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Abstract: Selenium (Se) is an essential element for the maintenance of a healthy physiological state.
However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused
by Se deficiency or excess have gained considerable traction in recent years. In particular, links have
been identified between low Se status, cognitive decline, immune disorders, and increased mortality,
whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs
(miRNAs) regulate interactions between the environment (including the diet) and genes, and play
important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce
changes in proteins including selenoprotein expression, ultimately generating disease. While a
plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics
and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se
metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases.
Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins,
and Se-related diseases.

Keywords: diseases; metabolism; microRNA; selenium; selenoproteins

1. Introduction

Selenium (Se) is a metalloid element that fulfills important physiological functions
within the necessary dose, but human health is also vulnerable to selenium deficiency or
selenium excess [1]. Daily food can meet people’s demand for selenium, comprising a
balanced selection of meat and plant products [2]. In the natural environment, rock and
soil composition are believed to determine Se distribution characteristics [3]. Populations
in the United States, Mexico, Colombia, India, and Iceland easily attain their recommended
daily Se dose. However, populations in Northern Europe, Australia, New Zealand, and
China have poor Se-containing soils, potentially leading to Se deficiencies [4].

Recently, microRNAs (miRNAs) and their role in Se-related inflammation and diseases
have attracted considerable attention [5–8]. MiRNAs are non-coding endogenous single-
stranded RNA molecules that consist of 20–23 nucleotides [9]. They play central roles in
cell differentiation, proliferation, and survival by binding to complementary target mes-
senger RNA (mRNA), leading to mRNA translation, inhibition, and/or degradation [10].
Therefore, they can be regarded as key gene expression regulators that can control physio-
logical and pathological processes, including the development of cancer [9]. Studies have
confirmed miRNA dysregulation is causal in many cancers [11–15], with miRNAs acting

Nutrients 2021, 13, 1527. https://doi.org/10.3390/nu13051527 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-9975-6737
https://orcid.org/0000-0002-6501-3086
https://doi.org/10.3390/nu13051527
https://doi.org/10.3390/nu13051527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13051527
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13051527?type=check_update&version=1


Nutrients 2021, 13, 1527 2 of 14

as tumor suppressors or oncogenes. Similarly, miRNA mimics and molecules targeting
miRNAs have shown promise in preclinical studies [12].

Keshan disease (KD) and Kashin–Beck disease (KBD) are related to the Se deficiency,
but the actual mechanisms that are behind these diseases are still not precisely under-
stood [16]. Microarray and proteomics analysis revealed the genes and pathways that
may be involved in these diseases. Nineteen Se- and three zinc-associated proteins were
identified among 105 differentially-expressed proteins. The proteins involved in hypoxia-
inducible factor-1α and apoptosis pathways may play significant roles in the pathogenesis
of KD [17]. There are numerous functional pathways and cellular systems associated with
the differentially expressed genes and proteins; the TCA Cycle II (Eukaryotic) pathway
and NADP repair pathway may also participate in the pathogenesis of KD [18]. Thirty-four
nutrients associated with differentially expressed genes and ten significant pathways have
been identified for juvenile KBD, which are mainly related to metabolism, cell apoptosis,
extracellular matrix, and other functions which consist of pathological changes of KBD [19].
One hundred and twenty-four miRNAs had lower expression levels in the subchondral
bone sampled from KBD patients showed by miRNA array profiling [20]. These differential
genes or proteins may become new targets for studying microRNAs in the two diseases.

In this review, we discussed recent studies related to miRNA changes in cardiovascular
diseases, cancer, and other metabolic diseases caused by Se deficiency or excess. The
prospect of miRNA as a potential target for selenium-related diseases is also pointed out in
the article.

2. Selenium Uptake and Metabolism

Se levels in a given food product does not mean an organism will derive its correct Se
quota—instead, this depends on the bioavailability, bioaccessibility, and/or bioactivity of a
given Se compound [2]. Human dietary Se forms mainly include organic and inorganic
Se. These forms are typically absorbed without any regulatory processes and have a high
bioavailability in the body [2,21]. Se is primarily absorbed in the duodenum and caecum
after active transport via a sodium pump, but this process is different depending on the
chemical form [22]. After intestinal absorption, different Se forms enter the bloodstream
and are transported into the liver via the portal vein, where they are metabolized, trans-
ported, and distributed to different tissues [23] (Figure 1, adapted from [24–27] and drawn
with https://app.biorender.com/ access on 1 March 2021). In normal diets, tissue Se
concentrations in the body range from the highest to the lowest in the following organs:
Kidney, liver, spleen, pancreas, heart, brain, lung, bone, and skeletal muscle [28].

SeMet accounts for 90% of total Se in plants. Some SeMet is randomly incorporated
into proteins at methionine positions [29], whereas other SeMet quantities are metabo-
lized to selenocysteine (SeCys) via methionine cycle and transsulfuration pathways in the
liver [26]. Furthermore, Se-methylselenocysteine and γ-glutamyl-Se-methylselenocysteine
(believed to exert anticancer effects) are also found in plants, such as garlic, onions, and
broccoli, and they are metabolized to methyl selenol [25,30]. SeCys occurs at much lower
levels than SeMet in plants. When SeCys is absorbed, free SeCys does not appear to gen-
erate concentrations for efficient attachment to cysteine transfer RNA (tRNA). But once
incorporated into proteins, SeCys predisposes these proteins to degradation processes [31].
SeCys is the main Se source in animal products, however, highly reactive free SeCys is
maintained at very low concentrations in tissues [32]. Inorganic Se is the main form of Se
supplementation as it promotes selenoprotein biosynthesis [26]. Selenate must be reduced
to selenite before further metabolism. Then, interactions with the tripeptide and glutathione
ensure this selenite is reduced to selenide (H2Se), which is a central gateway molecule for
Se utilization and excretion [25]. Furthermore, all seleno-compounds must be metabolized
to selenide for incorporation into selenoproteins [29]. After initial Se metabolism, H2Se
is converted to selenophosphate, which is used to convert phosphoseryl-tRNA[Ser]Sec to
SeCys-tRNA[Ser]Sec. Then the SeCys-tRNA[Ser]Sec reads the UGA codon and integrates
SeCys into the amino acid sequence to form a selenoprotein [33]. Selenoprotein P, which is
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mainly produced in the liver, transports Se from the liver to extrahepatic tissues and organs,
where it is metabolized to prevent oxidative damage [26]. Methyl selenol is demethylated
to H2Se in the equilibrium reaction, where it and its precursors (SeMet and CH3SeCys)
may be used as Se sources for selenoprotein synthesis [34]. The oxidation of excess H2Se
leads to superoxides and other active oxygen species, often with toxic effects [35]. Se excess
detoxification occurs via sequential methylation into dimethyl selenide, and is excreted
via the breath, whereas Se-sugars and trimethyl selenonium are excreted in the urine [27].
Although all Se forms are excreted from the body at some stage, only Se-sugars are bioavail-
able. It is not only an excretion metabolite of Se, but also may transport selenium from
liver cells to other cells in the body [36].Nutrients 2021, 13, x FOR PEER REVIEW 3 of 15 
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Figure 1. The metabolism of Se dietary forms. SeMet, (selenomethionine); SeCys, (selenocysteine); H2Se, (dihydrogen
selenide); SELENOP, (selenoprotein P); CH3SeH, (methyl selenol); (CH3)2Se, (dimethyl selenide); (CH3)3Se+, (trimethyl
selenonium); SeO2, (selenium dioxide).

3. Selenium Related Pathogenic Mechanisms and Diseases

In general, when Se plasma levels are less than 85 µg/L, Se deficiency becomes evident
in the body [37]. Se deficiency is caused by poor Se dietary intake, and may be induced or
aggravated by nutritional, chemical, and infectious stresses. Several Se deficiency animal
diseases are related to the co-existing vitamin E deficiencies [38]. Se deficiency causes
heart disease (e.g., cardiomyopathy, arrhythmias), infertility, neuronal or neuromuscular
diseases, and increased susceptibility to cancer, infection, and heavy metal toxicity [39–43].
The maximum harmless Se concentration is less than 400 µg per day in adults [44]. Excess
dietary Se causes adverse effects (selenosis), including acute food poisoning symptoms,
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such as vomiting, nausea, and diarrhea, as well as chronic toxicity manifested by the hair
and nail brittleness and loss, gastrointestinal disturbances, infertility, and nervous system
abnormalities [45]. In addition, when Se is excessive, the toxicity of inorganic Se is much
lower than that of organic selenomethionine (SeMet) [38].

Both Se excess and deficiency lead to Se-related disease. A recent epidemiological
analysis showed that taking 300 µg/d selenium for 5 consecutive years increased all-cause
mortality after 10 years in countries with moderately low selenium levels [46]. Dietary Se
functions mainly depend on the selenoprotein form that exerts biological effects in the body.
Almost all tissues are affected by changes in Se status or selenoprotein expression [47–49].
For instance, embryonic lethality caused by trsp gene deletion, which encodes Sec-tRNA
for translation, also reflects the importance of selenoproteins to the body [50]. Currently,
25 genes in the human genome have been identified as encoding selenoproteins, with most
exhibiting antioxidant activities [51]. Other specific processes include the biosynthesis of
deoxyribonucleoside triphosphates for DNA, the reduction of oxidized proteins and mem-
branes, redox regulation of transcription factors, apoptosis regulation, immunomodulation,
thyroid hormone regulation, Se transport and storage, protein folding, and the degrada-
tion of misfolded proteins in the endoplasmic reticulum [27]. Therefore, it appears the
physiological and pathological changes or diseases caused by Se deficiency are primarily
mediated by a selenoprotein imbalance [28,52–55]. Correspondingly, excess Se generates
toxicity via several mechanisms [56]: (1) CH3Se− formation, which either enters a redox
cycle and generates superoxide and oxidative stress, or generates free radicals that bind
to and inhibit key enzymes and proteins, (2) SeCys excess, which inhibits Se methylation
metabolism, results in hydrogen selenide (intermediate metabolite) accumulation eventu-
ally leading to hepatotoxicity and other Se-related adverse effects, (3) excess Se analogs of
sulfur-containing enzymes and structural proteins also play roles in avian teratogenesis.
Equally, aquatic organisms exposed to high Se doses are at risk of organ damage and
genomic mutations, which potentially pose a threat to human food chains [57,58].

4. Current Progress in Nutrient Regulation of miRNAs
4.1. miRNAs

MiRNAs are derived from intergenic or intragenic (exon and intron) genomic re-
gions [59]. They are usually transcribed by RNA polymerase II from miRNA genes, first
forming a ‘primary miRNA transcript’ (pri-miRNA). This transcript is cleaved by a micro-
processor complex, comprising the double-stranded RNase III enzyme, DROSHA, and its
essential cofactor, the DiGeorge syndrome critical region 8 (DGCR8) protein, generating
a short sequence, the ‘miRNA precursor’ (pre-miRNA), which displays a hairpin-like
secondary structure [60]. The pre-miRNA is exported to the cytoplasm and processed by
DICER, a ribonuclease III enzyme that produces the mature miRNA for final incorporation
into an RNA-induced silencing complex (RISC) [61]. Under most conditions, mature RISC
represses gene expression post-transcriptionally by binding to 3′ untranslated regions of
specific mRNAs, and mediates degradation, destabilization, or translational inhibition,
based on target sequence complementarity [62]. MiRNAs are abundant in all cells, are
found in extracellular body fluids (e.g., serum, plasma, saliva, and urine), and are impli-
cated in several pathological conditions [63,64]. During some biological processes, miRNAs
regulate protein levels of key regulatory factors, or serve as switches to govern gene expres-
sion [65]. Post-transcriptional regulation of miRNA can improve the compliance, accuracy,
and sensitivity of gene expression regulation [66]. Due to its small molecular size, each
miRNA potentially targets hundreds of mRNA molecules [67]. Similarly, each mRNA
may be targeted by multiple miRNAs to form complexes and multifaceted regulatory
networks [68]. Moreover, miRNAs also regulate DNA methylation and histone modifi-
cation [69]. It was previously reported that >60% of human coding genes are regulated
by miRNAs [70], and >2800 mature miRNA sequences are described in the miRBase 22
repository (http://www.mirbase.org/ access on 5 February 2021). In addition, miRNAs
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are not only endogenously synthesized, but may be derived from the diet (e.g., milk and
plants) [71].

4.2. Regulation Mechanisms of Vitamins and Minerals on miRNAs

Abnormal miRNA expression is driven by genetic and epigenetic factors, which are
implicated in cancer occurrence and development, and this may be reversed by a variety of
dietary components [72]. Considerable evidence has indicated that dietary factors modify
miRNA expression and mRNA targets during cancer, including apoptosis, cell cycle reg-
ulation, differentiation, inflammation, angiogenesis and metastasis, and stress response
pathways [59], however, this topic is outside the remit of our review. Vitamins and mineral
nutrients induce miRNA expression by activating transcription factors/response elements,
thereby changing gene expression by inducing mRNA degradation or inhibiting trans-
lation [73]. Furthermore, vitamins and minerals alter the function of classical epigenetic
mechanisms, including DNA methyltransferases (DNMT) and histone-modifying enzymes
(e.g., histone deacetylases (HDAC) and histone acetyltransferases), such enzyme regula-
tion regulates gene expression, including miRNAs [73]. Minerals, such as magnesium
ions, are located in the small RNA binding domain of the argonaute protein. RISC is a
magnesium-dependent protein; therefore, magnesium ions facilitate the binding of miRNA
and the argonaute protein, and also help to cleave miRNA targets and regulate argonaute
stability [74]. In contrast, DGCR8 forms a highly stable and active complex with heme,
therefore when heme is reduced to a ferrous state, the pri-miRNA processing abilities of
the DGCR8 complex disappear [75]. In addition, a recent study observed that aluminum
sulfate up-regulated miR-125b and miR-146a expression via NF-κB-dependent mechanisms
suggesting these miRNAs were involved in astrocyte proliferation and inflammation [76].
It was recently proposed that the environment, including dietary factors, may induce
epigenetic changes via three possible mechanisms: (1) Activation/inhibition of chromatin
machinery, (2) activation of nuclear receptors by ligands, (3) membrane receptor signal
transduction cascades [77], and (4) the involvement of key epigenetic regulatory enzymes
including DNMT, DNA desorption methylase, histone acetylase, and HDAC [78]. MiRNAs
are also regulated by DNA methylation status in cells—up to 33% of dysregulated miRNA
loci exhibit consistent DNA methylation and H3K9 acetylation patterns [79].

4.3. Role of Mammalian Target of Rapamycin (mTOR) in Nutrient Regulation of miRNAs

mTOR is central to the nutrient-sensing signaling network [80]. Its activity is regulated
by multiple nutrients, such as amino acids and glucose, influencing muscle cell proliferation,
differentiation, autophagy, and metabolism [81]. Following cellular nutrient depletion, in
particular leucine starvation, mTORC1 becomes inhibited, thereby inhibiting translation
initiation and elongation [82]. Studies have reported that miR-1 expression was regulated
by mTOR, mainly via protein stability generated by the myogenic transcription factor,
MyoD 18, which was located in the upstream enhancer of multiple myogenic miRNAs [83].
Similarly, miR-133 and miR-206 expression patterns were similarly regulated by MyoD
20 [84]. However, the exact mechanism by which mTORC1 regulates the stability of
the myogenic transcription factors remains unclear. In addition, mTOR activation also
significantly down-regulated miRNA biogenesis by up-regulating Mdm2, which is an
important E3 ligase for the ubiquitination of the miRNA processing enzyme, DROSHA
21 [85]. Also, nutrient starvation can induce autophagy by inhibiting mTORC1, to provide
an important substrate source for extracellular energy production [86]. Therefore, the
nutrient-mTOR-miRNA pathway appears to rely on the typical nutrient-sensing mTORC1
pathway to regulate autophagy [87]. Importantly, the specific regulatory mechanisms
underpinning downstream mRNA-mediated alterations have not been fully elucidated.
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4.4. miRNAs Mediated by Se Status Are Implicated in Disease Development and Progression

In this section, recent developments on miRNA involvement in Se-related diseases
are described, including miRNA changes when Se is in deficient, moderate, or excessive
status, regulatory miRNA targets, and miRNA roles in Se antioxidant damage or Se-related
diseases (Table 1).

Se supplementation reportedly changed miRNA profiles in the intestinal cell line, Caco-
2, differentially down-regulating 12 miRNAs under nutrient deficiency conditions [77]. The
miRNAs most affected were miR-185, miR-625, miR-203, and miR-429, whereas pathway
analyses identified arachidonic acid metabolism, glutathione metabolism, oxidative stress,
and mitochondrial respiration as Se-sensitive pathways [88]. In a Se deficiency rat model,
five miRNAs from harvested heart tissue (miR-374, miR-16, miR-199a-5p, miR-195 and
miR-30e were up-regulated > 5-fold in the Se nutrient deficiency group, when compared
with the Se-supplemented group, whereas three miRNAs were down-regulated (miR-3571,
miR-675, and miR-450a [78]. Up-regulated miRNAs were involved in signal transduc-
tion, cell differentiation, and stress responses, suggesting roles in cardiac function and
regulation [89]. A Se pro-longevity mechanism study reported that several miRNAs were
altered in response to dietary Se in the mouse liver [3]. Expression levels of 38 miRNAs
were altered by Se deficiency compared with Se sufficiency, and the study showed that
selenoprotein regulation by miRNAs was not a direct effect [3]. The role of glutathione per-
oxidase regulation and related miRNAs has also been reported [90,91]. In an intervention
study in elderly males given Se and coenzyme Q10 supplements for four years, significant
expression differences were observed in >100 miRNAs, with up to 4-fold differences in
combined Se and coenzyme Q10 supplementation experiments [92]. Such changes may
contribute to underlying clinical mechanisms. Early reports indicated that cardiovascular
mortality was reduced, cardiac function improved, and inflammation and oxidative stress
indications decreased after Se intervention [92]. Se decreased inflammation by increasing
miR-146a expression, decreasing mmu-miR-155, TLR2/6, NF-κB, and MAPK signaling
pathway expression in mammary tissue from infected animals, and mammary epithelial
cells [93,94]. Although these studies investigated miRNA-mediated Se deficiency or Se
antioxidant damage, data for miRNAs implicated in Se excess are limited. When Se is in
excess, it potentially increases the risk of metabolic syndrome [95,96].

Apart from the aforementioned transcription factors being implicated in miRNA
regulation by Se, it remains unclear how Se precisely regulates miRNAs. Thus, simi-
lar to mechanisms involved in nutrition-gene interactions, it is reasonable to speculate
that selenium regulates the expression of miRNAs by potentially affecting the epigenetic
regulation mechanisms, including DNA methylation and histone modification. Se supple-
mentation may modify global DNA methylation and specific gene regions, possibly via
DNMT inhibition [97]. Additionally, dietary Se deficiency may decrease DNA methylation
by enhancing trans-sulfonation pathways [98]. Se also alters histone modification via
HDAC inhibition of the Se metabolism products, seleno-α-keto acids [97]. Taken together,
the current evidence indicates that different DNA hypomethylation mechanisms occur
at different Se levels, including (1) the redirection of homocysteine towards transsulfu-
ration pathways and glutathione synthesis during Se deficiency, (2) excess Se competes
with S-adenosylmethionine to use the methyl group required for selenium metabolism—
consequently, S-adenosylmethionine levels are reduced for DNMT and methylation pro-
cesses are similarly inhibited and (3) Se affects specific tumor suppressor gene methylation
mechanisms, possibly in a sex-dependent manner. Importantly cancer phenotypes are
often characterized by the altered methylation of selenoprotein-encoding genes, mainly
glutathione peroxidase 3 [99].
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Table 1. MiRNAs are regulated by selenium (deficiency, moderate, and excess).

Se Status Micro RNA Target Observed Effect Note Reference

Se deficiency

↑miR-181a-5P ↓SBP2 ↓GPX1, GPX4, and
SELENOS levels

In C28/I2 human
juvenile

chondrocytes and
DA rats

[100]

↑Gga-let-7f-3p ↓SELENOK ↑Oxidative stress, ERS,
and apoptosis

In chicken
myoblasts and

muscle
[101]

↑miR-200a-5p

↓TXNRD2, TXNRD3,
SELENON,

SELENOT, SELENOF
and SELENOP

↑Glucose metabolism
disorder,

cardiomyocyte
hypertrophy

In chicken
cardiomyocytes [102]

↓RNF11
↑Oxidative stress and

myocardial
necroptosis

In chicken cardiac
tissue and

cardiomyocytes
[103]

↑miR-138-5p ↓SELENOM
↑Apoptosis, oxidative
stress, mitochondrial

fission

In chicken
chondrocytes [104]

↑miR-544a ↓SELENOK Interferes with
SELENOK translation

In HepG2 and
HuH-7 human

hepatocarcinoma
cells

[105]

↑miR-196-5p ↓NFκBIA (IκB-α)

↑LPS-induced
oxidative stress and

inflammation,
respiratory mucosal
immune dysfunction

In chicken trachea [106]

↑miR-193b-3p ↓MAML1 ↑Hepatocyte apoptosis

In the liver tissues
and primary

hepatocytes from
broilers

[107]

↑miR-33-3p ↓ADAM10 ↑Cell cycle arrest and
apoptosis

In vivo and
in vitro in the

chicken kidney
[108]

↓E4F1 ↑Oxidative stress, ERS,
and apoptosis

In vein endothelial
cells from broilers [109]

↑miR-328 ↓ATP2A2 ↑Intracellular Ca2+

and cell apoptosis
In H9c2 rat cardiac

myoblasts [110]

↑miR-215-5p ↓CTCF

↑Mitochondrial
biosynthesis

imbalance, defects in
myocardial

development

In heart tissue and
primary

cardiomyocytes
from chickens

[111]

↓PI3K/AKT/TOR ↑ROS, Myocardial
autophagy

In cardiomyocytes
of chicken [112]

↑miR-1594 ↓TNNT2 ↑Ca2+

In heart and
primary

cardiomyocytes
from chickens

[113]
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Table 1. Cont.

Se Status Micro RNA Target Observed Effect Note Reference

↑miR-2954 ↓PI3K ↑Autophagy and
apoptosis

In heart and
primary

cardiomyocytes
from chickens

[114]

↑miR-16-5p ↓PI3K/AKT ↑Necroptosis

In tracheal tissues
and tracheal

epithelial cells of
chicken

[115]

↑miR-128-1-5p ↓CADM1
↑Tight junction

structural damage and
cell cycle arrested

In vein tissues and
vein endothelial

cells from broilers
[116]

↑ miR-374, miR-16,
miR-199a-5p,
miR-195 and

miR-30e
↓ miR-3571,

miR-675a and
miR-450a

↑Wnt/β–catenin ↑ Cardiac dysfunction In rat heart [89]

↓miR–185 ↑GPX2, SEPHS2
↑Altered expression of

12 miRNA and 50
genes

In Caco-2 human
intestinal cells [88]

↓miR-29a-3p ↑TNFR1
Altered expression of
selenoprotein genes,
↑necrotic cells

In the pig brain
and IPEC-J2 pig

intestinal epithelial
cells

[117]

↓miR-155 ↑TNFRSF1B
↑Oxidative

stress-induced
apoptosis

In splenic cells and
spleen of broilers [118]

↓miR-146a ↑MAPKs ↑ROS-induced
inflammation

In the head kidney
of carp [119]

↓miR-7 ↓SELENOP Both are potential
biomarkers of HCC

In HCC patients
and HepG2 human
hepatocarcinoma

cells

[120]

Se moderate

↑miR-146a ↓TLR2, TLR6, NF-κB
and MAPK

↓S. aureus-infected
mastitis

In mammary
tissues and
mammary

epithelial cells
from mouse

[93]

↑miR-125a and
miR-125b ↓Bak and caspase-3 ↓Cd-induced

apoptosis

In LLC-PK1
porcine renal
epithelial cells

[121]

↑ miR-29b-3p,
miR-30e-5p and

miR-19a-3p
↓ miR-199a-5p,

miR-130a-3p and
miR-191-5p

—— ↓ Risk of heart failure In healthy elderly
males [92]
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Table 1. Cont.

Se Status Micro RNA Target Observed Effect Note Reference

↓mmu-miR-155
↓TNF-α, IL-1β,

IL-10, TLR2, NF-κB
and MAPKs

↓ S. aureus-infected
mastitis

In mammary
tissues and
mammary

epithelial cells
from mouse

[94]

↓miR-224 ↑ID1

↓Pb-induced oxidative
damage and restoring

thyroid hormone
disequilibrium

In thyroid tissues
of male rats [122]

↓miR-16-5p ↑PiK3R1 and IGF1R ↓Pb-induced
neutrophil apoptosis

From chicken
peripheral blood [123]

↓miR-216a ↑PI3K/AKT ↓Cd-triggered necrosis
and apoptosis

In the splenic
lymphocytes of
common carp

[124]

Se excess

↑miR-122-5p ↑BMI, SBP and DBP ↑Risk of MetS In male adults [95]

↑miR-454-3p and
miR-584-5p
↓miR-375

A link between Se
intake, vitamin D
metabolism, and

calcium homeostasis

↑miR-375 as a
potential biomarker of

MetS
In obese women [96]

miRNAs, genes, or proteins down-regulated/inhibited (↓) or up-regulated/activated (↑). SBP2, SECIS binding protein 2; SELENOK, seleno-
protein K; TXNRD2, thioredoxin reductase 2; TXNRD3, thioredoxin reductase 3; SELENON, selenoprotein N; SELENOT, selenoprotein
T; SELENOF, selenoprotein F; SELENOP, selenoprotein P; RNF 11, ring finger protein 11; SELENOM, selenoprotein M; NFκBIA (IκB-α),
IkappaB-alpha; MAML1, mastermind-like protein 1; ADAM 10, adisintegrin and metalloprotease domain 10; E4F1, E4F transcription factor
1; ATP2A2, sarcoplasmic/endoplasmic reticulum calcium ATPase 2; CTCF, CCCTC-binding factor; TNNT2, Troponin T Type 2; CADM1,
cell adhesion molecule 1; GPX2, glutathione peroxidase 2; SEPHS2, selenophosphatesynthase 2; TNFR1, TNF receptor superfamily member
1A; TNFRSF1B, TNF receptor superfamily member 1B; TLR2, toll-like receptor 2; TLR6, toll-like receptor 6; ID1, Inhibitor of DNA binding 1;
PIK3R1, phosphoinositide-3-kinase regulatory subunit 1; IGF1R, type 1 insulin-like growth factor receptor; BMI, body mass index; SBP,
systolic pressure, and DBP, diastolic pressure.

5. Conclusions

These data indicate that miRNAs can interfere with many proteins, including seleno-
proteins, promoting Se-related diseases. Some miRNAs have shown clear associations
with cardiomyopathy pathology, inflammation, and apoptosis. Actually, the effects of Se
on epigenetic mechanisms, especially miRNAs, are poorly described and represent an
interesting field of study.

As miRNAs are involved in the transcriptional regulation of genes, thus, acting on the
maintenance of the functionality of numerous physiological processes. Se benefits may be
mediated through its function as a component of small Se-containing metabolites or via
its role in selenoprotein activity/regulation [125]. To clarify the mechanism of microRNA
regulating Se-related diseases, we should focus not only on the influence of Se status on
miRNAs and the regulation of miRNAs on selenoproteins and other key proteins, but
also on the effect of miRNAs on Se status in target tissues. It would be interesting to see
whether miRNAs interfering with Se incorporation (e.g., targeting SCLY, TRSP) would
have a profound effect on disease.
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Abbreviations

GPX1 glutathione peroxidase-1
GPX3 glutathione peroxidase-3
GPX4 glutathione peroxidase-4
HCC hepatocellular carcinoma
miRNA microRNA
Se selenium
SeMet selenomethionine
SeCys selenocysteine
H2Se selenide
HSePO3

2− selenophosphate
SELENOP selenoprotein P
oncomiRs miRNAs acting as tumour suppressors or oncogenes
dNTPs deoxyribonucleoside triphosphates
pri-miRNA primary miRNA transcript
DGCR8 DiGeorge syndrome critical region 8
pre-miRNA miRNA precursor
mRNA messenger RNA
DNMT DNA methyltransferase
HATs histone acetylase
HDAC histone deacetylase
mTOR Mammalian target of rapamycin
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