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The computer program LOBSTER (Local Orbital Basis Suite

Towards Electronic-Structure Reconstruction) enables chemical-

bonding analysis based on periodic plane-wave (PAW) density-

functional theory (DFT) output and is applicable to a wide

range of first-principles simulations in solid-state and materials

chemistry. LOBSTER incorporates analytic projection routines

described previously in this very journal [J. Comput. Chem.

2013, 34, 2557] and offers improved functionality. It calculates,

among others, atom-projected densities of states (pDOS), pro-

jected crystal orbital Hamilton population (pCOHP) curves, and

the recently introduced bond-weighted distribution function

(BWDF). The software is offered free-of-charge for non-

commercial research. VC 2016 The Authors. Journal of Computa-

tional Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24300

Introduction

Methods for electron partitioning in molecules have been around

in quantum chemistry since Mulliken’s ingenious approach for

assigning electrons to atoms and bonds.[1] These models and

concepts are likewise helpful for periodic systems, so an analo-

gous scheme was introduced within non-variational extended

H€uckel (eH) theory[2] and dubbed Crystal Orbital Overlap Popula-

tion (COOP); pioneered in the 1980s, it proved powerful ever

since.[3] With the advent of variational density-functional theory

(DFT), the Crystal Orbital Hamilton Population (COHP) scheme

was suggested, which partitions energies rather than electrons

but otherwise resembles COOP in that it allows to extract chemi-

cal interactions between atoms from band-structure calcula-

tions.[4] COHPs have been implemented and widely used within

TB-LMTO-ASA theory,[5] which is DFT-type but shares with eH the

use of localized basis sets for periodic solids.

As of today, many condensed-matter quantum-mechanical codes

employ plane waves (PW), which naturally (and effectively) fulfill Bloch’s

theorem but are delocalized by their very nature, making bond-

analytical approaches such as COOP and COHP unavailable in PW

frameworks. Nonetheless, there are ways to transfer PW to localized

functions using projection schemes as pioneered by S�anchez-Portal

et al.[6] For large atomic numbers, however, PW become impractical for

the near-core regions, so the success of the pseudopotential (PP)

approach[7] in computational materials science is easily under-

standable. Nowadays, Bl€ochl’s projector-augmented wave (PAW)

method is the most powerful of the PP descendants.[8] To project

PAW functions[8] onto localized orbitals (say, of the Slater type),

we have recently developed an analytical formalism[9] to apply

bond-analytic tools even though the system was brought to self-

consistency in a PW basis; other bond-analytical approaches[10]

exist as well. Our technique makes COOP or COHP analyses feasi-

ble beyond densely packed systems[9] (such as intermetallics[11])

and can, other than before, be seamlessly applied to scenarios

such as molecular crystals[12] or even amorphous matter.[13]

To facilitate chemical-bonding analyses and other methods for a

multitude of systems and applications, we are offering the LOBSTER

(Local Orbital Basis Suite Towards Electronic-Structure Reconstruction)

software free-of-charge for non-commercial purposes at http://www.

cohp.de. In this article, we describe recently developed methodology

and functionality added to LOBSTER. A number of illustrative applica-

tions are presented, and directions for further reading are given.

Methods

Before describing recent developments which have found their way

into LOBSTER, we refer the reader to our initial publication[9] for a

more comprehensive account of the underlying formalisms, and to

the manual shipped with the code for any practical questions. A

(simplified) scheme of what LOBSTER does is presented in Figure 1.

Local basis sets

The initial step in projection is finding a suitable choice of

local auxiliary basis functions. For reasons of simple chemical
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interpretation, LOBSTER employs minimal basis sets that none-

theless carry the correct nodal behavior in the core region,

which is necessary to fit PAW wavefunctions. LOBSTER first

came with contracted primitive Slater-type orbitals (STOs)

fitted to atomic functions,[14] a reasonable choice for post-

processing bonding information. There are also systems, how-

ever, where the bonding situation requires additional basis

functions which deviate from those of the corresponding free

atoms. In elemental beryllium, for example, its 2p levels are

unoccupied in the free atom. For bulk Be, however, the 2p lev-

els do get involved into bonding and define the metallic char-

acter, so the Be basis set must also include 2p functions.

For demonstration, let’s look at the high-temperature

phase,[15] body-centered cubic beryllium, b-Be. Its electronic

structure was calculated with ABINIT employing the JTH atomic

datasets[16] and the GGA-PBE parametrization for exchange and

correlation.[17] On the LOBSTER side, the original basis set[14a]

and its basis functions (1s and 2s) somehow manage to recon-

struct the PAW electronic structure but with an unacceptable

absolute charge spilling of roughly 19% (see below for defini-

tions). For analysis, the differences between the original and

projected wavefunctions were calculated and an isosurface at

65% of the maximum resulting density was plotted for several

bands at C. The fourth band showed enormous deviations (Fig.

2, left) because the basis lacks an orbital of p-symmetry, as rea-

soned before. Adding a 2p function strongly reduces the abso-

lute charge spilling to 1.73%. For comparison, the 65% density-

difference maxima decrease by two orders of magnitude (Fig. 2,

right). While the functions were added by fitting VASP data, they

turn out to be general enough to easily fit other PAW wavefunc-

tions, for example, those calculated by ABINIT, too.

Hence, free-atom calculations in large supercells have been

performed for all elements up to Z596 (curium) using GGA-

PBE[17] as implemented in VASP.[18] In nearly all cases up to Z5

80 (mercury) did the new basis functions match the previously

given ones well, and they allowed us to numerically fit and

add missing (polarization) functions. Obviously, these new

functions had to be orthogonalized with regard to the existing

functions of the same l azimuthal quantum number to enlarge

the basis sets already available in LOBSTER. In the next step,

visual evaluation of the calculated PAW atomic orbitals yielded

wavefunctions of the desired symmetry and shape; hence they

were corroborated as a valid basis choice.

While the basis functions are aligned with the Cartesian

axes by default, LOBSTER 2.0.0 supports user-defined rotations

of the basis functions as has been described recently;[19] this

new feature can be especially useful when isolated, orbital-

wise interactions must be studied.

Figure 1. Overview of LOBSTER’s functional principle: a quantum-chemical system, characterized by its one-electron (Bloch) wavefunctions Wj and the

according eigenvalues ej (band energies), has been brought to self-consistency using some plane-wave DFT program. A local auxiliary basis is then selected

to determine the overlap matrix S and the transfer matrix T between the delocalized and localized representations. From those, the projected coefficient

and Hamiltonian matrices C pð Þ and H pð Þ, respectively, are accessible, which allow for various bond-analytic tools. The LOBSTER logo is copyrighted by the

Chair of Solid-State and Quantum Chemistry at RWTH Aachen University.

Figure 2. Isosurfaces (in Å23) at 65% of the differences between the

ABINIT-based PAW densities and the LOBSTER-projected densities for the

fourth band of b-Be at C. On the left side, the basis contains only 1s and

2s functions as given by Bunge et al., whereas on the right this basis was

enlarged by 2p functions. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Improved measures for projection quality

Before analyzing the projected wavefunctions, one must

ensure that the auxiliary basis suffices. To do so, S�anchez-

Portal et al. introduced the so-called “spilling” and “charge-

spilling” criteria,[6b] which measure the percentage of elec-

tronic density lost during projection; this approach was also

used in former LOBSTER versions.[9]

Nonetheless, in a localized basis, unwanted effects such as

the basis-set superposition error[20] or counterintuitive orbital

mixing[21] can lead to projected wavefunctions with a norm

artificially larger than unity; note that the original spilling crite-

rion correctly assumes that the norm of a projected wavefunc-

tion is bound to unity. If this condition is broken, averaging

the spilling over multiple bands j and ~k points may lead to

error cancellation such that the projection quality looks better

than it actually is. To counteract, LOBSTER 2.0.0 comes with an

improved definition which we dub “absolute spilling” S and

“absolute charge spilling”, SQ, defined analogously to its pred-

ecessor,[6b] but averaging absolute values:

SQ5
1

Nj

XN~k

~k

w~k

XNj

j

absð12Ojjð~kÞÞ;

with

Oð~kÞ5CðpÞ†ð~kÞSð~kÞCðpÞð~kÞ;

where CðpÞð~kÞ and Sð~kÞ are the coefficient and overlap matri-

ces, respectively, and w~k denotes the normalized ~k point

weights. The absolute charge spilling, S, is collected only over

occupied bands, that is, those with nonzero occupation num-

bers, fjð~kÞ 6¼ 0.

Another way to assess the deviation is given by the root-

mean-square error (RMS) of projected wavefunctions. If the PW

part of the PAW functions is given on a reciprocal grid at val-

ues of ~k1~G, one may define the RMS of the projection (RMSp)

by comparing the projected LCAO function j~k1~GjXji to its

PAW reference j~k1~GjWji:

RMSp5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
~k ;~G ;j

absðj~k1~GjWji2j~k1~GjXjiÞ2
vuut :

The sum runs over all N vectors ~k1~G at each band j in the

plane-wave basis. Using the reciprocal representation of the

wavefunctions enables us to rewrite the difference in the for-

mer equation:

j~k1~GjWji2j~k1~GjXji5CPW
~G;j
ð~kÞ1

X
i

�/ ið~k1~GÞh~pij ~W ji

2
X

l

C
ðpÞ
l;j ð~kÞ~vlð~k1~GÞ:

All of these expressions are either known directly from the

PAW calculation (like the plane-wave coefficients CPW
~G;j
ð~kÞ and

so-called wavefunction characters h~pij ~W jiÞ, evaluated during

the projection by LOBSTER anyway [such as the LCAO coeffi-

cients C
pð Þ

l;j ð~kÞ and the Fourier-transforms of the local basis

functions ~vlð~kÞ], or they can be obtained by a Fourier–Bessel

transform

�/ ið~jÞ54pili

ð
�/ iðrÞjli

ðabsð~jÞrÞrdr Yli
mi
ðĵÞ;

where �/ i rð Þ is a shorthand notation for the difference

between the all-electron and pseudo-space partial-waves in

the PAW method and ~j5~k1~G. jl xð Þ designates the spherical

Bessel function, and Yl
m #;uð Þ is a spherical harmonic.

In contrast to the originally defined spilling, the RMSp

method is bound to zero independent of assumptions, which

makes it a well-suited optimization criterion. If desired, one

may normalize RMSp to the range of reference data, viz.

maxðj~k1~GjWjiÞ–min ðj~k1~GjWjiÞ, for example, when comparing

results from primitive unit cells to those from supercell mod-

els, a rather practical real-world scenario.

Orthonormalization

As stated before, the targeted analytic methods are bound to

minimal basis sets on purpose and hence prevent using

sophisticated multi-f basis sets easily. Consequently, we apply

L€owdin’s symmetric orthonormalization (LSO) to the projected

wavefunctions.[9] Even if significant (but comparable) amounts

of charge are lost around every atom, this technique was

found to ensure properly projected densities of states (pDOS),

a crucial ingredient for other bond-analytical tools in the

sequel.

Within LOBSTER 2.0.0, LSO is also applied to the basis func-

tions themselves. We note that traditional COHP analysis by

means of TB-LMTO-ASA theory[5] works with an intrinsically

orthogonal basis set which overlaps due to the atomic-

spheres-approximation: likewise, the basis functions in

LOBSTER do overlap. To improve correspondence between tra-

ditional COHP and its projected analogue, the projected Hamil-

tonian matrix H pð Þð~kÞ is now reconstructed after likewise

applying LSO to the basis functions, yielding

HðpÞð~kÞCðpÞ0ð~kÞ5CðpÞ0ð~kÞeð~kÞ;

where CðpÞ0ð~kÞ designates the coefficient matrix within the

orthogonalized set of basis functions. In contrast, all other

bond-analytic tools such as projected COOP still use CðpÞð~kÞ
since the overlap populations would be rendered meaningless

in an orthogonal basis set.

Visualization

Examining the causes of an imperfect projection is a non-

trivial task but may be significantly simplified by visual

inspection. To do so, the internal development version of

LOBSTER writes the values of both projected and PAW wave-

functions on a user-defined, linearly equidistant grid which

can either be an arbitrarily oriented line or a three-

dimensional grid within a cuboid, both bounded by the unit
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cell. This enables density-difference plots as shown in Figure

2, but can also be used to examine the signed wavefunctions

directly.

Technical aspects

LOBSTER is written in modern, object-oriented C++ and uses

the famous Boost library[22] for various algorithms and con-

cepts for object or memory management, as well as their

organization. Even though many of them were incorporated

into the C++11 standard, Boost is still a valuable asset for

mathematical special functions and interaction with the oper-

ating system. Furthermore, LOBSTER has evolved into a multi-

platform tool, supporting Linux, Windows and OS X. Wherever

possible, it employs matrix or vector algebra to employ the

data structures and algorithms, for example, for matrix decom-

positions, provided by the highly efficient Eigen library.[23]

Results of computationally expensive but repeatedly evaluated

functions are cached internally. LOBSTER is parallelized using

OpenMP, still making efficient use of its internal caches

through multiple-readers/single-writer lock patterns. To opti-

mize CPU usage, LOBSTER uses memory mapped I/O to read

large chunks of input data from the file system when available

and beneficial.

At present, LOBSTER 2.0.0 processes and analyzes PAW

results from two third-party codes, VASP[18] and ABINIT,[24] but

further interfaces are possible. Due to lack of direct tabulation

in the case of ABINIT, the projector functions ~pi rð Þ must be

transformed to reciprocal space once using the Fourier–Bessel

transform, as stated above.

Program Features

Once the coefficient matrix has been reconstructed (Fig. 1), LOB-

STER can readily calculate pDOS and pCOOP by ~k space integra-

tion.[9] Additionally, it writes their energy-integrated counterpart

IpDOS (which yields the total number of electrons of the respec-

tive atoms, Mulliken’s gross population) and IpCOOP (Mulliken’s

overlap population). Based on these IpCOOP values, bonding

analysis can be applied even to amorphous structures by means

of the recently proposed bond-weighted distribution function

(BWDF).[13] The coefficient matrices have also been used directly

to analyze orbital mixing (or hybridization in the physicists’ lan-

guage).[25] Reconstructing the Hamiltonian matrix in a second

step facilitates pCOHP analysis.[9,26] Energy integration up to the

Fermi level yields IpCOHP, which might likewise serve as a bond-

weighting indicator for BWDF.[13] For further detail on each spe-

cific method, we redirect to the original literature.

Applications

Since its initial publication, LOBSTER has found diverse applica-

tions. Being interfaced to state-of-the-art DFT codes such as

VASP, it allows to process output from modern methods such

as hybrid-DFT results.[27] LOBSTER has begun to play its part in

surface chemistry: exploring oxide catalysts,[28] square-planar

carbon at transition-metal surfaces,[29] or local structural frag-

ments at quartz-type GeO2 surfaces.[30] Less-than-densely

packed three-dimensional (3D) networks have been of interest

as well: complex clathrate structures,[31] hydrogen bonding in

molecular crystals,[12] or the stability ranking of metal azide

polymorphs.[32]

We round out this article by presenting two representative

applications from fields of current research interest.

Atomic motion in phase-change materials

Phase-change materials (PCMs) can be switched between crys-

talline and amorphous phases, and thus be used to encode

“ones” and “zeroes” in digital data storage.[33] Atomistic simu-

lations, generally a cornerstone of PCM research,[34] have

recently been concerned with transition pathways and atomic

motion in crystalline PCMs.[35]

The prototypical PCM germanium telluride (GeTe) has

been studied using COHPs more than a decade ago using

TB-LMTO-ASA theory.[36] With the new projection techniques

at hand, we may now explore not only its crystalline and

Figure 3. LOBSTER analysis of a diffusion pathway through crystalline GeTe,

as originally mapped out using nudged-elastic-band (NEB) theory[35a] and

previously analyzed by pCOOP analysis in the thesis of one of us.[38] Top:

structural drawing of the supercell setup, with only selected atoms shown

for clarity.[38] A germanium atom jumps from one octahedron into an adja-

cent one; a second one further away serves as reference. Bottom: pCOHP

analysis for the sum of the three short Ge–Te bonds shown, respectively.

Energy is shifted so that the Fermi level eF equals zero.
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amorphous phases,[13] but also the formation and diffusion

of vacancies on the crystalline (distorted rocksalt-type) lat-

tice, as visualized in Figure 3 (top). The well-known presence

of antibonding interactions in PCMs[37] is also seen in

LOBSTER output (Fig. 3, bottom). While these regions

(–pCOHP< 0) are there both for the moving atom (red) and

away from the transition state (gray), they critically depend

on the local environment: the antibonding peaks are much

more dominant in the transition-state geometry (Fig. 3, bot-

tom left). This reflects the moving Ge atom which has to

“squeeze” through an octahedral face to leave its ground-

state position, which costs over 100 kJ/mol according to DFT

simulations.[35a] Further away, on the contrary, the bonding

situation seems relatively unperturbed (Fig. 3, bottom right)

and compares well to what is found in the ground-state

structure. The bonding analysis also allows us to rationalize

previously made observations regarding Fermi level tuning:

lowering it makes the transition state (‡) less unfavorably

bonded, and thus reduces the activation energy for the Ge

hop significantly.[35a,38]

The orbital origins of ferromagnetism, revisited: from a-iron

to Ru monolayers

Ferromagnetism of a-Fe can be chemically understood as a

consequence of orbital interactions which has previously been

rationalized at the hand of COHP analysis,[39] and this concept

later served as a predictive guideline for the design of more

complex magnetic materials.[11,40] Figure 4 (left) presents a

COHP analysis based on a traditional TB-LMTO-ASA calculation

at the spin-restricted (non-magnetic, NM) GGA level showing

occupied antibonding levels at the Fermi level which destabi-

lize the system. The middle and right of Figure 4 offer analo-

gous analyses, but employ the methods and frameworks given

in this work. In the non-magnetic case, the VASP/LOBSTER

combination recovers what has been known before. By switch-

ing on spin-polarization, the majority (a) electrons lower in

energy (and its associated spin orbitals spatially contract) while

the minority (b) electrons increase energetically (and its orbi-

tals expand);[39] as a result, antibonding states are diminished

and the chemical bonding strengthens.

While the above is merely validation, the new method (in

contrast to TB-LMTO-ASA theory) can easily handle “open” sys-

tems such as two-dimensionally extended surface structures.

Magnetism in such systems has been explored earlier, and one

of them is shown in Figure 5 (left): a monolayer of ruthenium

atoms supported on a slab of Ag. As originally predicted by

Bl€ugel,[41] ruthenium becomes ferromagnetic in this configura-

tion. Figure 5 (right) now delves into the chemical-bonding

nature again, and it suggests an explanation that is principally

analogous to the a-iron case: namely significant exchange

splitting and strengthening of the Ru–Ru bonds while becom-

ing ferromagnetic, now so easily rationalized using LOBSTER.

Conclusions

We have presented new developments in the LOBSTER soft-

ware for chemical-bonding analysis. LOBSTER processes delo-

calized PAW wavefunctions calculated with VASP or ABINIT and

performs projection into an auxiliary LCAO basis, which makes

bond-analytic tools such as pDOS, pCOOP, and pCOHP accessi-

ble for state-of-the-art plane-wave based PAW simulations.

Figure 4. Bonding analysis of a-iron using (left) COHP as implemented in

TB-LMTO-ASA in a non-magnetic (NM) setup and (middle) using pCOHP

based on PAW results by VASP processed with LOBSTER. By allowing for spin

polarization (SP, right), the resulting exchange splitting affects the chemical

bonding between the Fe atoms which becomes stronger. COHP and pCOHPs

are given as the sum over all symmetry-equivalent bonds in the unit cell.

Energy is shifted so that the Fermi level eF equals zero. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Spin polarization and chemical bonding in a two-dimensional Ru

sheet supported on an Ag(001) surface. The left-hand side shows the super-

cell setup, and a large “vacuum” area is clearly visible, as commonly used in

PW based DFT simulations of surfaces and nanomaterials. The right-hand side

shows the LOBSTER-computed pCOHP curve for a single nearest-neighbor

Ru–Ru contact in the spin-polarized case; compare with Figure 4 (right).

Energy is shifted so that the Fermi level eF equals zero. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

1034 Journal of Computational Chemistry 2016, 37, 1030–1035 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


To reliably assess the quality of the projection, we here

introduced two modified criteria, dubbed absolute (charge)

spilling and root-mean-square of the projection (RMSp). Addi-

tionally, visual evaluation of either the PAW or the projected

wavefunctions has been demonstrated. A new and improved

basis set available in LOBSTER has also been described. Finally,

to improve correspondence to traditional COHP analysis based

on LMTO theory, we now also apply L€owdin’s symmetric ortho-

gonalization to the basis functions.
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