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Abstract

Background: With increasing data sizes and more easily available computational methods, neurosciences rely more and more on
predictive modeling with machine learning, e.g., to extract disease biomarkers. Yet, a successful prediction may capture a confounding
effect correlated with the outcome instead of brain features specific to the outcome of interest. For instance, because patients tend
to move more in the scanner than controls, imaging biomarkers of a disease condition may mostly reflect head motion, leading to
inefficient use of resources and wrong interpretation of the biomarkers.

Results: Here we study how to adapt statistical methods that control for confounds to predictive modeling settings. We review how to
train predictors that are not driven by such spurious effects. We also show how to measure the unbiased predictive accuracy of these
biomarkers, based on a confounded dataset. For this purpose, cross-validation must be modified to account for the nuisance effect.
To guide understanding and practical recommendations, we apply various strategies to assess predictive models in the presence of
confounds on simulated data and population brain imaging settings. Theoretical and empirical studies show that deconfounding
should not be applied to the train and test data jointly: modeling the effect of confounds, on the training data only, should instead be
decoupled from removing confounds.

Conclusions: Cross-validation that isolates nuisance effects gives an additional piece of information: confound-free prediction
accuracy.
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Introduction
Predictive models, using machine learning, are becoming a stan-
dard tool for scientific inference. In cognitive neuroscience, they
can be used for “decoding,” to make conclusions on mental pro-
cesses given observed brain activity [1–3]. With the rise of large-
scale brain-imaging cohorts, they can extract imaging biomarkers
that predict across subjects phenotypes such as neuropsychiatric
conditions [4–6] or individual traits [7,8].

A crucial aspect of these biomarkers is their ability to predict
the outcome of interest, i.e., to generalize to new data [9]. How-
ever, these predictions can be driven by confounding effects. Such
effects affect both the brain-imaging data and the prediction tar-
get but are considered irrelevant. For instance, brain imaging re-
flects age quite accurately and actually carries information about
age-related diseases [8,10,11], yet [12] showed that participants’
in-scanner motion varies with age and it creates systematic differ-
ences in recorded brain imaging signals. Given this confounding
effect, MRI biomarkers of brain aging may be nothing more than
expensive measurements of head motion. Other examples may be
more subtle: age matters for diagnosing Alzheimer disease, yet an
important question is whether brain imaging yields an accurate
diagnosis of Alzheimer disease beyond the mere effect of age.

More generally, the data at hand often capture effects not of
direct interest to the investigation. In many situations, some con-
founds such as head motion cannot be fully avoided. To make

matters worse, large cohorts developed in population imaging to
answer epidemiological questions (e.g., UK Biobank [13]) are ob-
servational data: there is no controlled intervention or balanced
case-control group; rather, individuals are recruited from diverse
populations with various sampling or selection biases. To con-
clude on the practical use of biomarkers, it is important to en-
sure that their predictions are not fully driven by such unwanted
effects. This requires measuring model predictive accuracy after
controlling for nuisance variables. Confounding effects can also
make it hard to interpret brain-behavior relationships revealed
by predictive models [14] because confounds can mediate the ob-
served association or be a latent common cause of observations
[15].

In experimental settings, e.g., as in a small cohort, confound-
ing can be suppressed by balancing the acquisition for confounds,
or using randomized controlled trials. However, constraints in the
data acquisition, e.g., recruitment of a large cohort, often imply
that confounds are present in the data, and appropriate analysis
is needed to avoid reaching erroneous conclusions. The statisti-
cal literature on controlling confounding variables is well devel-
oped for classic statistical analysis, such as statistical testing in a
linear model at the heart of the standard mass-univariate brain
mapping [16,17]. However, these procedures need to be adapted
to high-dimensional predictive-modeling settings, where the fo-
cus is to achieve high-prediction accuracy based on imaging data.
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Indeed, predictive models do not rely on the same parametric as-
sumptions, namely, linearity of effects and Gaussian noise. Often,
a predictive analysis does not build on a generative model of the
signal but on optimizing discrimination [18]. In addition, predic-
tive models draw their purpose and validity from out-of-sample
prediction rather than in-sample statistical testing [19]. The ques-
tion tackled here is thus whether one can assess the predictive
accuracy of brain measurements free of unwanted confounds. It
is not to identify treatment effect size nor to perform other types
of causal inference.

In this article, we study statistical tools to control for confound-
ing effects in predictive models. We consider that practitioners
should primarily avoid or reduce the impact of confounds on their
model, but this is not always feasible or may be hard to check;
hence, we choose to put the emphasis on the unbiased evaluation
of models in the presence of confounds. A preliminary version of
the work discussed here was presented at the PRNI conference
[20]. While the core method is the same, it presents limited in-
sights on the theoretical underpinnings and practical value of the
method proposed. Experiments on simulated data are absent and
experiments on neuroimaging data are limited to just 1 dataset.
In particular, statistical significance is not established thoroughly,
and only 1 alternative approach is considered. In short the confer-
ence publication provides limited insights on the method, while
the present work provides a complete description and points to
the code for reuse.

We first review how the classic deconfounding procedures can
be used in predictive-modeling settings, i.e., together with cross-
validation. We then expose a complementary approach that is
not based on removing confounding effects but rather testing
whether a given predictive model—e.g., a biomarker—predicts
well when these confounds are not present. For this we introduce
the “confound-isolating cross-validation” method, which consists
in sampling test sets in which the effect of interest is indepen-
dent from the confounding effect. The benefits of this approach
are that it is non-parametric and that it directly tests the quantity
of interest in a predictive analysis. We then run an extensive em-
pirical study on 3 population-imaging biomarker extraction prob-
lems and a tabular dataset, as well as simulations. We draw prac-
tical recommendations to test predictive models in the presence
of confounding effects.

Methods: controlling for confounds in
predictive models
Formalizing the problem of prediction with a
confound
Assessing predictive models
Predictive models are assessed by their prediction accuracy [19].
For this, cross-validation is the standard tool, typically k-fold
cross-validation [21]. It consists in partitioning (potentially ran-
domly) the original dataset into k equal size subsets or folds (each
denoted by a color in Fig. 1). One of these k sets is held out for
testing, and the remaining (k − 1) folds are used for training the
model. This process is repeated k times, where each time a differ-
ent group of observations compose the test set. Prediction accu-
racy is measured on the test set, then averaged across folds.

Confounding variables in a prediction task
To formalize prediction in the presence of a confound, we consider
a dataset of n observations—e.g., participants or time points—
comprising p-dimensional brain signals X ∈ Rn×p, an effect of in-

terest (in classification settings, y does not take continuous values
in Rn, yet we use the most general notation to cover both classifi-
cation and regression settings) y ∈ Rn (the biomarker target), and
a confounding effect z ∈ Rn.

An imaging biomarker then predicts y from X. If X and z on the
one hand, y and z on the other hand, are not independent, the pre-
diction of the target y might be affected or most accurately done
by the confounding effect, z. Such prediction may be misleading
or useless. It can be misleading because it can be interpreted as a
link between brain structures and y (e.g., fluid intelligence) while
such a link only reflects the effect of z (e.g., age). It can be use-
less because brain imaging is likely much more costly to acquire
than the phenotypic variable z; hence it should be used only if it
brings more diagnostic information. Moreover, this can be detri-
mental to accuracy: if a future dataset shows an altered relation
between the confound and the features, prediction accuracy may
be compromised.

A crucial problem for the validity of the biomarker is to mea-
sure whether it can predict y from X and not solely from z. Predic-
tion accuracy is ideally measured on an independent validation
set, but most often, no large independent validation set is avail-
able and a cross-validation procedure, which iteratively separates
train and test sets [21], is used. Little et al. [22] discuss what cross-
validation captures in the presence of a confounding variable. Al-
though there can be many possible confounds in brain imaging
(see section Defining confounds calls for modeling choices), we fo-
cus below on simple settings, assuming that the main confound-
ing factor has been isolated in 1 variable.

There are 2 points of view to controlling confounds in predic-
tive models. One is to try and remove the effect of the confound-
ing variables from the data, by regressing them out (deconfound-
ing) or resampling the data to cancel spurious correlations (rebal-
ancing). The other is to test that the model’s prediction captures
more than the confound. Removing the confounding signal can
test whether predictions are fully driven by the confound z rather
than the brain signal X. However, it does not provide a good tool to
measure the predictive power in the presence of confounds: the
accuracy is likely biased, as illustrated in the simulations.

Another point of view on confounding effects in predictive
modeling consists in trying to learn a predictor from a biased pop-
ulation (one that has the confounding effect) that differs from the
population of interest (one without the confounding effect). The
problem can then be tackled as a “domain adaptation” problem
[23,24]. However, Rao et al. [24] have shown that compensating for
the confound does not improve prediction if the test population
is not markedly different from the training population. Note that
train and test samples are often drawn from the same population,
either because only 1 cohort is available or because a proper strat-
ification scheme is used. Our question is different: we are inter-
ested in assessing whether learning a biomarker on a confounded
dataset leads to predictions that are fully driven by the confound.

Deconfounding
Deconfounding in standard analysis
In inferential statistics—as opposed to predictive modeling—
proper modeling of confounds is important to control the inter-
pretation of model parameters, ensuring that they are not driven
by the confounding effects. Classical statistic analysis in brain
imaging is based on the general linear model (GLM) [16, 25], in
which confounding effects are controlled by additional regressors
to capture the corresponding variance. Such an approach shows
limitations in predictive-modeling settings. First, it is based on
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Figure 1: Classic and confound-isolating cross-validation. (a) k-fold cross-validation is the common procedure to evaluate predictive models. It
consists in splitting the data into k equal groups. Then k − 1 folds are used to fit a model and 1 fold is used to validate the model. This process is
repeated k times so that each sample is taken once in the test set. (b) In “confound-isolating cross-validation” sampling we divide the data into train
and test sets but in a different way. First, using subsampling, we create a test set on which y and z are independent. The train test is constructed from
the rest of the samples that are not included in the test set. In this way, the method creates a test set that contains unrelated target and confound.

maximum-likelihood estimates of linear models, while in general,
predictive models are not explicitly based on a likelihood and are
often not linear. Second, it is designed to control in-sample proper-
ties, while predictive models are designed for out-of-sample pre-
diction. The 2-step approach based on applying a classical GLM to
remove the confounding effect, then a predictive model, may lead
to pessimistic results, e.g., below-chance prediction [8,26].

In the context of the GLM, an alternative implementation relies
on removing the effect of variables that are correlated [25]. Note
that in all this work we assume that the confounder is associ-
ated with X and y without creating 3-way interactions between X,
y, and z. Given a sample X ∈ Rn×p of n observations (participants)
with p brain imaging features (e.g., connectivity matrices), Xi =
(Xi1, Xi2,..., Xip) and confounds z ∈ Rn, the model is:

X = zTw + e, (1)

where w is a vector of weights (1 per voxel, w ∈ Rp). ŵ represents
the estimated coefficients, which are obtained typically through
least-squares regression:

ŵ = (zTz)−1zTX. (2)

Given these equations, a linear model can be used prior to the
predictive model to remove the effect of the confounds z on the
brain signals X. It must be adapted to out-of-sample testing. One
solution is to apply deconfounding jointly on the train and the test
set, but it breaks the statistical validity of cross-validation because
it couples the train and the test set [21]. Hence it can give biased
results.

Out-of-sample deconfounding
To adapt the above “deconfounding” approach to the 2 phases of
training and testing a predictive model, a useful view is to con-
sider the deconfounding model as a predictive encoding model,
predicting a fraction of the signal X from z. Deconfounding is then
performed by removing the part of the signal captured by z from

X:

X̂clean = X − zŵ, (3)

where ŵ are the coefficients of the linear deconfounding model
(Eq. 1), estimated on the train data with Equation 2 and then ap-
plied to the test [26]. The full out-of-sample deconfounding pro-
cedure is listed in Algorithm 1.

A drawback of such deconfounding is that it is strongly para-
metric; i.e., it relies on the model of confounds used. Equation 2
stands for the classic linear model, assuming linearity between
the confounding variable z and the brain signal X. The linear
model only takes into account second-order statistics (covariance
or correlations) and ignores more complex dependencies.

Model-agnostic out-of-sample deconfounding
A common solution to go beyond linear effects of confounds is
to use a polynomial expansion of the confounds z in the linear
deconfounding model. Another option is to use a more powerful
predictive model in the confound removal. A predictive model—
including a mere linear model—regressing X on z can be seen as
estimating a function f so that f (z) = E[X|z]. There are many possi-
bilities such as random forests or Gaussian processes. The proce-
dure used for out-of-sample deconfounding can then be adapted
as in Algorithm 2. While this approach is powerful, it risks also re-
moving part of the signal of interest. Indeed, using a more power-
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ful predictive model, e.g., a higher-order polynomial, leads to ex-
plaining in X more data as a function of z; however excessively
powerful models “overfit”, which means that they explain vari-
ance in X by chance. In such a situation, the deconfounding pro-
cedure may remove signal of interest, unrelated to the confound.

Comparing predictive power of confounds
A simple evaluation of the effect of z on the prediction of y is
to use predictive models predicting y from z (“prediction from
confound”) and compare the predictive accuracy to that obtained
with biomarkers based on brain signals. This argument is used by
Abraham et al. [6] to control for the effect of movement on autism
diagnostics.

Creating a test set to isolate the confounding
effect
Rather than deconfounding, the investigator can ensure that the
predictive model is useful by measuring its accuracy on a dataset
where the confounding effect is absent. In a cross-validation set-
ting, such a situation can be created by using as a test set a well-
chosen subset of the data that isolates the confounding effect (see
Fig. 1 for a graphical illustration of the approach). Formally, it re-
quires choosing a subset S of the data such that yS and zS are
independent (the feasibility of this subset creation is discussed
below).

The remainder of the data are used as a training set to learn to
predict y from X. If the prediction generalizes to the test set S, the
learned relationship between X and y is not entirely mediated by
z. In particular, the prediction accuracy then measures the gain in
prediction brought by X.

Categorical confound
The confounding effect can be “categorical,” e.g., the site effect
when learning predictive biomarkers on multi-site acquisitions as
in [6]. In such settings, to test that the model can indeed predict
independently from site effects, a simple solution is to resort to
a cross-validation that avoids having samples from the same site
in both the train and the test sets. This may imply resampling the
data to cancel out associations between site and target related
to data imbalance. Similarly, in multi-participant prediction with
repeated measurements from the same participant, participant-
wise cross-validation can rule out that prediction is driven by
participant identification [22,27]. More generally, for a categorical
confound z, having distinct values for z in the train and the test

set ensures that the prediction cannot be driven by z. We note that
this procedure is different from the stratification strategy used in
classical statistics, but it clearly avoids any bias due to imperfectly
corrected association between z and the other variables. In the
case of site-related confounds, prediction accuracy will obviously
decrease. This can be addressed with techniques such as invari-
ant risk minimization [28], but we do not further consider this ap-
proach here.

Continuous confound
When z is a continuous variable, such as age, it is more challeng-
ing to generate test sets on which yS and zS are independent. We
describe here an algorithm to generate such sampling, “confound-
isolating cross-validation” subsampling. It is based on iterative
sampling to match a desired distribution: the goal is to have a
test set with independence between y and z, i.e., p(y, z) = p(y) p(z),
where p((y, z)) is the joint probability function of y and z, and p(y)
and p(z) are the marginal probability distribution.

A related quantity is mutual information, which character-
izes the level of dependency between the 2 variables: η(y, z) =
E [log (p((y, z))/p(y)p(z))]. In practice we estimate the probability
density functions with a kernel-density estimator (KDE) using
Gaussian kernels. We iteratively create the test S set by removing
participants; at each iteration, we consider the problem as a dis-
tribution matching problem, matching p(yS , zS ) and p(yS ) p(zS ).
For this, we use importance sampling: we randomly draw 4 par-
ticipants to discard with a probability p(yS , zS )/[p(yS ) p(zS )] using
the inverse sampling method (sec 2.2 of [29]). Algorithm 3 gives the
details. The choice of 4 samples is tailored to the sample size con-
sidered here: it makes the algorithm faster than using 1 sample
yet is low enough not to compromise mutual information min-
imization. A Python implementation is available on GitHub [30]
and on PyPI repository [31] and can be installed with pip install
confound-prediction.

Note that if z and y are too strongly related, the aforementioned
subsampling procedure does not have enough degrees of freedom
and may always chose the same subset: the test set would be de-
terministically defined by the sampling procedures, in which case
there would effectively be only 1 fold of cross-validation. In prac-
tice, it is important to check that such a situation does not occur
when analyzing a given dataset. One way is to compute the aver-
age fraction of common samples between 2 test sets created with
different seeds. Because this value ranges from 0 to 1, where 1
means that all test sets contain the same samples and 0 that test
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sets have no sample in common, it is important to check that it is
low enough.

Empirical Study Methodology
We herein describe the experimental materials underlying our
empirical study of confound-controlling approaches in predictive
models.

Simulation studies
To understand the behavior of the different accuracy scores, we
present experiments on simulated data. We simulate a dataset
X0 ∼ N (0, 1) with confound z0 ∼ N (0, 1) to predict continuous
variable y ∼ N (0, 1). We evaluate 2 sample sizes: n = 100 and n
= 1,000. We use p = 100 features in X0. We study 3 scenarios:

� No direct link between target and brain, where the brain sig-
nal does not provide any direct information to predict y but
is observed with a confound linked to y:

observed confound z = y + z0,

observed signal X = X0 + z.

� Direct link between target and brain, where the brain signal
does indeed provide information to predict y and has an ad-
ditional confound linked to y:

observed confound z = y + z0,

observed signal X = X0 + y + z.

� Weak confound and direct link between target and brain:

observed confound z = 0.5 y + z0,

observed signal X = X0 + y + z0.

Note that one could consider instead a canonical scheme in
which z would cause x and y. Because our work is not on causal
inference per se, we aim at a statistical procedure that does not
require a prescribed causal relationship between the variables,
which is often unknown.

Two classic confounded predictions in
population imaging
Motion confounding brain-age prediction
Because brain aging is a risk factor of many diseases, the predic-
tion of brain age from MRI is a promising biomarker [11]. In child-
hood also, markers of functional brain development can help to
reveal neurodevelopmental disorders [32,33]. Many recent studies
report age prediction, e.g., from resting-state functional connec-
tivity [7,32,34], from structural imaging [35], or combining multi-
ple imaging modalities [8,10]. However, older people and children
move more in the scanner than young adults (see Fig. 2 [12,36–
38]). Thus, age-related changes observed in brain images may be
confounded by head motion [39] and image quality [40].

Indeed, in-scanner motion creates complex MRI artifacts that
are difficult to remove [39]. In addition, they severely affect mea-
surements of functional connectivity [41].

Here the confounding effect is that of head motion dur-
ing the few hundreds of scans of individual acquisitions. To
build a variable summarizing head motion for each partic-
ipant, we use the movement time series computed during
preprocessing. As suggested in [41], we create the confound

Table 1. Characteristics of the datasets

Dataset information CamCan UKBB

No. of participants 626 9,302
Age range, y 18−88 40−70
Fluid intelligence
scale1

Cattell UKBB-
designed

1Scores for fluid intelligence differ on the 2 datasets: CamCan uses the Cattell
test (11−44 scores), and UKBB a specifically designed touch-screen question-
naire (1−13 scores).

z from the root mean squared displacements (position dif-
ferences across consecutive time points) for each participant

z =
{

1
I−1

∑I
i=2

[
(ti

x − ti−1
x )2 + (ti

y − ti−1
y )2 + (ti

z − ti−1
z )2

]}1/2
, where tx is

left/right, ty anterior/posterior, and tz superior/inferior translation
and i ∈ [[I]] is the time index. The prediction target y is the age in
years.

Age confounding fluid intelligence measures
Various studies have predicted individual cognitive abilities from
brain functional connectivity [42,43]. In particular, [43] used ma-
chine learning to predict fluid intelligence from rest fMRI. Fluid in-
telligence quantifies the ability to solve novel problems indepen-
dently from accumulated knowledge, as opposed to crystallized
intelligence, which involves experience and previous knowledge
[44]. It is well known that cognitive abilities change with age [45–
48], in particular that fluid Intelligence progressively declines in
middle age [49], while crystallized intelligence continues to grow
with age. Indeed, in a cohort with a large age span, the data display
a strong relation between fluid intelligence and age (Fig. 2). When
extracting biomarkers of fluid intelligence, the danger is there-
fore to simply measure age. We study how to control the effect
of age when predicting a fluid intelligence score from rest-fMRI
functional connectivity.

Population-imaging rest-fMRI datasets
Datasets
We ran experiments on 626 participants from the CamCan dataset
and 9,302 participants from UKBB. All participants are healthy
with no neurological disorders.

� Cambridge Center for Ageing and Neuroscience (CamCan)
data [50] study age-related changes in cognition and brain
anatomy and function. Characteristics of interest of this
dataset are (i) a population lifespan of 18-88 years and (ii)
a large pool (626 participants) of multi-modal MRI data and
neurocognitive phenotypes.

� The UK Biobank (UKBB) project [51] is a prospective epidemi-
ological study to elucidate the development of diseases of the
UK population over the years. The data used here contain
9,302 participants from the first release of the UKBB ongo-
ing cohort study with available resting-state fMRI scans and
extensive health and lifestyle information [52,53].

Table 1 presents detailed information about the number of par-
ticipants and the scale of the scores for each dataset.

We give detailed information on preprocessing steps for each
dataset in Appendix 8 of Nichols et al., following COBIDAS recom-
mendations [54].

Prediction from functional connectivity
To build predictive models from resting-state fMRI, we follow the
recommendations of Dadi et al. [55]. We use the BASC functional
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Figure 2: Joint distribution of target and confound. The first column presents the scatter plot of age and motion variable for CamCan (top) and UKBB
(bottom). The second column shows the case of fluid intelligence prediction with age as confound for CamCan. In all cases, the target is clearly
associated with the confound; the corresponding P-values are <10−5.

atlas [56] with 64 regions, based on which we extract fMRI time
series from the CamCAN dataset. Next, we normalize, detrend,
and bandpass-filter the signal to between 0.01 and 0.1 Hz. We rep-
resent connectivity matrices with tangent parameterization [57].
Finally, we use a ridge regression with nested cross-validation to
learn predictive biomarkers from the functional-connectivity ma-
trices. We use Nilearn [58] for the whole predictive pipeline.

Tabular (non-imaging) data
The considerations on confounds in predictive models are not spe-
cific to imaging data. We also study a confounded prediction with-
out brain signals: on the UKBB data, we consider predicting an
individual’s income from sociodemographic characteristics and
mental health assessments. We investigate education as a poten-
tial confound: it may be reflected both in mental health and in in-
come. There are 8,556 individuals with no missing values on the
outcome and confound. We use random forests for prediction be-
cause it is a popular learner that is well suited to the distribution
of these tabular data, which are often non-Gaussian and consist
of categorical variables.

Experimental paradigm: cross-validation
measures
We use cross-validation to assess prediction accuracy. We con-
sider 5 predictive frameworks: (1) without deconfounding, (2) de-
confounding test and train sets jointly, (3) out-of-sampling decon-
founding, (4) confound-isolating cross-validation, and (5) predic-
tion from confounds only. The code for these various strategies to
control for confounds can be found on GitHub [30] and on PyPI

repository [31] and can be installed with pip install confound-
prediction.

We use 10 folds, with random splits of 20% of the data in the test
set. For confound-isolating cross-validation, different seeds in the
random number generator lead to different folds. We assess the
null distribution of predictions with permutations (20,000 folds on
permuted labels y).

Results of the Empirical Study
Simulated data
We first consider simulated data, for which there is a ground truth.
Figure 3 shows the results of the different methods to control for
confounds on 3 different simulated cases (Fig. 8 gives results for
the same simulations with 1,000 samples).

(a)In the case where there is no direct relationship between the
data and the target, the performance of the prediction model
should not be better than chance after controlling for the
confound. Both joint deconfounding and confound-isolating
cross-validation clearly reveal that all the prediction is me-
diated by the confound. Out-of-sample deconfounding dis-
plays a less clear signal, as there seems to be a slight predic-
tion even after deconfounding, although it is not significant.

(b)For a direct link between the data and the target, joint de-
confounding yields a false-negative result, in the sense that
it fully removes the prediction from the brain signal: it is too
aggressive in removing signal. Other approaches correctly
support a successful prediction.
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Figure 3 : Comparisons on simulated data. The left column of each subfigure reports the prediction performance as the mean absolute error for the 5
approaches considered: Prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with
out-of-sample deconfounding, prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the
distribution across validation folds for the actual data (top, orange) and for permuted data distribution (bottom, gray). The right column displays the
distribution of P-values across folds, obtained by permutation, and the text yields the aggregated P-value across folds, testing whether prediction
accuracy is better than chance. Test subsets always represent one-fifth of the whole dataset. There are 3 simulation settings: (a) No direct link between
target and brain, (b) a direct link between target and brain in the presence of a confound, and (c) a weak confound and a direct link between target and
brain. Green ticks indicate correct conclusions, red crosses mark incorrect ones, and warning signs the weak results.

Figure 4: Evolution of the test set created by confound-isolating cross-validation. The joint distribution of the target (fluid intelligence) and the
confound (age) for the CamCan dataset is taken for demonstration. We show the process of selecting proper samples for the test set. We begin with
the entire dataset; Pearson correlation is −0.67 with infinitesimal P-value (right subplot). After half of the iterations we have already reached a
correlation −0.17 with P = 0.009 (middle subplot). The final test set is shown on the right subplot, correlation −0.007 with P = 0.02. It presents
negligible residual dependency between targets and confounds.
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(c) For a weaker confounding signal, results are similar; how-
ever it is worth noting that the target can no longer be well
predicted from the confound.

Overall, on the simulations, both out-of-sample deconfound-
ing and confound-isolating cross-validation give reliable answers,
while deconfounding the test and train jointly as well as measur-
ing the prediction from confounds cannot be trusted.

Experiments on resting-state fMRI data
Potential confounds
Figure 2 shows the relationships between target variable y and
confounds z. Fluid intelligence (target) is strongly negatively cor-
related with age (confound) on the CamCan dataset (second col-
umn of Fig. 2). Also, on the CamCan data, age and motion are
very correlated (first column of Fig. 2). On the more homoge-
neous and larger UKBB sample (9,302 participants), this link is
weaker.

Confound-isolating cross-validation
Figure 4 displays the evolution of the association between con-
found and target during confound-isolating cross-validation in
the CamCan dataset, predicting fluid intelligence with age as a
confound. In the full dataset, comprising 608 participants, the cor-
relation between confound and target is ρ = −0.67. Iterating the
algorithm to remove half of the participants leads to ρ = −0.17.
The final test set contains one-fifth of the initial set of partic-
ipants and achieves ρ = −0.07, showing that it indeed cancels
the dependency between aging and motion. The joint distribu-
tion between target and confound displayed in Fig. 4 shows that
the initial statistical dependency between these 2 variables van-
ishes after a few tens of iterations of the algorithm. Quantita-
tive evaluation, measuring both Pearson correlation and mutual
information (Fig. 5), confirms that the confound-isolating proce-
dure efficiently creates a subset of the data without the depen-
dency as soon as it reduces the data to ≤300 participants. Fig-
ure 9 shows similar success on the other prediction problems that
we study.

In a cross-validation setting, the different test sets should probe
different participants to maximize testing power. A risk, when us-
ing confound-isolating cross-validation, is that it could repeatedly
generate test sets with the same samples. To measure the diver-
sity of the test sets, we compute the average fraction of common
samples between 2 tests sets created with different seeds. The
value is in the range from 0 to 1, where 1 means that all test sets
contain the same samples and 0 that test sets have no sample in
common; the expected value is 1/5. We find an average intersec-
tion of 0.30 for age prediction with CamCan and 0.27 with UKBB;
for fluid intelligence prediction with CamCan, we find 0.36. This
demonstrates that the test sets do not repeat much, hence that
there is no hidden determinism in the cross-validation scheme of
the proposed method.

Testing for confounded prediction
Figure 6 and Table 2 report the mean absolute error for the dif-
ferent approaches to control for confounds (mean absolute error
is a good metric to compare across different test sets because it
gives an absolute error measure in the unit of y, unlike explained
variance, which depends on the variance of y). The figure also re-
ports the P-value of predictive accuracy, from permutations (tech-
nically, there is one P-value per fold; to report only one number, we
use P-value aggregation [59]). The first thing to note is that with-
out controlling for confounding effects, all models lead to signifi-

Table 2. Comparisons on population-imaging data, Camcan fluid
intelligence prediction

Method
Mean absolute error ± σ

P-valueNon-permuted Permuted

CamCan: Age prediction
Without
deconfounding

6.17 ± 0.43 16.00 ± 1.24 <0.001

Deconfounding test
and train jointly

6.76 ± 0.53 16.24 ± 0.66 <0.001

Out-of-sample
deconfounding

9.30 ± 0.80 15.79 ± 1.22 <0.001

Confound-isolating
cross-validation

6.49 ± 0.46 15.21 ± 1.37 <0.001

Prediction from
confounds

13.74 ± 1.50 15.22 ± 1.74 <0.001

CamCan: Fluid Intelligence prediction
Without
deconfounding

4.10 ± 0.29 6.05 ± 0.49 <0.001

Deconfounding test
and train jointly

4.08 ± 0.22 5.70 ± 0.34 <0.001

Out-of-sample
deconfounding

5.59 ± 0.32 6.04 ± 0.90 0.23

Confound-isolating
cross-validation

4.31 ± 0.29 4.60 ± 0.30 0.06

Prediction from
confounds

4.03 ± 0.60 5.70 ± 0.95 <0.001

UKBB: Age prediction
Without
deconfounding

4.82 ± 0.40 6.95 ± 0.80 <0.001

Deconfounding test
and train jointly

4.95 ± 0.40 6.92 ± 0.80 <0.001

Out-of-sample
deconfounding

8.23 ± 0.33 7.12 ± 0.34 >0.99

Confound-isolating
cross-validation

5.08 ± 0.30 7.26 ± 0.60 <0.001

Prediction from
confounds

6.24 ± 0.73 6.29 ± 0.72 >0.99

Tabular data: Income prediction
Without
deconfounding

0.79 ± 0.014 0.93 ± 0.016 <0.001

Deconfounding test
and train jointly

0.79 ± 0.014 0.93 ± 0.016 <0.001

Out-of-sample
deconfounding

0.77 ± 0.014 0.93 ± 0.016 <0.001

Confound-isolating
cross-validation

0.85 ± 0.130 0.94 ± 0.180 >0.99

Prediction from
confounds

0.87 ± 0.016 0.93 ± 0.016 <0.001

cant prediction. But are these driven by the confounds? Given that
the various approaches measure predictions on different data, we
compare how far these predictions are above chance, rather than
their absolute value.

Deconfounding test and train sets jointly—removing the linear
effect of the confounding variable on the full data– has little ef-
fect on the prediction performance on all datasets. On the other
hand, out-of-sample deconfounding significantly changes predic-
tion performance in a way that varies across tasks. Prediction ac-
curacy of fluid intelligence on CamCan decreases to chance level.
Age prediction on CamCan is little affected. However, age predic-
tion on UKBB gives results worse than chance, i.e., worse than
a model that learns to predict age on data where this relation-
ship has been shuffled by permutation (see Fig. 6 and Table 2).
Confound-isolating cross-validation also gives varying results on
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Figure 5: Evolution of the link between confound and target with the number of participants for different subsampling methods on the CamCan
dataset, considering age prediction. Applying Algorithm 3 effectively reduces statistical dependences between confound and target (red curve). In our
experiments, we stop the sampling when the test set size is one-fifth of the dataset.

Figure 6: Comparisons on population-imaging data. Each subfigure shows 1 prediction setting: (a) CamCan Age prediction, (b) CamCan fluid
intelligence prediction, (c) UKBB age prediction. The left column of each subfigure reports the prediction performance as the mean absolute error for
the 5 approaches considered: prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with
out-of-sample deconfounding, prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the
distribution across validation folds for the actual data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the
distribution of P-values across folds, obtained by permutation, and the text yields the aggregated P-value across folds (see main text), testing whether
prediction accuracy is better than chance. Test subsets always represent one-fifth of the whole dataset. The figure clearly displays different behaviors
across the 3 problems: without deconfounding, and deconfounding test and train jointly yield statistically significant but probably spurious accuracy;
out-of-sample deconfounding can be overconservative (the prediction is worse than chance on UKBB), suggesting that the deconfounding model
removes too much variance; confound-isolating cross-validation yields more nuanced results, and prediction from confounds yields variable results.

different datasets. For fluid intelligence prediction on CamCan, it
also gives results at chance level. For age prediction on CamCan, it
does significantly alter prediction accuracy, and on UKBB, it leads
to a slightly worse prediction but still above chance. Finally, pre-
diction from confounds leads to chance-level or good prediction

of the target depending on the dataset. In particular, it does better
than chance for fluid intelligence prediction.

These results show that in all these datasets, the confounds z
are associated with both the data X and the target y. For fluid in-
telligence prediction on CamCan, all the prediction of y from X
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Figure 7: Comparisons on tabular data: predicting income from
sociodemographic characteristics and mental health, controlling for
qualifications. The left column of the figure reports the prediction
performance by the mean absolute error for the 5 approaches
considered: prediction from the data without deconfounding, prediction
after deconfounding test and train jointly, prediction with out-of-sample
deconfounding, prediction with confound-isolating cross-validation, and
prediction from confounds. The left column displays the distribution
across validation folds for the actual data (top, orange), and for
permuted data distribution (bottom, gray). The right column displays
the distribution of P-values across folds, obtained by permutation, and
the text yields the aggregated P-value across folds (see main text),
testing whether prediction accuracy is better than chance.

is mediated by z. However, for age prediction in CamCan, there
exists within X some signal that is unrelated to z but predicts y.
Age prediction in UKBB is a more subtle situation: X contains sig-
nals from z and y with shared variance, but there is enough signal
beyond the effect of z to achieve a good prediction, as demon-
strated by confound-isolating cross-validation, where the predic-
tion cannot be driven by z. Yet, out-of-sample deconfounding re-
moves the shared variance and hence creates predictions that are
worse than chance.

Tabular data
Figure 7 and Table 2 give the results of analysis on the tabular
data. There is a significant prediction of income from sociode-
mographic and mental health information, without any decon-
founding. However, prediction from confounds shows that qual-
ifications also predict income well. To control for qualification,
deconfounding removes the signal explained by these in X. Here,
deconfounding does not make the prediction worse; actually out-
of-sample deconfounding improves it. Such an improvement can
be explained if the deconfounding adds information about the
confound to the signal rather than removing it, as can happen
when the model of the confounds is mis-specified. To limit mis-
specification issues, a random forest is used as the g function
in Algorithm 2. Finally, confound-isolating cross-validation shows
variable results, but overall that prediction does not work bet-
ter than chance on balanced datasets, so that qualification is no
longer specifically related to income.

Here, deconfounding leads to the conclusion that the predic-
tion of income from sociodemographic and mental health in-
formation is not at all driven by qualifications while the other
approaches suggest otherwise. The discrepancy is probably due
to the complex non-linear interactions between these variables.
The reality is probably that qualifications contribute to the pre-
diction of income, as well as mental health and sociodemo-

graphic information, and that teasing out these contributions
is hard.

Discussion and Conclusion
Measuring the accuracy of predictive models, e.g., for biomarkers
or brain decoding, must account for the presence of confounding
effects that can contribute to the prediction. Indeed, an imaging
biomarker that solely picks up head motion may detect diseases
with some success but be overall a waste of scanner time. An ac-
curate prediction of fluid intelligence from brain functional con-
nectivity might simply be a consequence of indirectly capturing
the participants’ age. Standard cross-validation procedures ignor-
ing the confounds can overestimate prediction accuracy.

Addressing confounds in predictive modeling
Approaches must be adapted to out-of-sample settings
Deconfounding approaches used in standard GLM-based analysis
must be adapted to out-of-sample data by separating estimation
of the confounds’ model from removal of the effect of confounds
on the data, as detailed in Section Methods: controlling for con-
founds in predictive models and Algorithm 1. Importantly, apply-
ing deconfounding to the whole dataset without separating train
and test set is not only wrong in theory—because it breaks inde-
pendence of train and test data—but also leads to incorrect con-
clusions in practice, as clearly visible from the simulations.

Even done right, deconfounding in predictive settings can lead
to pessimistic evaluations, as stressed by Snoek et al. [26] and
shown in our experiments. This is because the signal explained
by the confound is removed from the brain signal before it is
passed to the predictive model. The corresponding correction can
remove too much information when there is a large amount of
shared signal between the confound and the target, e.g., aging and
Alzheimer disease. Such problem does not arise in a GLM-based
standard analysis because the confounds and the effects of inter-
est are modeled simultaneously, and the consequences of shared
signal are easier to handle.

To give a measure of predictive accuracy that is not pessimistic,
we also study a different approach: testing the predictive model
on a subset of the data crafted such that the effect of interest
is independent from the confound. When the confounding effect
is represented as a categorical variable, e.g., the effect of acqui-
sition site, the approach can be simple because it amounts to
splitting the data so as to ensure that generalization occurs for
a category not observed in the training set. Creating an adequate
test set for continuous confounds requires a dedicated method, as
with confound-isolating cross-validation (Algorithm 3). It enables
a test of the predictive power from brain imaging without dis-
carding the potentially useful shared signal. In addition, it is non-
parametric and does not rely on a linear confounding model. Em-
pirical studies, on both brain-imaging data and simulations, show
that both out-of-sample deconfounding and confound-isolating
cross-validation can control correctly for confounds. Deconfound-
ing before fitting a predictive model brings the benefit of building
a predictor free of the confounding effect. However, it can remove
shared variance and lead to pessimistic evaluations. Confound-
isolating cross-validation brings the benefit of measuring the pre-
dictive power in the absence of the confounding effect. Such mea-
sure is of direct importance to gauge the practical value of a
biomarker. As an attractive complementary approach, note that
deep learning approaches for learning confound-free models have
been proposed [60].
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Figure 8: Benchmarking approaches to control confounded predictions on simulated data with many samples. The left column of each subfigure
assesses the prediction performance through the mean absolute error (in signal units). We display the error distribution across validation folds for the
data (top, orange) and for permuted data distribution (bottom, gray). The right column displays the distribution of P-values across folds, obtained by
permutation, and the text reports the aggregated P-value across folds (see main text). Five approaches are benchmarked: without deconfounding,
deconfounding test and train jointly, out-of-sampling deconfounding, confound-isolating cross-validation, and prediction from confounds. There are 3
simulation settings: (a) no direct link between target and brain, (b) a direct link between target and brain, and (c) a weak confound and a direct link
between target and brain. Green ticks indicate correct conclusions, red crosses mark incorrect ones, and warning signs, the weak results.

To summarize, our main claim is that it is possible to learn
a confounded model yet evaluate it in an unbiased fashion.
What matters in this logic is that the predictive accuracy after
confound-isolating cross-validation remains better than chance,
which amounts to performing an omnibus test of the variables
of the model. The case where confound-isolating cross-validation
would yield a null result certainly means that one should be cau-
tious in claiming a conditional association between X and y, as
slight variations in the confounding model may render the associ-
ation significant or not: indeed the apparent association between
features and target is dominated by the confounder and, thus, not
a reliable one. In brief, this has an effect on the practical signifi-
cance of claimed associations.

Which approach to use when: deconfounding versus
confound-isolating cross-validation
Out-sample deconfounding and confound-isolating cross-
validation give valid and complementary information. In the
worst case, these approaches can be conservative, but they do
not yield spurious associations. From a prediction perspective,
when the training population reflects the target population
adequately, changing the training data to remove the effect of
the confounder may not improve prediction accuracy [24]. For
instance, for many diseases, patients move more in the scanner
than healthy individuals. Should an imaging biomarker of the
pathology be developed, this effect will be most likely true in the

population on which the biomarker is applied. Hence it is coun-
terproductive to force the biomarker to discard this information.
Rather, confound-isolating cross-validation should be used to
check that the imaging biomarker does bring in value in addition
to capturing motion.

On the other hand, confound-isolating cross-validation is not a
universal remedy: removing a confounding effect from the train-
ing data may be useful if the confounder is incidentally correlated
with X or y without any clear causal relationship. This is the case
if the confounder is a feature of the measurement process. For
instance, if the data are acquired across 2 imaging sites with dif-
ferent scanners, but 1 site recruited a much larger fraction of pa-
tients than the other, the risk is that the predictor learns to use
information about the scanner rather than the disease. In such a
case, the training strategy must be adapted, e.g., by removing the
effect of the confound.

Finally, if the goal is to interpret successful prediction as ev-
idence of a link between brain signals and the predicted out-
come, modifying the training data is more likely to disentangle the
biomarker pattern of interest from the confounding effect. In such
a situation, deconfounding should be preferred, to give a model,
with its parameters, that is not driven by the confounding signal.

Limitation: with many confounds the problem is harder
Here we have studied the case of 1, clearly identified, confound.
The case of multiple confounds (e.g., age, education, sex, ethnic-
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Figure 9: Evolution of mutual information and correlation with the number of participants for different subsampling methods on the CamCan
dataset with fluid intelligence prediction and UKBB age prediction. This figure shows that the proposed method effectively reduces statistical
dependencies between confound and target (red curve) for both datasets and both predictors.

ity) is more challenging. In such situations, deconfounding ap-
proaches may fully remove the signal of interest. For confound-
isolating cross-validation, reliable estimation of mutual informa-
tion will require much larger sample sizes than with a single con-
found. In practice, we recommend identifying the most effective
confound to run confound-isolating cross-validation.

Another concern could be that such confounding factors are
not well identified. In that case, the proposed approach does not
help, but such a case is very hard to handle with statistical meth-
ods (see, e.g. [61]). We thus leave handling of imperfect confounder
knowledge for future research.

Elements to interpret analyses with confounds
Defining confounds calls for modeling choices
Whether a variable should be considered as a confounding effect
or not is not dictated by the data but by the question at hand. The
actual notion of confound comes from causal modeling, to give a
causal interpretation to model parameters [15,62]. Confound vari-
ables are then chosen so as to model the difference between the
measurements at hand and those obtained with a hypothetical in-
tervention. Such choices are implicitly based on a model of which
variables are causes or consequences of the fictional intervention
and the outcome of interest (see [63] for guidelines in the case of
UKBB).

In pure biomarker settings, the focus is not on potential inter-
ventions but on detecting or predicting an outcome. The concern
is then that the measured accuracy might not reflect the actual
application settings [22,27]. Here also, the choice of variables to

control for must be governed by an understanding of how the
data at hand may differ from ideal data to reflect the target ap-
plication. More concretely, confounds can indeed relate to any as-
pect of the set-up, e.g., acquisition devices; data processing rou-
tines when these are not homogeneous across the entire dataset;
measurement-related covariates such as motion; and individual
conditions, such as age, sex, or genetics, that are correlated with
the imaging variable and with the outcome.

Deconfounding for causal interpretations: the collider-bias
danger
Using deconfounding to cancel the impact of a putative confound
z removes any bias incurred by the spurious association between
the data X and the prediction target y, when z is associated with
both X and y. However, z may be a consequence of both the target
and the data. In such a situation conditioning on it can create a
form of selection bias, sometimes known as “collider bias” [64,65].
Conditioning on the third variable z can then reverse the corre-
lation between 2 variables X and y, a phenomenon known as the
Berkson or Simpson statistical paradox [66,67]. It can be under-
stood from a simple example: when studying a population of hos-
pital patients, individuals may have been admitted to the hospital
because they have disease A or B. On this specific population, the
2 diseases are anti-correlated. However, concluding that disease A
protects from disease B would be incorrect. Another example can
be found in a cognitive experiment where both a visible-enough
stimulus and a timely motor response are needed for a success-
ful response. When learning a model decoding stimulus visibil-
ity from brain response, deconfounding on successful responses
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would lead this model to rely on motor cortex activity, while the
link between visual stimulus and motor cortex is not neuroscien-
tifically relevant as such. Deconfounding by itself does not suffice
to yield associations with clear interpretations.

A sampling view on confounds
Confound-isolating cross-validation strives to sample an ideal
subpopulation. This is also one of the best strategies to avoid
the presence of confounds in experimental settings: targeting the
recruitment of participants so that the design is balanced, e.g.,
with matched controls or randomized controlled trials. But this
can only be done at study design, and targeted acquisitions, with
matching and restriction, can make it hard to collect large sam-
ples or tackle many covariates. At analysis time, researchers have
to rely on statistical methods to adapt the analysis to the pres-
ence of confounds. For in-sample analysis, propensity scores are
a classic reweighting technique used to obtain reliable effect esti-
mates from confounded datasets [68,69]. The use of subsampling
in confound-isolating cross-validation can be seen as an exten-
sion of these ideas for out-sample validation of predictive accu-
racy. The only caveat is that one has to ensure that sampling does
not deterministically lead to a fixed test set, which would weaken
the statistical guarantees brought by the validation experiment.
Here, we propose to perform this check a posteriori. In the future,
more complex sampling strategies could be designed to ensure
some randomness in the test set.

Conclusion: deconfounding and isolating
confounds are complementary
Deconfounding strives to remove confounding effects from the
data, after which successful prediction can be interpreted as a
direct link from the remaining brain signals to the outcome of
interest. However, in biomarker settings, the primary focus may
be on the quality of detection, rather than interpretation, e.g., to
improve diagnosis or prognosis. In such settings, an important
question is, how much do the brain signals improve the predic-
tion upon a simpler measure of the confounding effect? Answer-
ing this question calls for a cross-validation procedure isolating
this confounding effect. The corresponding prediction accuracy
can then safely be interpreted as not resulting in any way from
the confounding effect.
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Appendices
Data preprocessing
CamCan data were preprocessed using Pypreprocess [71], a collec-
tion of Python scripts for preprocessing fMRI data, that is based
on the SPM12 software and the nipype toolbox [72]. We pre-

processed CamCan data only. For UKBB data the preprocessed
and connectivity matrices are available from the data repository.
We apply a commonly used protocol that includes the follow-
ing steps: Motion correction, correction for subject’s head mo-
tion during the acquisition. Estimated six motion parameters
(three translational parameters and three rotational parameters)
are used as confounds in the age prediction experiments. For
each subject we expressed the head motion using translation
across all three axes as a square root of the mean of the sum
of square finite difference of each translation axes over the time:√

��translation2
x + ��translation2

y + ��translation2
z

3
The rest-fMRI data

are coregistered to the anatomical T1-MRI and then normalized
to MNI template.
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