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Abstract: Antimicrobial resistance is becoming one of the most important human health issues.
Accordingly, the research focused on finding new antibiotherapeutic strategies is again becoming a
priority for governments and major funding bodies. The development of treatments based on the
generation of oxidative stress with the aim to disrupt the redox defenses of bacterial pathogens is an
important strategy that has gained interest in recent years. This approach is allowing the identification
of antimicrobials with repurposing potential that could be part of combinatorial chemotherapies
designed to treat infections caused by recalcitrant bacterial pathogens. In addition, there have been
important advances in the identification of novel plant and bacterial secondary metabolites that
may generate oxidative stress as part of their antibacterial mechanism of action. Here, we revised
the current status of this emerging field, focusing in particular on novel oxidative stress-generating
compounds with the potential to treat infections caused by intracellular bacterial pathogens.

Keywords: oxidative stress; intracellular pathogens; antimicrobial resistance; reactive oxygen and
nitrogen species

1. Introduction

Oxidative stress is a concept that was coined by Dr. Helmut Sies in 1985 as an essential process for
living beings that is based on an imbalance between oxidants and antioxidants [1]. The concept has
now evolved to encompass signaling processes [2], and because of that the term oxidative stress is
being replaced by redox biology. This field of knowledge can be divided into two major subfields:
eustress, which is the physiological oxidative stress with metabolic purposes that is essential for redox
signaling, and distress, which is considered an excess production of oxidants that may cause cellular
damage [3]. In human cells, the resulting cellular damage may lead to an accumulation of errors that
increase the risk to develop neurological disorders such as Parkinson´s or Alzheimer´s diseases [4],
chronic metabolic illnesses such as diabetes [5] or cystic fibrosis [6], and different types of cancer [7].
However, the cellular damage produced by oxidative stress can also be used to control infections
caused by bacterial pathogens. Accordingly, our innate immune cells synthesize different reactive
oxygen and nitrogen species (RONS) as part of their antibacterial activity. These compounds disturb
the bacterial growth and replication by different processes that are not yet fully understood [8]. To cast
some light on these processes, we will summarize here the importance of RONS-generation during
phagocytosis of bacterial pathogens, as well as the main bacterial mechanisms implicated on the
counteraction of oxidative stress exerted by intracellular bacterial pathogens.

2. Oxidative Stress Response in Intracellular Bacterial Pathogens

Bacteria are exposed to different RONS synthesized by immune cells during phagocytosis [9].
However, some pathogens are able to circumvent these oxidative conditions and colonize the
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intracellular environment [8,10,11]. Therefore, it is very likely that the molecular pathways that
maintain redox homeostasis in these bacteria are used to counteract oxidative stress during the
colonization of human cells. Thanks to these mechanisms of protection to oxidative stress, intracellular
bacterial pathogens might cause a high range of diseases with high morbidity and mortality in
humans [12,13]. In addition, it is becoming clear that many pathogens that were considered purely
extracellular, such as Staphylococcus aureus, are in fact able to survive facultatively within human cells
during infection [14]. Moreover, antimicrobial resistance is allowing the appearance of new emerging
and re-emerging bacterial pathogens that can infect host cells, making them a global concern in human
health [13]. As a consequence, the mechanisms of redox homeostasis in bacteria are becoming a very
attractive target for the development of new anti-infectives, and this is a very promising strategy to
circumvent antimicrobial resistance.

3. Molecular Pathways of RONS-Biosynthesis in Immune Cells

During the innate immune response, professional phagocytes engulf bacteria when they
are recognized by means of different membrane receptors, or by the action of opsonins such as
immunoglobulin G (IgG) [15]. There are many different surface proteins expressed by immune cells to
identify pathogens that are called generically pattern recognition receptors (PRRs), which recognize
pathogen-associated molecular patterns (PAMPs) [12,15,16]. The main PRRs are integrins, toll-like
receptors (TLRs), Fc receptors, the tumor necrosis factor receptor superfamily (TNFRSF), and G
protein-coupled receptors (GPCRs; Figure 1A) [16].
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Figure 1. (A) During infection, pathogen-associated molecular patterns (PAMPs) are recognized by
pattern recognition receptors (PRRs) which are present on the surface of professional phagocytes.
PRRs include integrins, toll-Like receptors (TLRs), Fc receptors such as FCγRI, tumor necrosis factor
receptors (TNFRs), and G Protein-Coupled Receptors (GPCRs). (B) RONS synthesis is triggered during
phagocytosis to generate a bactericidal oxidative stress. There are different enzymes involved on this
process, including NADPH oxidases (NOX), nitric oxide synthases (iNOS), superoxide dismutates
(SOD), and myeloperoxidases (MPO).

The interaction between PRRs and PAMPs trigger the activation of the oxidative burst during
phagocytosis, which is initially characterized by the activity of NADPH oxidases (NOX) that generate
the superoxide anion (O2

−). This free radical could be dismuted to hydrogen peroxide (H2O2)
spontaneously, but superoxide dismutases do this more efficiently (Figure 1B) [8,10,17]. The presence
of NOX proteins is critical for the control of infections. Accordingly, chronic granulomatous disease in
humans is caused by mutations in the genes encoding NOX proteins and increases exponentially the
susceptibility to recurrent bacterial and fungal infections [16,18].
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The H2O2 produced during phagocytosis is able to permeate across bacterial membranes and
interacts with ferrous iron (Fe2+) and thiol groups (-SH) of protein cysteines, which may inactivate
enzymes essential for the pathogen (Figure 2) [19]. Fe2+ is oxidized during a Fenton reaction by
H2O2 and generates the hydroxyl radical, which causes further damage to bacterial proteins, DNA,
and lipids [10,20].
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Figure 2. Bacterial redox mechanisms. When a cysteine of a target protein (in green) is oxidized by RONS
its thiol group is converted to sulfenic acid (-SOH). To prevent overoxidation, the sulfenic acid is reduced
by other thiol groups of the protein generating a disulphide bond, or by low molecular weight-thiols
(LMW-thiols; S-SR). Eventually, thioredoxins (Trx) reduce the oxidized cysteine residues and break the
disulphide bond, whereas LMW-thiols are reduced back by glutaredoxins (Grx), mycoredoxins (Mrx),
or bacilliredoxins (Brx).

In addition, hypochlorous acid (HClO) is generated from H2O2 and the chloride ion (Cl−)
by the action of myeloperoxidases (Figure 1B), which are mainly expressed in macrophages and
neutrophils [10,11,17,21]. HClO has a higher antibacterial activity than H2O2 and it is more reactive
with the sulfur contained in cysteines and methionines of essential proteins for the intracellular survival
of the pathogen [9,22,23].

The inducible nitric oxide synthases (iNOS) are activated in later stages of phagocytosis. These
enzymes produce nitric oxide (NO•) from l-arginine. Nitric oxide can react with the superoxide ion
synthesized by NOX proteins to produce peroxynitrite (ONOO−; Figure 1B). Peroxynitrite can directly
oxidize thiol groups of sulfur-containing amino acids; furthermore, it can be broken down to nitrogen
dioxide and hydroxyl radical, which may also actively react with sulfur containing amino acid residues
of bacterial proteins [11,24].
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4. Antioxidant Systems of Intracellular Bacterial Pathogens

Intracellular bacterial pathogens are well equipped to circumvent and/or counteract the effect
of the RONS produced during phagocytosis, which allows them to survive the oxidative burst and
colonize the host cell. They combat oxidative stress via a complex battery of enzymatic activities
that can be classified into two main groups: (i) preventative mechanisms, mainly based on protein
scavengers that are able to degrade RONS; and (ii) reparation mechanisms, whose main role is the
reduction of oxidized protein thiol groups to restore the activity of essential enzymes for the pathogen.
These two mechanisms are clearly related since the main target of reparation enzymes are protein
scavengers of RONS that are oxidized during its catalytic activity.

Both mechanisms are based on thiol switches and they are activated by transcriptional regulators
that are able to interact with RONS at very high rates [10,11,24]. The most studied redox regulator
is OxyR, which may act as a transcriptional activator or repressor across many different bacterial
species [25–27]. Its extremely high constant rate with H2O2 (105 M−1 s−1) makes OxyR an important
oxidative stress regulator in bacteria [25–29].

However, there are other transcriptional regulators in bacteria that may detect small concentrations
of ROS to trigger a quick response against oxidative stress [30]. The most studied are the MarR-family
homologs, which are present in the genomes of many different intracellular pathogens [31]. In addition,
new families of thiol-based transcriptional regulators have been recently discovered [32], and some of
these are only responsive to specific RONS such as the sodium hypochlorite sensor HypS [33].

4.1. Enzymatic Preventative Mechanisms of Oxidative Stress

The thiol groups of the sulfur-containing thiol-based transcriptional regulators are oxidized by
RONS during the early stages of phagocytosis (Figure 2). This may lead to the formation of disulphide
bonds with other thiol groups of the same protein (i.e., intramolecular disulphide bond), or with thiol
groups of another protein (i.e., intermolecular disulphide bond). The disulphide bond formation
leads to conformational changes in the transcriptional regulators that may activate the expression of
different enzymatic scavengers of RONS, such as catalases (Kat), glutathione peroxidases (GPx), or
peroxiredoxins (Prx) [11,25,30,32,34].

The most studied enzymatic scavengers are superoxide dismutases (SODs). These enzymes
catalyze the dismutation of O2

•− to H2O2, which is then quickly converted to H2O and O2 by catalases
(Figure 3A). Both superoxide dismutases and catalases are considered important virulence factors of
many intracellular pathogens [35–39].

On the other hand, some thiol groups of specific proteins may react relatively slowly with H2O2.
These proteins, which may react with H2O2 at a highest constant rate, are called H2O2-scavengers.
Thiol peroxidases were the first discovered H2O2-scavengers, and they can transduce the oxidative
signal to regulate the expression of different transcriptional factors [40,41]. The thiol groups of these
proteins can react with H2O2 at constant rates of 104 to 108 M−1 s−1.

There are two families of thiol peroxidases: peroxiredoxins (Prx) and glutathione peroxidases
(GPx). Peroxiredoxins are thiol peroxidases with a well conserved structure and they usually function
through a dithiol mechanism. Their enzymatic activity is controlled by two cysteines, the peroxidative
cysteine (CP) and the resolutive cysteine (CR), with sequential roles during the catalytic activity [42,43].
CP triggers the nucleophilic attack of H2O2, with its subsequent thiol oxidation that leads to a protein
conformational change. However, CP overoxidation is prevented by CR, which protects CP by means
of a disulphide bond formation (Figure 2) [43].

Glutathione peroxidases are classified into two main groups: cysteine glutathione peroxidases
and selenocysteine glutathione peroxidases. However, only cysteine glutathione peroxidases (CysGPx)
are present in bacteria and they show a constant reaction rate with H2O2 of 104–105 M−1s−1 [44]. Their
catalytic activity is similar to the one described above for peroxiredoxins, i.e., two cysteines are also
involved in the formation of a disulphide bond. Usually, a conformational change of the protein is
triggered by the oxidation of the CP, which is followed by a disulphide bond formation with the thiol
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group of the CR [45]. The importance of CysGPx during infections caused by intracellular pathogens is
still understudied. However, it has been recently found that a CysGPx named GpoA is an important
virulence factor of Streptococcus pyogenes [46].
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Figure 3. (A) After phagocytosis, the RONS biosynthesis produced during the oxidative burst triggers
the activation of the redox mechanisms of intracellular bacterial pathogens. Their preventative
mechanisms are activated to degrade RONS. If these preventative measures are not sufficient, the
recuperation mechanisms will restore the reduced state of protein scavengers and other oxidized proteins.
SOD, superoxide dismutases; Kat, catalases; Per, peroxidases; Trx/TrxR, thioredoxin/thioredoxin
reductases; GSH/Grx, glutathione/glutaredoxins; MSH/Mrx, mycothiol/mycoredoxins; BSH/Brx,
bacillithiol/bacilliredoxins; T, target proteins. (B) Chemical structures of low molecular weight-thiols
described in bacteria.

Although thiol peroxidases are important as H2O2 sensors, catalases are considered the most
important protein scavengers. Catalases are important virulence factors of many intracellular pathogens,
such as Mycobacterium tuberculosis or Rhodococcus equi [35,36,38], and they may also act as peroxinitrite
scavengers during redox stress [47].

4.2. Enzymatic Reparation Mechanisms of Protein Oxidation

The proteins involved in the reduction of enzymes that have been oxidized by RONS are essential
for the survival to phagocytosis. Their initial targets are protein scavengers of RONS and their
transcriptional regulators are part of the preventative mechanisms of bacteria and they are usually
oxidized by RONS during the early stages of phagocytosis. Therefore, the reparation mechanisms of
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intracellular pathogens are considered as their second line of defense against the oxidative burst [48,49].
Moreover, these reparation mechanisms are also involved in the reduction of housekeeping proteins
and other virulence factors essential for the pathogen during infection that may become oxidized
during phagocytosis (Figure 3A).

The reparation mechanisms can be classified in two groups: (i) the thioredoxin/thioredoxin
reductases (Trx/TrxR) and (ii) the low molecular weight-thiols (LMW-thiols)/redoxins. However,
Trx/TrxR is the most common reparation mechanism and it is widely distributed in nature [48].
This redox system was discovered in 1964 by Dr. Peter Reichard´s group [50]. Since then, the number of
identified proteins that are repaired by this system during oxidative stress has increased exponentially.

In bacteria, the deletion of one or more of the genes encoding thioredoxins directly alters the
H2O2 resistance of the resulting mutant strain [51,52]. However, the deletion of the genes encoding
thioredoxins is in many occasions not viable because of the importance of these proteins on bacterial
metabolism [53,54].

In addition, it has been recently discovered a new Trx-based system made of proteins that
are located on the bacterial surface, i.e., the extracellular thioredoxins (Etrx). Etrx proteins have
been discovered in different pathogenic and non-pathogenic bacteria, including M. tuberculosis,
R. equi, Streptococcus pneumoniae, Neisseria gonorrhoeae, Agrobacterium tumefaciens, and Bradyrhizobium
japonicum [55–61]. The targets of the Etrx proteins are still unclear, but the deletion of the genes
encoding Etrx’s abolishes the virulence of M. tuberculosis [55], R. equi [56], and S. pneumoniae [57,58].

On the other hand, the response to oxidative stress in many bacteria is also dependent on the
protection of thiol groups of protein cysteines exerted by LMW-thiols (Figure 3B). Three different
LMW-thiols have been described in bacteria, and all of them are coupled to specific redoxins.
The most studied LMW-thiol is glutathione, which is coupled to glutaredoxins (GSH/Grx) and
it is present in the majority of living organisms studied [49]. However, GSH/Grx is replaced by
the mycothiol/mycoredoxins system (MSH/Mrx) in Actinomycetes [62], and by bacillithiol and
bacilliredoxins (BSH/Brx) in Firmicutes [63]. LMW-thiols can react actively with RONS and oxidized
proteins, therefore any disruption of the LMW-thiol synthesis genes affects the virulence and RONS
resistance of many intracellular bacterial pathogens [64].

The redoxins coupled to LMW-thiols are also important in maintaining the redox homeostasis
of many different organisms. E.g., glutaredoxins have been deeply studied in human RONS
signaling [65]. The function of mycoredoxins and bacilliredoxins have been studied in different
Actinomycetes and Firmicutes to understand their role in maintaining redox homeostasis under
oxidative stress [62,64,66–72]. In addition, three recent reports have casted some light on the importance
of Grx [73], Mrx [70] and Brx [67] proteins during host cell infection caused by different bacteria.
However, it is becoming clear that a significant redundancy of the genes encoding these redoxins
and their partially overlapping functions may complicate the analysis of their precise role in the
pathogenesis of intracellular bacterial pathogens [74]. For example, we have recently demonstrated that
the intracellular pathogen R. equi carries genes encoding three mycoredoxins with overlapping roles
during host cell infection, being necessary at least one of them for intracellular survival [70]. This is
important, because their partially overlapping roles may explain why other authors had not observed
any attenuation in mutant strains carrying deletions on just one of the mycoredoxins present in the
genome of other actinobacterial pathogens, such as M. tuberculosis [75]. Overall, the structure of the Brx
and Mrx redoxins is well conserved among different bacterial species [67,70,76], which may explain
their overlapping roles in maintaining the redox homeostasis of different intracellular pathogens.

In summary, the redox mechanisms based on thioredoxins and LMW-thiols and their reductases are
essential for RONS resistance and the intracellular survival of many bacterial pathogens [64,67,77,78].
However, further research is required to understand their precise role during infection.
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5. RONS-Producing Anti-infectives Are an Attractive Strategy to Overcome
Antimicrobial Resistance

It is estimated that infections produced by antimicrobial resistant bacteria cause approximately
30,000 deaths per year in either the European Union or the United States of America. In addition, this
has an associated economic burden of €1.5 billion in the EU and $20 billion in the US every year [79].

The selective pressure exerted by the abuse and misuse of antimicrobials have resulted in the
selection of novel bacterial strains that are resistant to the majority of antibiotherapies currently
available [80,81]. In addition, it has been estimated that two-thirds of the antibiotics used in the
clinic exhibit a poor cellular uptake into eukaryotic cells. Therefore, many antimicrobials are totally
ineffective against intracellular bacterial pathogens, despite that these antibiotics may have a clear
bacteriostatic or bactericidal effect in vitro [82]. Because of that, new treatments against intracellular
pathogens are urgently needed to solve the antimicrobial resistance crisis.

However, the development of novel anti-infectives has become unappealing to the pharma
industry. This is mainly due to the fact that the development period of these drugs is much longer
than their validity period, since antimicrobial resistant strains are being isolated shortly after any new
antibiotic gets approval to be clinically used [81].

Because of this, drug repositioning of RONS-generating antimicrobials has gained interest in
recent years (Figure 4). In particular, there have been several strategies developed to block the
antioxidant systems of bacterial pathogens [83]. For instance, the antioxidant compound Ebselen
(also called PZ 51, DR3305, and SPI-1005; Figure 4B), is a synthetic organoselenium-based drug with
anti-inflammatory, antioxidant, and cytoprotective activities [84,85]. Ebselen may have applications
in the treatment of cardiovascular disease, arthritis, stroke, atherosclerosis, and cancer, by acting as
a mimic of glutathione peroxidase in mammalian cells [86,87]. However, Ebselen is also a potent
inhibitor of TrxR in bacteria lacking glutathione, such as M. tuberculosis or S. aureus [88,89], which results
in oxidative stress [85,90,91]. Importantly, Ebselen could also be combined with ROS-stimulating
compounds that block the antioxidant defenses of bacteria such as silver nanoparticles (Figure 4) [91].

On the other hand, the use of the antimicrobial coating AGXX® (Largetec GmbH, Berlin) could be
a promising RONS-inspired preventative strategy against antimicrobial resistant bacteria. AGXX® is
made of two transition metals (silver and ruthenium), which generate oxidative stress and loss of iron
homeostasis in methicillin-resistant S. aureus [92].

Metal oxide nanoparticles (MO-NPs), such as zinc oxide, gold or silver nanoparticles [93–95],
are another very promising RONS-producing antibiotherapeutic strategy that could be used in
combination with other RONS-generating compounds (Figure 4A). Despite of the fact that there
are numerous studies demonstrating the antibacterial role of metal oxide nanoparticles [93,96],
their mechanism of action based on RONS-production is still not fully understood. In many
occasions, their RONS-based antimicrobial activity is activated by light. For example, titanium
dioxide and zinc oxide nanoparticles are RONS-producing antimicrobials active against S. aureus and
Staphylococcus epiderdimis when they are activated with blue light (at 415 nm) [97]. Similarly, other
metal oxide nanoparticles (e.g., V2O5, CeO2, Fe2O3, and Al2O3-NPs) are O2

•− generators activated by
light with potent antimicrobial activities against Gram-negative bacteria [98]. Because of this particular
mechanism of activation, these metal oxide nanoparticles could only be used as topical antimicrobials
due to the low penetration of visible light through the skin [99,100]. However, the production of
light-activated antibacterial surfaces with polymers made with some of these nanoparticles has gained
interest in recent years [101]. Other applications include the use of photoactivated TiO2 coatings on
prostheses to prevent surgical site infections [102].

Interestingly, some traditional antibiotics can also produce RONS as part of their mechanism
of action [103–106]. These antibiotics may alter the pathogen’s central metabolism and/or its iron
homeostasis, which results in the production of intracellular hydrogen peroxide [107]. Recent studies
have identified RONS-producing-antibiotics by expressing redox biosensors in several bacterial species
(Table 1) [107–110]. In addition, the combination of different RONS-generating antimicrobials may
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act synergistically against some bacterial pathogens (Figure 4A) [109]. Similarly, the combination of
some antibiotics with silver nanoparticles may enhance RONS biosynthesis and, therefore, increase
the efficacy of the combinatorial treatment. These novel therapeutic strategies can improve the
antimicrobial activity of some drugs with repurposing potential. It is even possible that antimicrobials
clinically approved to treat common infections might be used as part of combinatorial therapies against
new multi-drug resistant (MDR) bacteria [90,109]. However, most of this evidence is still only based
on in vitro experiments, and therefore further research is required to demonstrate the efficacy of these
novel treatments against pathogenic bacteria in vivo.
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On the other hand, quinones (Figure 4B) are compounds that can produce thiol-depletion in many
prokaryotic organisms. Their oxidative effect is derived from a one-electron reduction pathway carried
by an NAD(P)H-dependent reductase that results in a semi-quinone radical formation [111]. During
the incomplete reduction of quinones, the semiquinone radical resulting from this reaction may lead to
the partial reduction of O2 to O2

•−, which is a highly reactive oxygen species [112].
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Table 1. List of RONS-generating antimicrobials, their primary mechanism of action and microorganisms
on which their ability to produce oxidative stress was tested.

Antibiotic Primary Mechanism of Action Microorganism Reference

Erythromycin Protein synthesis inhibition Rhodococcus equi [109]

Rifampicin RNA synthesis inhibition Rhodococcus equi [109]

Vancomycin Cell wall synthesis inhibition
Mycobacterium tuberculosis

Rhodococcus equi
Staphylococcus aureus

[106]
[109]
[103]

Norfloxacin DNA gyrase inhibition
Rhodococcus equi

Staphylococcus aureus
Escherichia coli

[109]
[103]
[104]

Clofazimine DNA replication inhibition Mycobacterium tuberculosis [106]

Ethambutol Cell wall synthesis inhibition Mycobacterium tuberculosis [106]

Isoniazid Cell wall synthesis inhibition Mycobacterium tuberculosis [106]

Quinones Different cellular targets

Enterococcus sp.
Streptococcus sp.

Staphylococcus sp.
Moraxela catarrhalis

[113]
[113]
[113]
[113]

Metal oxide nanoparticles Undefined

Escherichia coli
Staphylococcus aureus

Staphylococcus epiderdimis
Photobacterium phosphoreum

[91]
[97]
[97]
[98]

Quinones are compounds that can be produced as secondary metabolites by Actinoallomorus
and Streptomyces sp. [113,114] and show antimicrobial activity against important pathogens such as
Enterococcus sp., Streptococcus sp., Staphylococcus sp., or Moraxela catarrhalis [113]. Most importantly,
quinones are active against methicillin-resistant S. aureus [114], which is a facultative intracellular
pathogen [115].

Finally, there are several plant-derived compounds that show a clear antimicrobial activity
because of their capacity to generate an oxidative shift in the bacterial cytoplasm. The most studied is
allicin (Figure 4B), which is a defense molecule produced by garlic (Allium sativum) with important
antibacterial activities and responsible of the aroma of fresh garlic [116,117]. Allicin is a reactive
sulfur species (RSS), which is able to oxidize thiol groups of proteins in a dose-dependent manner.
The antimicrobial activity of allicin and its oxidative role has been clearly demonstrated in S. aureus and
Bacillus subtilis. In these bacteria, allicin generates a strong disulfide stress that significantly reduces
the bacterial viability [118,119].

There are many other secondary metabolites produced by plants that may elicit oxidative stress
in bacteria, such as catechins, ferulic acid, and their derivatives [120,121]. The combination of
RONS-generating antimicrobials with these compounds may lead to the development of promising
therapeutic strategies against different intracellular bacterial pathogens [120,121].

However, one major drawback of some RONS-producing antibiotics is the generation of oxidative
stress on specific host tissues, which may render clinically ineffective the therapeutic strategies based
on these drugs. Indeed, some aminoglycosides, fluoroquinolones, and beta-lactam antibiotics may
induce host cellular damage in specific tissues such as the renal cortex or tendons by generating
oxidative stress [122–125]. Nevertheless, this side effect could be lessened by specific antioxidant
molecules [124,126,127].

6. Concluding Remarks

The maintenance of redox homeostasis is a key process that is tightly controlled by intracellular
pathogens during the colonization of the host cell. This mechanism is based on different redoxins and
low molecular weight-thiol molecules that maintain the bacterial cytoplasm reduced. The capacity of
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intracellular pathogens to respond to the oxidative stress generated by macrophages as well as their
ability to circumvent or resist antimicrobials makes them an important human health issue. Novel
therapeutic strategies based on the capacity of different compounds to increase RONS synthesis during
phagocytosis are being developed with the aim to unbalance bacterial redox defenses and stop host cell
colonization. Despite of the fact that the majority of these novel treatments have not been yet tested
in vivo, they have a great potential to solve the increasing problem of antibiotic-resistant infections
caused by intracellular bacterial pathogens.
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