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and Inflammation by Modulation of Transcription Factors in
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We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and
LXR-𝛼 in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed
with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and
(iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia,
hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde
(MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin
concentrations, liver antioxidant enzymes, and lipid profile (𝑃 < 0.05) and reduced serum and liver MDA concentration compared
to HFD rats (𝑃 < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-𝛼, ACLY, FAS, and NF-𝜅B p65
expressions and enhanced the PPAR-𝛼, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (𝑃 < 0.05). In conclusion,
cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and
antioxidative defense signaling pathway in HFD rat liver.

1. Introduction

Obesity is an important health problem that characterized
excessive fat accumulation in the body resulting from an
imbalance in energy intake and expenditure [1]. It is known
to be a risk factor for numerousmetabolic complaints such as
diabetes, atherosclerosis, hyperlipidemia, and cancer [2, 3].
Consumption of high-fat diet causes a leading obesity and
obesity-related complications including hyperlipidemia and
oxidative stress [4, 5]. Liver fat synthesis is an extremely
modified metabolic pathway which is vital for actual low-
density lipoprotein production and is, therefore, important
for energy delivery to other tissues [6]. Transcription factors
such as the sterol regulatory element-binding protein 1
(SREBP-1) and liver X receptors (LXRs) and several enzymes
including ATP-citrate lyase (ACL), acetyl-CoA carboxylase
(ACC), and fatty acid synthase (FAS) have vital roles in this

process [7–9]. SREBP-1may control the ectopic accumulation
of fat and may set the target gene FAS, an important enzyme
that controls the amount of fatty acid synthesis [10, 11].
Obesity-induced insulin resistance triggers inflammation in
the liver through the accumulation of reactive oxygen species
that trigger nuclear factor kappa beta (NF-𝜅B) pathway [12].
Besides systemic and hepatic fat metabolism deterioration,
inflammation is a major factor underlying liver damage
in diabetes [13, 14]. The peroxisome proliferator-activated
receptor𝛼 (PPAR𝛼), which is extremely expressed in the liver,
shows a vital role in the modulation of liver lipid metabolism
[15].

Some potent drugs carry the risk of side effects on
the central nervous system and the cardiovascular system
in the treatment of obesity [16, 17]. Natural products can
show an obvious role in the prevention of obesity and
associated metabolic diseases. Cinnamon has been used as
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spice for a long time [18]. In addition it is gained from
the inner bark of tropical evergreen cinnamon plants [18].
There are two main types of cinnamon: True or Ceylon
cinnamon (Cinnamomum verum and C. zeylanicum) and
cassia cinnamon (C. aromaticum and C. burmannii). That
cinnamon as a dietary supplement has antioxidant, anti-
inflammation, and presently discovered antihyperlipidemia
and antiobesity effect properties [19, 20]. Experimental and
clinical studies have shown that cinnamon could be attributed
to its beneficial effects on hyperlipidemia and glucose uti-
lization [21, 22]. A study reported that cinnamon increases
insulin sensitivity and liver glycogen by modulating insulin
signaling and glycogen synthesis in insulin-resistant rats [22].
Research in animal models has also proven that cinnamon
effectively prevents obesity caused by high-fat diets [23].
However, the underlying exact mechanisms are still unclear.
Hence, in this study, the effects of cinnamon polyphenol
extract on PPAR𝛼-mediated target genes involved in glucose
and lipidmetabolism, including SREBP-1c, LXRs,ATP-citrate
lyase (ACLY), and FAS, and expression ofmolecular targets of
inflammation (NF-𝜅B) and antioxidant status (Nrf2 pathway)
in the liver were examined to investigate more detailed
mechanisms in the improvement of fatty liver with high-fat
diet.

2. Materials and Methods

2.1. Animals. Twenty-eight Wistar rats (weighing 180 ± 20 g)
were kept under a 12 h light/dark cycle at 22 ± 2∘C, with feed
and water ad libitum. Rats had free access to diet and water.
Rats received humanitarian care according to standards
defined in the “Guidelines for the Care andUse of Laboratory
Animals” delivered by the National Academy of Sciences and
published by the National Institutes of Health and permitted
by the Ethical Commission of the Firat University, Elazig,
Turkey.The composition of diets (control andHFD) is shown
in Table 1. For obesity induction, animals were fed with HFD
for 12 weeks and compared with rats fed normal diet.

2.2. Experimental Diets and Design. After acclimatization for
2 weeks, 28 rats were randomly allocated into four groups,
with 7 rats in each group: (i) normal control group: animals
fed with normal chow (12% of calories as fat) throughout
the experimental period of 12 weeks; (ii) cinnamon group:
rats fed with normal chow and administered with cinnamon
polyphenol (100mg/kg b.wt.) throughout the experimental
period of 12 weeks; (iii) HFD group: rats fed with high-fat diet
[42%of calories as fat] throughout the experimental period of
12 weeks; and (iv) HFD + cinnamon group: rats fed a high-fat
diet and administered with cinnamon polyphenol through-
out the experimental period of 12 weeks. Rats were orally
treated with cinnamon polyphenol extract [100mg/kg b.wt.
dissolved in 5% dimethyl sulfoxide (DMSO)] daily by oral
gavage in olive oil (1ml/kg b.wt./day) to the end of the
experiment. The amount of cinnamon polyphenol extract
used was based upon an earlier study presenting a positive
result of 100mg of cinnamon per kilogram on diabetic
rats [24]. The control rats in this study received similar

amounts of sunflower oil by gavage. Cinnamon product
(Product Code: 33002; Lot Number: CINP10001b) obtained
from Cinnamomum zeylanicum by the aqueous-alcoholic
extraction used in this study was provided by OmniActive
Health Technologies Ltd. (Pune, India). The test compound
contains 18.41% total polyphenols and it is light to dark
reddish brown free flowing powder with an astringent taste.
The quality of cinnamon polyphenol extract was confirmed
to comply with strict quality control measures and found free
of endotoxin and heavy metals.

At the end of the study, the blood was collected by cardiac
puncture after an overnight fast and all rats were sacrificed by
cervical dislocation. The visceral fat and liver samples were
removed and weighed after sacrificing the animals.

2.3. Biochemical Estimations. Serum was prepared by cen-
trifuging the blood at 3,000×g for 10 minutes and used
for biochemical parameters and malondialdehyde (MDA)
analyses. Sera samples were prepared by centrifuging the
blood at 3,000×g for 10min and used for the analyses
of biochemical parameters and MDA. Serum parameters
were determined using an automated analyzer (Samsung
LABGEOPT10, Samsung Electronics Co., Suwon, Korea).
Repeatability and device/method exactness of LABGEOPT10
were documented according to the IVR-PT06 guideline. The
concentration of serum insulin was measured with the Rat
Insulin kits (Linco Research Inc., St. Charles, MO, USA) by
ELISA (Elx-800, Bio-Tek Instruments Inc., Vermont, USA).
The sensitivity of the assays for insulin was 0.36 ng/ml. The
interassay and intra-assay coefficients of variation were 5.3%
and 7.5% for insulin. Liver MDA levels were determined
according to the method described by Karatepe [25] by
HPLC with a Shimadzu UV-Vis SPD-10 AVP detector, a
CTO-10 AS VP column, and a mobile phase comprised of
30mM KH

2
PO
4
and methanol (82.5 : 17.5, v/v, pH 3.6) at a

flow rate of 1.2ml/min. Column effluents were monitored at
250 nm. Liver homogenate (10%, w/v) was prepared in 10mM
phosphate buffer (pH 7.4) and centrifuged at 13,000×g for 10
minutes at 4∘C. The resulting supernatant was collected and
kept at −80∘C for MDA estimation.

Total antioxidant capacity (TAC) was determined
by dark blue-green color reduction 2,2󸀠-azino-bis 3-
ethylbenzothiazoline-6-sulfonate (ABTS) by antioxidants
to its colorless form via the antioxidants in the sample
[26]. In this analysis, ABTS is incubated with potassium
persulfate to produce ABTS oxidation. Briefly, 10mg of ABTS
was dissolved in 10mL of an aqueous solution containing
2.5mmol/L potassium persulfate and allowing the mixture to
stand in the dark at room temperature for one to four hours
before use. For the study of samples, ABTS oxidized stock
solution was diluted with deionized water to an absorbance
of 0.70 at 734 nm. After addition of 1mL diluted ABTS with
10 𝜇L of serum oxidized, the absorbance readout was taken
ten minutes after the first mixing. The results were expressed
in mmol Trolox E/L.

Activity of total superoxide dismutase (SOD) in the
homogenized liver tissue (in 20mM HEPES (N-2 hydrox-
yethyl piperazine-N󸀠-2-ethanesulfonic acid) buffer, 1mM
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Table 1: Composition of diets (g/kg diet) fed to rats.

Control HFD
Casein 200.0 200.0
Starch 579.5 150.0
Sucrose 50.0 149.5
Soybean oil 70.0 —
Beef tallow — 400.0
Cellulose 50.0 50.0
Vitamin-mineral premix∗ 45.0 45.0
l-Cysteine 3.0 3.0
Choline bitartrate 2.5 2.5
∗The vitamin-mineral premix provides the following (per kg): all-trans-
retinyl acetate, 1.8mg; cholecalciferol, 0.025mg; all-rac-a-tocopherol acetate,
12.5mg;menadione (menadione sodiumbisulfate), 1.1 mg; riboflavin, 4.4mg;
thiamine (thiamine mononitrate), 1.1 mg; vitamin B-6, 2.2mg; niacin, 35mg;
Ca-pantothenate, 10mg; vitamin B-12, 0.02mg; folic acid, 0.55mg; d-biotin,
0.1mg; manganese (frommanganese oxide), 40mg; iron (from iron sulfate),
12.5mg; zinc (from zinc oxide), 25mg; copper (from copper sulfate), 3.5mg;
iodine (from potassium iodide), 0.3mg; selenium (from sodium selenite),
0.15mg; choline chloride, 175mg.

ethylene glycol tetraacetic acid, 210mM mannitol, and
70mM sucrose, pH 7.2, per g of tissue) was determined
by a commercial kit (Cayman Chemical, Ann Arbor, MI,
USA) according to the manufacturer’s instructions. The
supernatant was collected after centrifugation at 12.000𝑔 for
20min at 4∘C. The supernatant was purified from the salt
by passing through a Sephadex G-25 column. The samples
were also treated with a mixture of ethanol-chloroform (2 : 1,
v/v) and distilled water to remove hemoglobin and red blood
cells and the absorbance plate was read on a reader (Bio-
Tek Instruments, Inc., Vermont, USA) at 450 nm.The results
were expressed as units per mg protein (U/mg protein)
using standard calibration curve. Catalase (CAT) activity was
also determined in homogenized tissue (50mM potassium
phosphate, 1mM EDTA, pH 7, in cold buffer, per tissue)
using a commercial kit (Cayman Chemical, Ann Arbor,
MI, USA) according to the manufacturer’s instructions. The
supernatant was collected after centrifugation at 12,000𝑔 for
20 minutes at 4∘C. A formaldehyde solution was used as
standard. The absorbance of standard and samples was taken
at 540 nmusing a plate reader (Bio-Tek Instruments, Inc. Ver-
mont,USA). Catalase activitywas expressed as nmol/min/mg
protein using standard calibration curve. The activity of
glutathione peroxidase (GSHPx) was analyzed according to
the manufacturer’s instructions (Cayman Chemical, Ann
Arbor, MI, USA). Liver tissue was homogenized with the
Polytron Homogenizer in cold buffer (50mM Tris-HCl, pH
7.5, 5mMEDTA, and 1mMdithiothreitol) per tissue and then
subjected to centrifugation at 10,000𝑔 for 15 minutes at 4∘C.
Thismethod is based on the oxidation of NADPH toNADP+,
which is accompanied by an absorbance drop at 340 nm and
GSHPx activity was measured by initiating the reaction with
2.4mM cumene hydroperoxide. One unit is defined as the
amount of enzyme that oxidizes 1 𝜇mol of NADPH per min
at 25∘C. The absorbance was read every minute at 340 nm
using a plate reader (Bio-Tek Instruments, Inc., Vermont,
USA) to obtain at least 5 time points. The GSHPx activity

was calculated in nmol/min/mg of protein using standard
calibration curve.

2.4.Western Blot Analyses. Protein extractionwas performed
by standardizing the liver in 1 ml of ice-cold hypotonic buffer
(buffer A) containing 10mMHEPES (2-(4-(2-hydroxyethyl)-
1-piperazinyl) ethane sulfonic acid, PH 7.8, 10mM KCl,
2mMMgCl2, 1mMdithiothreitol (DTT), 0.1mMEDTA, and
0.1mM phenylmethylsulfonyl fluoride (PMSF) for Western
blot analysis. The homogenate was mixed with 80 𝜇l of
10% Nonidet P-40 (NP-40) solution and then centrifuged
at 14,000×g for 2 minutes. The precipitates were washed
once with 500𝜇L buffer A and 40 𝜇L 10% NP-40, cen-
trifuged, and resuspended in a 200𝜇L buffer containing
50mM HEPES, pH 7.8, 50mM KCl, 300mM NaCl, 0.1mM
EDTA, 1mM DTT, 0.1mM PMSF, and 20% glycerol) and
recentrifuged at 14,800×g for 5min. The concentration of
the protein was determined according to the procedure
described by Lowry using a protein assay kit (Sigma, St.
Louis, MO, USA). The supernatant was collected and used
for the determination of SREBP-1c, LXRs, ACLY, FAS, NF-
𝜅B p65, PPAR𝛼, p-IRS-1, Nrf-2, and HO-1 according to the
previously described method [27]. Briefly, 50𝜇g of proteins
was electrophoresed and then transferred to a nitrocellulose
membrane (Schleicher and Schuell Inc., Keene, NH, USA).
The phosphorylated form of antibodies against SREBP-lc,
LXRs, ACLY, FAS, NF-𝜅B p65, PPAR𝛼, p-IRS-1, Nrf-2, and
HO-1 (Abcam, Cambridge, UK) was diluted (1 : 1000) in the
same buffer containing 0.05% Tween-20. Protein loading was
controlled usingmonoclonal mouse antibody against 𝛽-actin
(A5316; Sigma). The bands were examined densitometrically
using ImageJ, an image analysis system (National Institute of
Health, Bethesda, USA).

2.5. Statistical Analysis. Data were stated as mean ± SE. The
alteration among groupswas analyzed using one-way analysis
of variance (ANOVA) followed by the Tukey post hoc test
(SAS Institute: SAS User’s Guide: Statistics), and 𝑃 < 0.05 was
considered statistically significant.

3. Results

3.1. Effect of Cinnamon Extract on Body Weight and Visceral
Fat in HFD-Fed Rats. The effect of cinnamon polyphenol
extract treatment on the final bodyweight, feed consumption,
and visceral fat and liver mass was shown in Table 2. HFD
feeding increased final body weight, visceral fat, and liver
weight by 33.1%, 258.3%, and 34.8% and decreased feed intake
by 16.9% as compared to the control rats (P< 0.001). Although
the cinnamon polyphenol extract treatment decreased body
weight, visceral fat, and liverweight by 8.4%, 36.6%, and 17.7%
in the HFD-fed rats (P < 0.001), the HFD-fed rats treated
with cinnamon still had a final body weight and visceral fat
higher than those of the control rats (P < 0.05). No significant
difference was found in the feed intake betweenHFD-fed rats
and HFD-fed rats treated with cinnamon polyphenol extract
(P > 0.05).
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Table 2: Effect of cinnamon polyphenol extract supplementation on the body weight, visceral fat, and the liver weight in rats fed with HFD
for 12 weeks.

Item Groups
Control Cinnamon HFD HFD + cinnamon

Final BW (g) 301.43 ± 5.27C 298.86 ± 6.50C 401.29 ± 5.07A 367.71 ± 2.75B

Feed intake (g/d) 22.77 ± 0.44A 22.96 ± 0.40A 18.93 ± 0.44B 19.91 ± 0.41B

Visceral fat (g) 6.62 ± 0.45C 6.35 ± 0.33C 23.72 ± 1.58A 15.04 ± 0.48B

Liver (g) 11.63 ± 0.25C 11.79 ± 0.42C 15.68 ± 0.38A 12.90 ± 0.38B

HFD, high-fat diet; data are expressed as mean ± SEM of 7 rats from each group. A, B, and C: means in the same row with different superscripts are significant
(P < 0.05).

Table 3: Effects of cinnamon polyphenol extract biochemical parameters levels in rats fed with HFD for 12 weeks.

Item Groups
Control Cinnamon HFD HFD + cinnamon

Glucose (mg/dl) 75.86 ± 2.62C 76.57 ± 3.34C 200.86 ± 3.97A 158.43 ± 2.07B

Insulin (ng/mL) 1.61 ± 0.04C 1.55 ± 0.04C 8.21 ± 0.29A 4.47 ± 0.23B

FFA (mM) 1.74 ± 0.11C 1.48 ± 0.06C 5.03 ± 0.14A 2.25 ± 0.07B

T-C (mg/ml) 66.51 ± 5.58B 53.26 ± 1.90B 91.71 ± 2.28A 61.43 ± 1.81B

HDL-C (mg/dl) 15.29 ± 0.57BC 13.57 ± 0.77C 22.57 ± 0.53A 18.57 ± 0.43AB

TG (mg/dl) 25.86 ± 1.26C 24.14 ± 1.81C 57.57 ± 2.08A 41.85 ± 1.49B

AST (U/L) 146.413 ± 4.40 142.71 ± 4.30 157.00 ± 8.28 154.22 ± 5.38

ALT (U/L) 83.65 ± 6.59 81.86 ± 4.18 89.14 ± 4.39 86.43 ± 5.16

HFD, high-fat diet; FFA, free fatty acids; T-C, total cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; AST, aspartate aminotransferase;
ALT, alanine transferase. Data are expressed as mean ± SEM of 7 rats from each group. A, B, and C: means in the same row with different superscripts are
significant (P < 0.05).

3.2. Effect of Cinnamon Extract on Biochemical Parameters
in HFD-Fed Rats. Table 3 shows the effect of cinnamon
polyphenol extract on supplementation on carbohydrate and
lipid profile in HFD-fed rats. As seen in the table, HFD
feeding increased the serum levels of glucose and insulin,
free fatty acid (FFA), total cholesterol, HDL-C, and LDL-C, as
well as TG in HFD rats (P < 0.001).The hypertriglyceridemia
and elevated lipid indicators in HFD-fed rats were reduced
with cinnamon polyphenol extract supplementation. HFD
did not cause a significant increase in aspartate transaminase
(AST) and alanine transaminase (ALT) in the duration of the
treatment, and the levels remained more or less unaffected in
cinnamon polyphenol extract supplemented rats (P > 0.05).

3.3. Effect of Cinnamon Extract on Antioxidant Status in HFD-
Fed Rats. Serum and liver MDA levels increased by 158.8%
and 81.7% (P < 0.001; Table 4) and serum TAC, liver SOD,
CAT, and GSHPx decreased by 67.6, 54.7, 34.4%, and 56.4%
upon obesity induction. The cinnamon polyphenol extract
treatment caused 23.3% and 25.4% reduction in serum and
liver MDA concentration and elevation in serum TAC, liver
SOD,CAT, andGSHPx of 91.2, 62.6%, 21.9%, and 36.0% in the
HFD-fed rats (P < 0.001), which was like the control group (P
> 0.05).

3.4. Effect of Cinnamon Extract on Protein Levels in HFD-
Fed Rats. SREBP-1c, LXRs, ACLY, and FAS expression in the
HFD-fed rats increased by 75.1%, 98.7%, 106.0%, and 81.7%
in liver (Figure 1), respectively (P < 0.0001 for all). SREBP-1c,

LXRs, ACL, and FAS expression decreased by 18.1%, 27.9%,
22.7%, and 15.8%, respectively (P < 0.05 for all), when the
HFD rats were treatedwith cinnamon polyphenol extract. All
remained lower as compared to the control rats (P > 0.05 for
both).

PPAR𝛼 and IRS expression in liver in the HFD group
were 71.3% and 67.0% lower than those in the control
group (Figure 2; P < 0.001 for both). Despite the respective
1.72- and 1.73-fold increase in PPAR𝛼 (Figure 2(a)) and IRS
(Figure 2(b)) expression with cinnamon polyphenol extract
treatment (P < 0.001 for both), PPAR𝛼 and IRS expression
levels still remained lower compared to the control group
(𝑃 < 0.001 for both).

Expression ofNF-𝜅B increased by 92.2% in the liver in the
HFD rats (Figure 3(a); P < 0.001). The cinnamon polyphenol
extract treatment partially restored NF-𝜅B expression levels
in liver (by 23.3%; P < 0.05; Figure 3(a)) as compared to the
control group. The induction of obesity was associated with
68.7 and 63.0% reduction in expression of Nrf2 and HO-1
in liver (P < 0.001; Figures 3(b) and 3(c)), respectively. The
cinnamon polyphenol extract treatment partially elevated the
expression of Nrf2 andHO-1 in the liver (by 111.7% and 72.1%;
P < 0.001; Figures 3(b) and 3(c)).

4. Discussion

High-fat dietary intake leads to insulin resistance (IR)
and altered glucose and lipid metabolism [28]. Cinnamon
polyphenols can respond to IR and are therefore useful
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Table 4: Effects of cinnamon polyphenol extract on oxidative stress and antioxidant status rats fed with HFD for 12 weeks.

Item Groups
Control Cinnamon HFD HFD + cinnamon

SerumMDA (nmol/mL) 0.68 ± 0.04C 0.64 ± 0.03C 1.76 ± 0.03A 1.35 ± 0.03B

Liver MDA (nmol/mg protein) 1.97 ± 0.06C 1.90 ± 0.13C 3.58 ± 0.09A 2.67 ± 0.04B

Serum TAC (nmol Trolox Equiv. per mg protein) 1.76 ± 0.06A 1.88 ± 0.12A 0.57 ± 0.07C 1.09 ± 0.10B

Liver SOD (U/mg protein) 202.29 ± 5.80A 206.14 ± 7.31A 91.71 ± 3.98C 149.14 ± 2.03B

Liver CAT (U/mg protein) 349.86 ± 11.97A 353.85 ± 14.06A 229.57 ± 4.30C 279.82 ± 9.62B

Liver GSHPx (U/mg protein) 53.67 ± 4.25A 54.86 ± 3.56A 23.42 ± 2.56C 31.86 ± 2.48B

HFD, high-fat diet; MDA, malondialdehyde; TAC, total antioxidant capacity; SOD, superoxide dismutase; CAT, catalase; GSHPx, glutathione peroxidase. Data
are expressed as mean ± SE of 7 rats from each group. A, B, and C: means in the same row with different superscripts are significant (P < 0.05).
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Figure 1: Hepatic SREBP-1c, LXRs, ACLY, and FAS expression levels in cinnamon polyphenol supplemented high-fat diet- (HFD-) fed rats
and control groups. (a)–(d) show the expression level of SREBP-1c, LXRs, ACLY, and FAS in various groups.The intensity of the bands shown
in (e) was quantified by densitometric analysis. Data are expressed as a ratio of normal control value (set to 100%). Each bar represents the
mean and standard error of mean. Blots were repeated at least 3 times (𝑛 = 3) and only a representative blot is shown in (e). 𝛽-Actin was
included to ensure equal protein loading.
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Figure 2: Hepatic PPAR𝛼 and IRS expression levels in cinnamon polyphenol supplemented high-fat diet- (HFD-) fed rats and control groups.
(a) and (b) show the expression level of PPAR𝛼 and IRS in the groups.The intensity of the bands shown in (c) was quantified by densitometric
analysis. Data are expressed as a ratio of normal control value (set to 100%). Each bar represents the mean and standard error of mean. Blots
were repeated at least 3 times (𝑛 = 3) and only a representative blot is shown in (c). 𝛽-Actin was included to ensure equal protein loading.

because of their insulin-enhancing and antioxidant proper-
ties [29]. Cinnamon extracts have been recognized as in vitro
and in vivo insulin sensitizers [22, 30]. The adverse effects of
HFD/HFD on brain insulin signal changes were alleviated by
the use of cinnamon, which suggests that cinnamon is associ-
ated with whole body insulin sensitivity and related changes,
including hippocampal synaptic plasticity and cognition in
the brain of neuroprotective effects [31, 32]. Consistent with
previous studies, our results demonstrated that cinnamon
polyphenol extract supplementation improved body weight,
visceral fat, and carbohydrate metabolism including glucose,
insulin, and free fatty acid and lipid profiles (TC, TG, and
HDL-C) and lipid peroxidation and antioxidant enzymes in
the HFD-fed rats [19, 33–36]. Qin et al. [28] reported that
cinnamon polyphenol extract increased the use of insulin-
regulated glucose in rats. In addition, Mang et al. [21]
reported that cinnamon prevents IR by partially increasing
insulin signaling pathway with high fructose diet.

Cinnamon extracts have also been shown to be use-
ful in decreasing fasting plasma glucose, cholesterol, and
triglycerides in diabetic patients [37]. Similarly, application
of cinnamon extract reduced liver MDA levels in carbon
tetrachloride-poisoned rats and improved SOD, CAT, and
GSHPx activities [38]. Cinnamon has been shown to prevent
hyperlipidemia and improved glucose tolerance in rats fed
fructose/high fat [22, 39]. However, a direct association
between cinnamon polyphenol intake and regulated SREBP-
1c, LXRs, ACLY, and FAS expression by cinnamonpolyphenol
in the HFD-fed rats has yet to be established. Previous
studies have shown that SREBP-1c has a regulatory role in the

synthesis of lipogenic enzymes such as FAS, which inhibits
TG accumulation in the liver, in fatty acid synthesis and
lipid metabolism [8]. LXRs are also transcription factors
that regulate fatty acid and cholesterol homeostasis and are
expressed mainly in the liver and other tissues involved in
lipid metabolism [40]. ACLY play a crucial role in obesity-
related complications in glucose and lipid homeostasis of
mice liver [9]. An animal study has shown activation of
LXR protection effects in obesity induced by high-fat diet
[41]. In the present study, we demonstrated for the first time
that cinnamon polyphenol intake significantly reduced the
expression of hepatic SREBP-1c, LXRs, ACLY, and FAS.There
are no earlier studies associated with examining the effects of
cinnamon polyphenol treatment on the expression of SREBP-
1c, LXRs, ACL, and FAS in rats fed HFD to compare with this
study. Nevertheless, it was reported that cinnamon prevented
the hyperlipidemia in fructose-fed rats and improved glucose
tolerance [39].

Peroxisome proliferator-activated receptors (PPARs),
transcriptional factors complicated in the modulation of IR
and adipogenesis, play key roles in regulating carbohydrate
and lipidmetabolism [42]. Activation of PPAR reduces serum
triglycerides and raises serum HDL-cholesterol concentra-
tions [43], whereas activation of PPAR𝛾 increases insulin
sensitivity and causes antidiabetic effects [44]. IRS-1 plays
an essential role in the pathway of insulin-stimulated signal
transduction and binds the insulin receptor to its ultimate
biological activities by a series of intermediates [45]. In a prior
report, we showed thatHFD in diabetic rats decreased PPAR𝛾
expression in the adipose tissue and reduced expression of
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Figure 3: Hepatic NF-𝜅B p65, Nrf2, and HO-1 expression levels in cinnamon polyphenol supplemented high-fat diet- (HFD-) fed rats and
control groups. (a)–(c) show the expression level of NF-𝜅B p65, Nrf2, and HO-1 in the groups. The intensity of the bands shown in (d) was
quantified by densitometric analysis. Data are expressed as a ratio of normal control value (set to 100%). Each bar represents the mean and
standard error of mean. Blots were repeated at least 3 times (𝑛 = 3) and only a representative blot is shown in (d). 𝛽-Actin was included to
ensure equal protein loading.

IRS-1 in the liver and kidney [46]. In this study, cinnamon
polyphenol increased PPAR𝛼 and IRS expression in the liver;
this may have potential insulin sensitizing effect and may
increase IR in a rat obesity model. In accordance with our
findings, Sheng et al. [42] showed that the cinnamon extract
could induce expression of PPAR𝛾 and PPAR𝛼 both in vitro
and in vivo in mouse adipose cells. Similarly, Qin et al.
[47] found that cinnamon extract supplementation resulted
in reduced expression of interleukin-1𝛽 (IL-1𝛽), IL-6, and
tumor necrosis factor-𝛼 (TNF-𝛼) mRNA while increasing
expression of IR, IRS1, and IRS2 in hamster enterocytes.

NF-𝜅B is a transcription factor that is responsible for
controlling a DNA transcription and comprises cellular
responses to various stimuli including free radicals. Kuhad
and Chopra [48] reported that the signal transduction path-
way for the activation of transcription factor NF-𝜅B was
evoked by reactive oxygen species associated with hyper-
glycemia and by advanced glycosylated end products [48].
In the situation of oxidative stress and numerous cytokines,
NF-𝜅B is quickly released from I𝜅B in order to stimulate
the expression of chemotactic and matrix proteins of var-
ious cytokines involved in inflammation, immunological

responses, and/or proliferation [49]. In the present study,
cinnamon polyphenol reduced liver of NF-𝜅B expression
in rats fed HFD (Figure 3). In a previous study, we have
reported that HFD consumption enhances inflammation and
NF-𝜅B activation [50]. Fan et al. [51] showed that activity
of NF-𝜅B increased in rats fed HFD. But there was no
earlier study studying the effects of cinnamon polyphenol
on the NF-𝜅B p65 in the liver with which to compare this
study. Nevertheless, in a previous study, it was shown that
cinnamon-based treatment induced inhibition of NF-𝜅B and
neuroinflammation and supported our present findings [52].

Another important mechanism contributing to cin-
namon antiobesity is the upregulation of antioxidant-
dependent proteins.We found that expression of the proteins
Nrf2 and HO-1 increased in HFD rats with cinnamon intake,
indicating that this antioxidant mechanism may underlie
reduced levels of lipid peroxidation in liver tissues. Nrf2
transcription factor is one of the most important antioxidant
defense mechanisms that protect cells and tissues from
various oxidative stresses [53]. Specifically, Nrf2 induces the
expression of genes encoding antioxidant proteins, including
HO-1, by binding to the antioxidant response element [54].
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HO-1 is reported to be a highly effective therapeutic target
for protection against oxidative stress and damage. HO-1 also
is one of phase II detoxifying enzymes and exerts a strong
antioxidant effect, and it is regulated by the redox-sensitive
transcription factors. In addition, Nrf2 likely interferes with
lipogenic and cholesterolemic pathways, inhibiting lipid
accumulation and oxidative stress in the mouse liver after
administration of HFD [55]. In the current study, cinnamon
polyphenol d increased Nrf2 and HO-1 expression in liver
of rats fed by HFD (Figure 3). Tuzcu et al. [50] showed
similar reductions in Nrf2 andHO-1 expressions as increased
serum MDA in HFD-fed rats. In addition, cinnamaldehyde,
an important flavor component in cinnamon essential oil
upregulated Nrf2 expression, stimulated its translocation to
the nucleus, and increased HO-1, NQO1, CAT, and GPx1
expression under high glucose conditions [7]. Wondrak et
al. [56] reported that cinnamaldehyde and cinnamon extract
upregulated cellular protein levels of Nrf2 in human colon
cancer cells and recognized Nrf2 targets involved in the
antioxidant response including HO-1 and gamma-glutamyl-
cysteine synthetase.

5. Conclusions

In conclusion, cinnamon polyphenol has been reported to
have several beneficial effects on obesity through the mod-
ulation of transcription factors including SREBP-1c, LXRs,
NF-𝜅B, and Nrf2 and several enzymes such as ACLY and
FAS and insulin resistance, glucose, and lipid metabolism
and antioxidant status. Cinnamon polyphenol may have
a potential use in the management of hyperglycemia and
hyperlipidemia.
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