
provide an effective complementary means (Liu et al., 2021a). At pre-
sent, commercial AuNP-based LFIA has been widely used due to its 
simple operation and visual readout of results. However, the 
AuNP-based LFIA is limited by low sensitivity, disable quantification 
(Shirshahi et al., 2020) and potential threat to environment (Du et al., 
2020), which may lead to misjudgments for vaccine effectiveness. 
Therefore, the development of a highly sensitive, environment-friendly, 
and quantitative LFIA platform for accurate neutralizing antibody 
detection is necessary for epidemic prevention and control. 

Here, we developed a colorimetric LFIA platform to accurately and 
quantitatively detect the neutralizing antibodies against COVID-19, by 
integrating a polydopamine (PDA) nanoparticles (NPs)-based LFIA and 
an associated artificial intelligent (AI) analysis algorithm. To conve-
niently read out and analyze the detection results, we assembled a 
portable smartphone-based reader using Lego blocks to image the LFIA 
results and output it for the AI algorithm to accurately analyze the 
neutralizing antibody concentration. By comparing with commercial 
AuNP-based LFIA, the developed colorimetric LFIA platform exhibited a 
higher sensitivity. Moreover, the developed colorimetric LFIA was able 
to quantify the neutralizing antibody concentration in serum samples 

and exhibit great consistence with the ELISA results. Thus, we envision 
that the developed colorimetric LFIA platform is a powerful tool for the 
low-cost, fast and large-scale vaccine effectiveness evaluation. 

1. Results and discussion 

Principle of PDA-based LFIA Platform. Currently, it is urgently 
needed to rapidly and accurately detect neutralizing antibodies against 
COVID-19 for the evaluation of convalescent plasma therapy and vac-
cine effectiveness. To address this, we developed an AI-assisted PDA- 
based LFIA platform composed of a PDA-based LFIA (Fig. 1a) and a 
smartphone-based reader (Fig. 1b and c). The PDA-based LFIA contains 
a test line and a control line, with test line immobilized with ACE2 an-
tigens and control line immobilized with goat anti-mouse IgG. The PDA 
probe is conjugated with receptor binding domain (RBD) of viral spike 
protein (S protein) and mouse lgG. When the negative sample is added to 
the LFIA, the PDA probe is combined with the test line and control line 
on the NC membrane (upper Fig. 1a). If the positive sample (containing 
neutralizing antibodies) is added, the neutralizing antibodies will first 
bind specifically with the PDA probe to form PDA-NA complex. Under 
the capillary force, the PDA-NA complex will flow through the test line 
and control line. Since the RBD on PDA probe surface has bound with 
neutralizing antibodies, the PDA-NA complex is not able to be captured 
by ACE2 on the test line, while the PDA probes without binding 
neutralizing antibodies will be captured on test line. After that, the 
excessive PDA probes would bind to the goat anti-mouse lgG on the 
control line (bottom Fig. 1a). By measuring the colorimetric signal of test 
and control lines, the concentrations of neutralizing antibodies can be 
calculated. 

To accurately and conveniently read out the results, we assembled a 
smartphone-based portable reader by using Lego blocks (Fig. 1b), which 
can shield external light permeation and remian a stable light environ-
ment under illumination of the smartphone flash. At the bottom of 
portable reader, a slot is designed for PDA-based LFIA. To read the test 
and control lines of PDA-based LFIA, a dark passageway is left and 
covered with a black cotton. The black cotton can avoid the reflection of 
the flash light. At the top of reader, there is a support plate to put the 
smartphone and a readout window for the smartphone camera (Fig. 1c). 
With the smartphone flash, a bright and clear image of PDA-based LFIA 
can be captured by the smartphone. After the analysis of trained AI al-
gorithm, the obtained images are converted to quantitative results of 
neutralizing antibodies (Fig. 1d). 

Characterization of PDA NPs. The PDA NPs are selected here as the 
probes of LFIA, due to its pronounced absorption for visible wavelengths 
(Meredith and Sarna, 2006). Moreover, the PDA NPs are biodegradable 
(Molnár, 2020), making the PDF-based LFIA disposable and 
environment-friendly. However, the strong adhesion of PDA NPs makes 
them easily attached on the NC membrane (Lee et al., 2007). Therefore, 
if we directly modified the antibodies on the PDA NPs surface, the ob-
tained PDA probes would be mostly non-specific absorbed on test line 
resulting in a false negative result (Fig. 2a). To address this issue, we first 
coated the PDA NPs with three polyelectrolyte layers (i.e., PSS, PAH, 
PVP) by layer-by-layer assembly technology (Pastoriza-Santos et al., 
2006). Then, a dense silica layer was formed to prevent non-specific 
adsorption of PDA NPs. Next, COOH-PEG-Silane was modified on the 
surface of PDA NPs to further enhance the anti-fouling ability of PDA 
NPs and provide carboxyl groups to following antibodies modification. 
The obtained PDA probes could efficiently decrease the non-specific 
absorption on test line in positive group (Fig. 2b). The solutions of 
naked PDA, PDA@Polymer3@SiO2, and PDA@polymer3@SiO2@-
PEG-RBD are stable and uniformly dispersed in water (Fig. 2c). We 
observed an obvious increase of particle size as reflected by the TEM 
images of PDA NPs before and after surface modification (Fig. 2d), 
indicating the successful fabrication of core-shell structure. Meanwhile, 
the zeta potential and dynamic light scattering (DLS) were also tested 
during coating process (Fig. S1 and Fig. 2e and f). The zeta potential 
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results showed that both the polyelectrolyte layer and SiO2 layer 
decrease the negative potential of naked PDA NPs, while the RBD 
coating increases the negative potential. The DLS results confirmed the 
continuous size increase of PDA NPs after sequential surface coating. 
The final DLS size of PDA@polymer3@SiO2@PEG-RBD is ~270 nm. 
Both DLS and zeta potential results confirmed the successful surface 
modifications of PDA NPs. Moreover, we compared the UV–vis spectra 
of PDA NPs and AuNPs at the same mass fractions (4.5‰) (Fig. 2g). The 
results showed that the PDA NPs possess higher absorption during 
visible wavelengths than AuNPs, indicating that the PDA NPs could 
contribute higher colorimetric signal than AuNPs when used in LFIA. 
Notably, the eyes readable colorimetric signal is the overall absorption 
in the visible range (400–700 nm). Therefore, the LSPR peak shift of 
AuNPs with different sizes has few effect on the colorimetric signal. 

Optimization of PDA-based LFIA. We modified the PDA NP with RBD 
and mIgG together, where the RBD aims to detect neutralizing anti-
bodies and mIgG aims to react with C line to verify the validation of this 
test. To optimize the sensitivity of PDA-based LFIA, we adjusted two 
major factors that are related to the detection sensitivity, i.e., the pro-
portions of RBD and mouse lgG modified on PDA NPs surface and the 
added PDA probes volume per LFIA. The former affects the binding ef-
ficiency of PDA probes to target neutralizing antibodies or ACE2 on test 
line, while the latter affects the total signal intensity and the decrease 
rate of signal intensity caused by the same concentration of target. 
Firstly, three kinds of concentration ratio (i.e., 1:2, 1:1 and 2:1) of RBD 
and mouse lgG were conjugated with PDA NPs (Fig. 3a). 10 μL PDA 
probe was used to test a same positive sample. By comparing the den-
sities of test line and control line in positive group and negative group, 
we observed obvious decrease for the test line density and increase for 
the control line density at the groups of 1:1 and 2:1 ratio of RBD and 
mouse lgG (Fig. 3a). Here, the optical density values of test line (T) and 

control line (C) were measured by image J and the ratio of T/(T + C) was 
used to reflect the target concentration. By calculating the T/(T + C), the 
quantification results revealed the group with 1:1 RBD and mouse lgG 
ratio exhibited an extremely significant difference (Fig. 3b). Therefore, 
the 1:1 ratio of RBD and mouse lgG was selected as the optimized ratio to 
modify the PDA probes and use in the next experiments. To optimize the 
added PDA probe volume per test, 12.5 μL, 10 μL and 7.5 μL PDA probes 
were added to test positive sample and negative sample, respectively 
(Fig. 3c). There is no difference for the group with 12.5 μL PDA probes, 
and significant difference for the groups with 10 μL and 7.5 μL PDA 
probes (Fig. 3d). Lastly, we chose 10 μL as the optimized PDA probe 
volume, since more PDA probes could enable a wider detection range. 
Here, we compared the detection performance of the PDA-based LFIAs 
with wet method and dry method. The results revealed no obvious dif-
ference between these two methods (Fig. S2). Thus, we used PDA-based 
LFIA with wet method to conduct the following experiments. Addi-
tionally, to verify the PDA-based LFIAs enabling higher colorimetric 
signal than AuNP-based LFIAs, the two kinds of LFIAs with same mass 
fraction of probes were used to test a same serum (Fig. S3). The results 
revealed that the PDA-based LFIA showed nearly 4 folds colorimetric 
signal than AuNP-based LFIA, where the positive and negative groups of 
PDA-based LFIA showed extremely significant differences (p < 0.001), 
while the AuNP-based LFIA showed significant differences (p = 0.011). 

Smartphone-based AI analysis algorithm. To accurately quantify the 
results of the PDA-based LFIA, we designed a smartphone-based AI al-
gorithm to analyze the LFIA pictures and output the neutralizing anti-
body concentrations. To avoid the interfering of shooting environment 
and simplify the capture of LFIA results, a portable reader was assem-
bled using Lego blocks (Fig. 4a). The previous study in our group has 
developed a smartphone APP to quantify the LFIA results by measuring 
density value. However, the quantification process needs to manually 

Fig. 1. Schematic illustration of PDA-based LFIA platform. (a) The PDA-based LFIA work principle. (b) The smartphone-based portable reader assembled by Lego 
blocks. (c) The internal structure of smartphone-based portable reader. (d) The AI algorithm used for the analysis of PDA-based LFIA images. 
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select the detection region, where the subjective judgment may cause 
biased results. To address this issue, we utilized an AI algorithm to 
accurately identify the detection region, analyze the density distribution 
of detection region and output the quantification concentrations. Spe-
cifically, it is necessary to detect the position of strips from images shot 
by the smartphone reader at first. We applied the vision transformer 
(ViT) (Dosovitskiy et al., 2020) to our system to detect the position 
stably and accurately. ViT is a deep learning method recently developed 

for computer vision tasks, which applies attention mechanism to image 
processing and reaches a benchmark performance in many tasks, like 
classification (Chen et al., 2021), instance segmentation (Balaji et al., 
2020), etc. We detected the position of strips by three steps. The first is 
preprocessing. Since the light source is controllable and fixed, we 
removed the black background from the original images with threshold 
segmentation and derived a cropped smaller image, which only contains 
the commercial cover and the strip. Then to keep all images in the same 

Fig. 2. Characterization of PDA NPs. (a) Modification process of PDA@PEG@Ab NPs (left) and comparison of the results of negative control and positive control 
(right). (b) Modification process of PDA@Polymer3@SiO2@PEG@Ab NPs (left) and comparison of the results of negative control and positive control (right). (c) 
Homogeneous dispersion of PDA, PDA@Polymer3@SiO2, PDA@polymer3@SiO2@PEG-RBD solutions. (d) TEM images of PDA before and after surface modifications. 
The (e) zeta potential and (f) DLS characterization for PDA NPs during surface modification process. (g) UV–Vis spectra of PDA NPs and AuNPs at the mass fraction 
of 4.5‰. 
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size, which is necessary for inputting them into our neural network, we 
resized all images into 512× 512. The next step is inputting the resized 
images to the backbone convolutional neural network (CNN). We used 
ResNet50 (He et al., 2016) as our backbone CNN and replaced batch 
normalization (Ioffe and Szegedy, 2015) layers with group normaliza-
tion (Wu and He, 2018) layers to reduce errors from small batch size (8 
in our task). The outputs of the backbone CNN are feature maps in size of 
32× 32× C, where C is the channel number of the feature maps. The 
backbone CNN was trained from scratch. The last step is predicting 
position with ViT. We cropped the feature maps to 16× 16 patches, each 
of which has a size of 1× (4 × C). These patches with a trainable box 
vector was concatenated to form a matrix of shape 257× (4×C) and 
embedded by different weights, then declared as query, key and value 
for further self-attention calculation. The last part of the network is a 
multilayer perceptron (MLP) head that will output the strip’s bounding 
box, represented by coordinate of the strip’s vertexes in the image. The 
loss curve of the AI algorithm was shown in Fig. S4. After the prediction 
of the ViT, we plotted a horizon center line of the predicted bounding 
box on the strip. Fig. 4b shows some examples of our detection results, 
chosen from training set and test set. The RGB values among the center 
lines are transformed to gray intensities and then plotted as intensity 
distribution curves (Fig. 4c). For positive LFIA samples, there should be 
two peaks in each curve. We found the two peak values, corresponding 
to the test line and the control line, and noted them as T and C, 
respectively. The value of T/(T + C) will be calculated for further 
quantitative analysis. Most images in both training set and test set are 
detected with high intersection over unions (IoUs) (Fig. 4d). IoU is a 
metric to measure consistency between predicted bounding box and 
ground truth box, calculated by the ratio of overlap area and the area 
encompassed by the two boxes. For further practicality, we developed a 

smartphone application with our trained network to analyze our 
PDA-based LFIA, see Fig. S5. The IoUs distribution for different type of 
phones was shown in Fig. S6 and Fig. 4d. This represents our bounding 
box detection results can be recognized as largely coincident with 
ground truths and can be used for further analysis. 

To further prove the stability of our model to predict images from 
different type of phones, we did the cross validation based on phone 
types. There are totally three folds for cross validation: fold 1, training 
set = Huawei and iPhone, test set = Samsung; fold 2, training set =
Huawei and Samsung, test set = iPhone; fold 3, training set = iPhone 
and Samsung, test set = Huawei. Our model can reach a robust high 
performance on each fold (Fig. S7), which indicates that our model is 
stable when apply to different types of phones. However, the perfor-
mance of the AI trained with three kinds of phone images still surpasses 
those of fold 1–3. We also conducted an ablation experiment of box 
vector, which proves that it is necessary of box vector to guarantee a 
high IoU in our model (Fig. S8). Since the dataset had a small size, we 
also compared our model with other common traditional computation 
vision algorithms to prove the necessity of applying deep learning 
model. Scale-invariant feature transform (SIFT)(Lowe, 1999) and Ori-
ented FAST and rotated BRIEF (ORB) (Rublee et al., 2011) were 
compared with our method. They performed poorly for the PDA-LFIA 
task (Table S3 and Fig. S9) and needed different thresholds when 
applied to different images. Thus, these methods require users to un-
derstand relevant algorithm knowledge and manually adjust parame-
ters, which is contrary to the concept of POCT. 

Verification of clinical samples. To verify the developed PDA-based 
LFIA platform for the clinical serum samples, we collected 30 clinical 
sera to test the developed PDA-based LFIA platform and compared the 
results with those of commercial ELISA kits (Fig. 5a). First, gradient 

Fig. 3. Optimization of the factors related to PDA-based LFIA sensitivity. (a) The schematic illustration and experimental results of the optimization of RBD and 
mouse lgG ratio modified on PDA NPs surface. The optimized ratios are 1:2, 1:1 and 2:1 from left to right, respectively. (b) The quantitative results of the RBD and 
mouse lgG ratio optimization. (c) The schematic illustration and experimental results of the optimization of the added PDA probes volume. The optimized volumes 
are 12.5 μL, 10 μL and 7.5 μL from left to right, respectively. (d) The quantitative results of the added PDA probes volume optimization. p < 0.05 indicates significant 
difference (*), and p < 0.01 indicates extremely significant difference (**). 
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concentrations were spiked to obtain the standard curves of the PDA- 
based LFIA platform and commercial ELISA kit (Supplemental 
Figs. S10 and 11). The standard curve reveals the detection limit of PDA- 
based LFIA is 160 ng/mL (Fig. S11a). And the corresponding linear 
dynamic range and slope are 625–10000 ng/mL and − 0.06, respectively 
(Fig. S11b). The results show that PDA LFIA is able to specifically 
distinguish between negative and positive samples (Fig. S12). Notably, 
some reported LFIAs with signal amplification strategies exhibit higher 
sensitivity than the developed PDA-based LFIA here (Huang et al., 2016; 
Liu et al., 2021b; Soh et al., 2020). However, these LFIAs with signal 
amplification are normally accompanied with high cost, complex 
operation and complicated fabrication process, which are not suitable to 
the evaluation of vaccination effectiveness. Moreover, based on the 
judgment standard (i.e., cut-off = 1/2 ODblank) of the commercial 
SARS-CoV-2 neutralizing antibody ELISA kit, 1713 ng/mL is calculated 
as the cutoff value to distinguish negative and positive samples. Thus, 

the detection limit with ng/mL level has satisfied the demand of 
neutralizing antibody detection to distinguish the people with effective 
vaccination or not. After that, 30 clinical sera (containing 3 
non-vaccinated people and 27 vaccinated people) were used to test the 
neutralizing antibody concentrations by ELISA kit and PDA-based LFIA 
platform (Fig. 5b and c). The whole test time of PDA-based LFIA plat-
form for each sample is around 20 min, while the ELISA kit needs 2 h for 
each test. Based on the cutoff value provided by the ELISA kit, 17 of 27 
vaccinators showed positive neutralizing antibody, while 10 showed 
negative results. The possible reason is that corresponding volunteers 
have been vaccinated for several months, and their antibody concen-
trations have decreased to a very low level over time or their immuno-
reactions have not been activated yet (Dan et al., 2020). Therefore, the 
evaluation of vaccine effectiveness should dynamically monitor the 
neutralizing antibody of vaccinated people within the several weeks 
after vaccination. The PDA-based LFIA platform revealed the similar 

Fig. 4. Deep learning algorithm and strip position detection results. (a) Workflow of the algorithm. For the input image, the dark background will be removed and 
the remain part will be resized to a square image for further detection. Feature maps will be derived from the resized image by ResNet 50. Then the feature maps are 
cropped to patches and embedded to feed the transformer encoding layers, which are marked with a gray box. In order to get the position of the strip, we applied a 
box head, which is an MLP, to the attention vector. (b) Some examples of results detected by our algorithm. Upper three: results examples from PDA strip dataset. 
Lower three: results examples with horizontal center line of the bounding box (the yellow lines). (c) Examples of gray intensities distribution curves. The two peaks in 
the curve are noted as C and T. (d) Training set IoUs (left) and test set IoUs (right) predicted from the trained model. The violin plot was plotted on bottom left for 
each subfigure to show the distribution of IoUs. 
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results with that of ELISA kit, where 16 show positive results and 11 
show negative results. To verify the linear correlation between 
PDA-based LFIA platform and ELISA kit, the Passing-Boblok regression 
and Spearman’s rank correlation were used. The obtained regression 
equations and Spearman’s coefficient were y = 1.09 (95% CI, 0.96–1.27) 
x − 88.18 (95% CI, − 358.81 to − 141.50) and 0.951 (P < 0.001), 
respectively (Fig. 5d). The slop of Passing-Boblok regression equation is 
ranged between 0.8–1.2, and Spearman’s coefficient is close to 1 and P 
< 0.001, proving that there exists a good linear correlation between the 
two methods for neutralizing antibody detection. 

Dynamic monitoring of neutralizing antibodies after COVID-19 
vaccination. Since the vaccine effectiveness shows obvious individual 
difference (Brosh-Nissimov et al., 2021; Chung et al., 2020), it is 
necessary to dynamically monitor the neutralizing antibodies of every 
vaccinated person in early period of vaccination (Fig. 6a). To verify the 
role of AI-assisted PDA-based LFIA in dynamic monitoring the 

neutralizing antibodies of vaccinated people, we tracked the neutral-
izing antibody levels changes in serum at different timelines in four 
COVID-19 vaccinated volunteers (Fig. 6b). Neutralizing antibody levels 
in the sera of 4 vaccinated subjects were detected successively at 
different timelines, i.e., before inoculation, 30 days after the first inoc-
ulation, and 20–95 days after the second inoculation. The four volun-
teers all showed minimal increase for the neutralizing antibodies after 
the first inoculation. After the second inoculation, the neutralizing an-
tibodies in volunteer 1 and 2 showed a rapid increase within three weeks 
and then slowly decrease after that, where the peaks both reached at 21 
days and are 10,954 ng/mL and 27,013 ng/mL, respectively. The 
neutralizing antibody level of volunteer 4 showed a similar trend with 
volunteer 1 and 2. While, its peak at 35 days after the second inocula-
tion. The level of neutralizing antibody in volunteer 3 was significantly 
lower than that in other volunteers, even if there was an increase trend 
observed, which reveals that volunteer 3 may be not responsive to this 

Fig. 5. Quantitative detection of neutralizing antibody concentrations in clinical samples. (a) Schematic illustration of the detection process of 30 serum samples 
(containing 3 non-vaccinated people and 27 vaccinated people) by commercial ELISA kit and the PDA-based LFIA platform. The quantitative detection results of (b) 
commercial ELISA kit and (c) PDA-based LFIA platform for the 30 serum samples (containing 3 non-vaccinated people and 27 vaccinated people). (d) Passing-Bablok 
regression plots of the neutralizing antibody detection results obtained from the ELISA kit and the PDA-based LFIA platform. Solid blue line represents the linear 
regression plot, and two red dotted lines represent the 95% CI range. The regression equation for neutralizing antibody detection was obtained y = 1.09 (95%CI, 
0.96–1.27) x − 88.18 (95%CI, − 358.81 to − 141.50). 
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kind of vaccination. Above results confirmed two conclusions proposed 
by previous studies about vaccination effectiveness (Bar-On et al., 2021; 
Feng et al., 2021; Flaxman et al., 2021; Pritchard et al., 2021; Wese-
mann, 2022). The first is that the second reinforcing inoculation is 
necessary for simulate the immune system to produce neutralizing an-
tibodies with high concentration. The second is that individual differ-
ences are inevitably in population, which supports that the dynamic 
monitoring of neutralizing antibodies is necessary. Based on dynamic 
monitoring results, vaccinated person could decide if accept the rein-
forcing inoculation and the inoculation time. To compare the detection 
performance of AI-assisted PDA-based LFIA and commercial 
AuNP-based LFIA for neutralizing antibodies, we quantified the 
neutralizing antibody levels of 50 serum samples (20 samples from the 
four dynamic monitoring volunteers at different time, 3 samples from 

non-vaccinated people and 27 samples from vaccinated people shown in 
Fig. 5) based on the standard curves (Figs. S11 and S13). The results 
showed that all the quantified results of AuNP-based LFIA is very low, 
compared with the AI-assisted PDA-based LFIA platform. Especially for 
the samples with low neutralizing antibody level, it is quite difficult for 
AuNP-based LFIA to distinguish them (Fig. 6c and Fig. S14). Therefore, 
the developed AI-assisted PDA-based LFIA platform provides a better 
quantification ability for the clinical serum samples than the commercial 
AuNP-based LFIA. 

2. Conclusion 

In summary, we have developed an AI-assisted PDA-based LFIA 
platform that integrates a PDA-based LFIA, a smartphone-based reader 

Fig. 6. Dynamic monitoring of the neutralizing antibody concentrations of four vaccinated volunteers by AI-assisted PDA-based LFIA. (a) Timeline schematic of the 
dynamic monitoring of the neutralizing antibodies. (b) Dynamic monitoring of AI-assisted PDA-based LFIA platform for the neutralizing antibody concentrations of 
four volunteers. (c) Comparison of quantitative results of PDA-based LFIA and commercial AuNP-based LFIA assays for 50 serum samples. 
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and an AI analysis algorithm to achieve portably automated and accu-
rate quantification for colorimetric LFIA. Three innovation points are 
promoted in this study. Firstly, the strong absorption in visible region 
and low cost of PDA NPs improve the sensitivity and reduce the cost of 
PDA-based LFIA compared to the AuNPs-based LFIA. Moreover, the 
silica coated core-shell PDA nanoparticles also avoids the non-specific 
absorption of naked PDA nanoparticles. Secondly, the integration of 
the AI algorithm and portable reader enables automated and accurate 
quantification for colorimetric LFIA. At last, the developed PDA-based 
LFIA platform successfully achieved the evaluation of vaccine effec-
tiveness with simple operation, short detection time and low cost. 
Therefore, we envision that the developed PDA-based LFIA platform 
could be a timely manner for the large-scale evaluation of vaccine 
effectiveness. 

3. Materials and methods 

Materials. Dopamine hydrochloride, tetraethyl orthosilicate (TEOS), 
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 
(EDC), dimethyl sulfoxide (DMSO), bovine serum albumin (BSA), triton 
X-100, tween 20, trizma base were purchased from Sigma-Aldrich. So-
dium polystyrene sulfonate standard (PSS, Mw = 14900) was obtained 
from Shanghai ZZBIO CO., LTD. Poly (allylamine hydrochloride) (PAH, 
Mw = 15000), polyvinylpyrrolidone (PVP, Mw = 10000) were pur-
chased from Shanghai Macklin Biochemical Co., Ltd. COOH-PEG-Silane 
was purchased from Chongqing Yusi Medicine Technology Co., Ltd. 
Ammonia solution (25%) was obtained from Tianjin Beilian Chemical 
Reagen Co., Ltd. Sucrose was obtained from Tianjin Hedongqu Chemical 
Reagen Co., Ltd. Sodium chloride (NaCl) was obtained from Tianjin 
Tianli Chemical Reagent Co., Ltd. Ethanol, methanol, isopropyl alcohol 
were purchased from Tianjin Fuyu Chemical Reagen Co., Ltd. Sulfo-NHS 
was obtained from Shanghai Medpep Co., Ltd. 2-(N-morpholino)etha-
nesulfonic acid (MES), 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethane-
sulfonic acid (HEPES) were obtained from MP Biomedicals, LLC. Glycine 
was purchased from Sangon Biotech (Shanghai) Co., Ltd. All reagents 
were of analytical grade and used without any purification. Lateral flow 
test strips were made by Suzhou Diyinan Biological Technology Co., Ltd. 
SARS-CoV-2 ACE2 antigen, SARS-CoV-2 RBD antigen, Mouse lgG, Goat 
anti-mouse IgG were purchased from Beijing Baisaisi Biotechnology Co., 
Ltd. The serum samples of SARS-CoV-2 vaccinated volunteers from Xi’an 
Red Cross Hospital and the First Affiliated Hospital of Xi’an Jiaotong 
University. The participants have signed a written informed consent to 
conduct scientific research. SARS-CoV-2 Neutralizing Antibody ELISA 
Kit was purchased from Wuhan Huamei Biological Engineering Co., Ltd. 
The AuNP-based LFIA was obtained from Hangzhou Frenovo Biotech 
Co., Ltd. 

Synthesis of PDA NPs. The PDA NPs were synthesized following the 
previous protocol (Liu et al., 2013). 10 mL ethanol, 0.75 mL ammonia 
solution were added to 22.5 mL deionized water in a round bottom flask, 
and stirring in 30 ◦C water bath for 30 min. Then quickly added dopa-
mine hydrochloride solution (0.659 mmol dopamine hydrochloride 
dissolves in 2.5 mL deionized water) into the solution and stirred for 24 
h. The solution was mixed with acetone at a ratio of 1:2 and precipitated 
for 24 h. The precipitate was collected by centrifugation (8000 rpm, 10 
min, 25 ◦C) and the supernatant was removed. The precipitate was 
washed 3 times with acetone and then redispersed in deionized water 
and stored at 4 ◦C. 

Polyelectrolyte-Mediated Silica Coated of PDA NPs. The silica 
coating of PDA NPs were synthesized following the previous protocol 
(Pastoriza-Santos et al., 2006). Add 5 mL of PDA NPs dropwise to 5 mL 
of 2 g/L PSS aqueous solution containing 6 mM NaCl with vigorous 
stirring for 3 h. Centrifuge (8000 rpm, 10 min, 25 ◦C) the solution twice 
to remove excess electrolytes and resuspend in 5 mL of deionized water. 
Then PSS-coated PDA was added dropwise to 5 mL of 2 g/L PAH aqueous 
solution containing 6 mM NaCl with vigorous stirring for 3 h. Centrifuge 
(8000 rpm, 10 min, 25 ◦C) the solution twice and resuspend in 5 mL of 

deionized water. Next, 5 mL of PAH-coated PDA was mixed with 5 mL of 
4 g/L PVP and stirred overnight. Centrifuge (8000 rpm, 10 min, 25 ◦C) 
PVP-coated PDA and resuspend the precipitate in 0.2 mL deionized 
water. After adding 1 mL of isopropanol, the solution was added to 0.46 
mL of water under vigorous stirring, followed by 1.43 mL of 
ammonia-isopropanol solution (3.84 vol%). Then 0.4 mL 
TEOS-isopropanol (0.97 vol%) was added under gentle stirring and 
reacted for 2 h. PDA@SiO2 was centrifuged (8000 rpm, 10 min, 25 ◦C) 
three times and redispersed in methanol. 

Surface Modification of PDA NPs. After dissolving COOH-PEG-silane 
in methanol (50 μL, 10 mM), 950 μL PDA@SiO2 was added and stirred 
vigorously for 2 h. Centrifuge (8000 rpm, 10 min, 25 ◦C) with methanol 
and deionized water twice each. PDA@PEG was resuspended in deion-
ized water. 

Conjugation of Antibodies to PDA NPs. 200 μL PDA@PEG solution 
was washed for three times with 200 μL DMSO-MES buffer (33% v/v 
DMSO, 20 mM MES) and resuspend in 150 μL DMSO-MES buffer, soni-
cate until photodispersion is homogeneous. 6 μL of 6 mg/mL EDC, 6 μL 
of 6 mg/mL NHS were added into PDA DMSO-MES solution at room 
temperature and activated under sonication for 30 min, the activated 
product was washed with DMSO-MES buffer and redispersed in 200 μL 
DMSO-MES buffer. 800 μL of 20 mM MES buffer and 37.5 μL of different 
concentration ratios of SARS-CoV-2 RBD antigen and mouse lgG solution 
(1:1, 1:2, 2:1, i.e., 0.5 μg/mL: 0.5 μg/mL, 0.33 μg/mL: 0.67 μg/mL, 0.67 
μg/mL: 0.33 μg/mL) were added to the solution and incubated for 2 h at 
37 ◦C with shaking at 100 r/min. 30 μL Glycine stop buffer was added, 
the obtained PDA-antigen complex was washed with storage buffer (50 
mM glycine, 0.1% NaN3, 0.03% v/v triton) and redispersed in storage 
buffer and stored at 4 ◦C. 

Calculation of the mass fraction of AuNPs and PDA NPs. An empty 2 
mL tube was used to measure its mass (m1). 1.5 mL (m) NPs solution was 
first centrifuged at 12000 rpm for 30 min at room temperature. The 
precipitate was dried in an oven at 60 ◦C for 2 days. Then, the mass of the 
tube containing dried precipitate (m2). The mass fraction can be calcu-
lated by the following equation: mass fraction=(m2-m1)/(m-m1). 

Characterization of PDA NPs. The morphology of PDA NPs was 
characterized by transmission electron microscopy (TEM) using an FEI 
Talos F200C instrument at an accelerating voltage of 200 kV. Zeta po-
tentials and dynamic light scatter (DLS) of PDA NPs were determined 
using a Zetasizer Nano ZSE. The UV-Vis-NIR spectra of the PDA NPs 
were obtained with a UV-Vis-NIR spectrophotometer (PE Lambda950). 
The optical density was measured using a multifunctional microplate 
detector (Tecan Spark 10M) under 450 nm excitation light. Images of 
PDA-based LFIA and AuNP-based LFIA were obtained by smartphone 
(HUAWEI P30 Pro). All the measurements were performed at room 
temperature. 

Fabrication of PDA-based LFIA. The LFIA were fabricated following 
our previous protocol (You et al., 2017). The glass fiber pad, nitrocel-
lulose membrane and absorbent pad were mounted sequentially on the 
support pad using plastic adhesive with an overlap of 2 mm between two 
adjacent pads. Then, the assembled pads were cut by MatrixTM 2360 
Programmable Sheer (Kinematic Automation, Sonora, CA, USA) to a 
width of 2.5 mm strips. The detection and control zones were immobi-
lized with 0.5 μL of 1 mg/mL SARS-CoV-2 ACE2 antigen and 0.5 μL of 
0.2 mg/mL goat anti-mouse IgG, respectively. The resulting test strips 
were dried at 37 ◦C for 2 h and then stored at 25 ◦C for further use. 

Clinical serum samples. We collected sera from 12 non-vaccinated 
volunteers and 27 vaccinated volunteers. All the volunteers are 
healthy people without major chronic diseases and have never been 
infected by any type of SARS virus. Their basic information including 
gender, age, collection date, and 1st/2nd injection dates are listed in 
Table S2. 

Assays with ELISA kit. Neutralizing antibody was sequentially 
diluted to different multiples with sample diluent (0, 9.75, 19.5, 39, 78, 
159, 312, 625, 1250, 2500, 5000, 10000 ng/mL), and 50 μL neutralizing 
antibody or diluted Sample was added to each well of a 96-well plate. 

H. Tong et al.                                                                                                                                                                                                                                    



Biosensors and Bioelectronics 213 (2022) 114449

10

Mix well with the pipette or shake the plate gently for 60 s. Cover with 
plate sticker and incubate at 37 ◦C for 1 h. Wash the plate 5 times. Soak 
for 2 min each time, 250 μL/well, and shake dry. Add 90 μL substrate 
solution to each well in turn and develop at 37 ◦C for 20 min under 
protection from light. Add 50 μL termination solution to each well in 
turn to terminate the reaction. Within 5 min after the termination of the 
reaction, the optical density (OD) of each well was measured sequen-
tially at 450 nm using the enzyme standard. Calculate the binding rate 
(%)：the OD value of Standard and sample are divided by the OD value 
of blank group and multiplied by 100%. 

Binding rate (%)=
B
B0

× 100%   

B ——the average absorbance value of the sample or Standard 
B0 ——the average absorbance value of the 0 ng/ml (0 nM) Standard 

Assays with Lateral Flow Test Strips. Standard neutralizing antibody 
solutions (0, 78, 159, 312, 625, 1250, 2500, 5000, 10000, 20000, 40000 
ng/mL) were prepared by stepwise dilution. Wet method: 30 μL standard 
neutralizing antibody solution or volunteer serum was mixed with 10 μL 
PDA probe solution and 60 μL HSLF buffer (270 mM NaCl, 100 mM 
HEPES buffer, 0.5% w/v tween 20, 1% w/v BSA). The obtained solution 
was added to the test strips for testing. Dry method: 100 μL the PDA 
probe solution was centrifuged (8000 rpm, 10 min, 25 ◦C) and resus-
pended in B9 buffer (8.5 g/L tris, 10 g/L BSA, 50 g/L alginate, 200 g/L 
sucrose) to 50 μL and then 5 μL was dropped onto the binding pad. The 
obtained test strips were dried in a electric thermostaticdrying oven at 
37 ◦C for 2 h. Next, 60 μL HSLF buffer and 30 μL standard neutralizing 
antibody solution or volunteer serum were mixed and added to the test 
strips for testing. AuNP-based LFIA：30 μL volunteer serum was mixed 
with 10 μL AuNP probe solution and 60 μL HSLF buffer. The obtained 
solution was added to the test strips for testing. Commercial AuNP-based 
LFIA：30 μL standard neutralizing antibody solution or volunteer serum 
was mixed with 60 μL buffer. The obtained solution was added to the test 
strips for testing. After 20 min, the results of LFIA were read out with a 
Nikon D90 camera or smartphone. The optical density values of test line 
(T) and control line (C) were measured by image J and the ratio of T/(T 
+ C) was used to reflect the target concentration. 

Smartphone reader. The reader was built with classic bricks of Lego, 
where a cavity dark room inside the reader was aligned with the test 
area of the test strips, the top of the device was designed to carry a recess 
for smartphones, and the light source for taking pictures was provided 
by the flash of the phone. To avoid the interference of reflected light 
from colorful Lego blocks, we pasted a black fluffy cloth on the inside 
surface of the reader. All the structure sizes of the Lego blocks are 7.8 
mm * 7.5 mm * 9.5 mm, and the sizes of the whole Lego reader is 90 mm 
* 90 mm * 110 mm. 

3.1. Construct of AI algorithm 

Dataset: We created our dataset from standard concentration 
gradient samples. To make our AI algorithm more general and stable, we 
used three types of mobile phone, Huawei, iPhone and Samsung, to take 
photos for PDA-based LFIAs. For each standard concentration gradient 
sample, we used different types of mobile phones to take photos when 
the strip was in different positions. For each type of mobile phones, we 
totally took 114, 120 and 115 images, respectively. Then these images 
were flipped for data augmentation. Among all images, 234 images are 
randomly chosen as training set, and the other 115 images consisted the 
test set. 

Network settings. In our task, we used group normalization instead 
of batch normalization to support our small batch size; for each group 
normalization layer, the group number was set to 8. The channel number 
of the output of the ResNet50 was set to 1024, and the patch size was set 
to 2× 2. Here, 256 patches were generated for the feature map. Then 

these patches are embedded to a dimension of 1024 and concatenated 
with a randomly initialized trainable vector to input to the encoder. The 
encoder is consisted of 6 alternating layers, each of which has an 8-head 
self-attention module. A linear layer whose input size is 1024 was then 
used to predict the position of the test strip. The position of a strip was 
represented by a bounding box that can fully enclose the strip, described 
by [x1, y1, x2, y2]. (x1, y1) and (x2, y2) are the coordinates of the box’s 
upper-left vertex and the lower-right vertex respectively. 

Training. For the training step, we defined our loss function as the 
combination of Distance IoU (Zheng et al., 2020) and MSE loss as follow: 

Loss= 1 − IoU +
ρ2(b̂, b)

c2 + MSE(b̂, b)

Here, ρ() is the function to calculate Euclidean distance, c means the 
diagonal length of the smallest enclosing box for the two boxes. IoU is 
the intersection over union of predicted bounding box b̂ = (x̂1, ŷ1, x̂2,

ŷ2) and the ground truth bounding box b = (x1, y1, x2, y2), can be 
calculated by: 

IoU =
|b̂ ∩ b|
|b̂ ∪ b|

MSE is the mean square error, 

MSE(b̂, b)=
1
4

b̂i − bi
2
2 

The network was trained on 1.4 GHz Quad-Core Intel Core i5 for 50 
epochs with a batch size of 8. The initial learning rate was set as 5×

10− 6, and optimized by the AdamW optimizer (Loshchilov and Hutter, 
2017) with a weight decay rate of 1× 10− 4. The network showed a great 
sensitivity to the learning rate; thus, we reduce the learning rate to a half 
every 10 epochs to reach a stable training performance. To inhibit 
overfitting, we add random Gaussian noise to all images on each training 
epoch. The trained network was then used to detect all samples in 
training set and test set. 

Other traditional computer vision algorithms. We compared SIFT 
and ORB to prove the necessity of applying AI algorithm in our task. SIFT 
and ORB can both detect features in two images and compare those 
features based on Euclidean distance to check if these two images have 
the same object. For each type of phone, we prepared a reference image 
and extract its features and use matcher (FLANN based matcher for SIFT 
and BFMatcher for ORB) to match these features in others images. Low 
distance matches are then used to locate strips in images. 

Calculation of neutralizing antibody concentration. A horizontal line 
is draw cross the middle of the output images by the network, resulting a 
gray intensity distribution curve. Values from two peaks represent T and 
C values, respectively. The ratio of T/(T + C) was used to reflect the 
target concentration. 

Code availability 

Codes for our project are available at https://github.com/XJT 
U-BEBC/PDA-LFIA.git. 
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