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Understanding patterns of population diversity and structuring amongmarine
populations isofgreat importance forevolutionarybiology, andcanalsodirectly
inform fisheries management and conservation. In this study, genotyping-by-
sequencing was used to assess population genetic diversity and connectivity
of Sebastiscus marmoratus. Based on 130 individuals sampled from 10 locations
in the northwestern Pacific Ocean, we identified and genotyped 17 653 single-
nucleotide polymorphisms. The patterns of genetic diversity and population
differentiation suggested that the Okinawa Trough might be the ancestral
centre ofS.marmoratus after the Last GlacialMaximum.A shallowgenetic struc-
ture was observed among sampled populations based on the implemented
structuring approaches. Surprisingly, we detected genetic homogeneity in two
population pairs (i.e. Xiamen–Niigata and Zhuhai–Iki Island), in which popu-
lations have large geographical and latitudinal intervals. Population structure
andallele frequencydistributionbasedonoutlier loci alsomirrored theobserved
genetic homogeneity in the above-mentioned population pairs. Integratedwith
biological, environmental and genomic data, our results provide possible gen-
etic evidence for parallel evolution. Our study also provides new perspectives
on the population structure ofS.marmoratus, which couldhave important impli-
cations for sound management and conservation of this fishery species.
1. Introduction
Determining parallel evolution is important because it can reveal the nature of the
ecological and evolutionary forces that shape biodiversity [1]. Genetic parallelism
appears to be ubiquitous and occurs at all taxonomic levels [2–4]. When species
adapt to local biotic and abiotic conditions, similar selective pressures will lead to
identical or similar adaptive changes indistantly related species orpopulations [5,6].

Parallel evolution provides valuable systems for studying the genetics of new
adaptations [3], and identification of the genetic basis for parallel adaptation is a
prominent goal in evolutionary biology [7]. Recent technological advances in
population-scale high-throughput sequencing provide powerful tools to explore
parallel evolution at genomic scales [8]. In themarine realms, applying population
genomics approaches, parallel evolutionary processes have been recently observed
in threespine sticklebackGasterosteus aculeatus [8–10], European anchovy Engraulis
encrasicolus [11], Atlantic cod Gadus morhua [12], steelhead/rainbow trout
Oncorhynchus mykiss [7] and Atlantic herring Clupea harengus [13]. However,
such evolutionary parallelism studies are generally restricted to similar
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sample locations
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Figure 1. Schematic map showing sample locations of S. marmoratus and contemporary main currents of the northwestern Pacific Ocean in winter. KS, Kuroshio
Current; TWC, Taiwan Warm Current; TSWC, Tsushima Warm Current; YSWC, Yellow Sea Warm Current; SBCC, Subei Coastal Current; MZCC, Minzhe Coastal Current;
GDCC, Guangdong Coastal Current. The map was generated using ArcGIS 10.2, made with Natural Earth. The coastline data are available on the Internet at http://
www.naturalearthdata.com/downloads/. The main currents follow the description in Liu [14].
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latitudinal gradients on both sides of the Atlantic Ocean. There-
fore, wewanted to investigatewhether parallel evolution could
be detected within large latitudinal scales.

In the northwestern Pacific Ocean (NWP), with the influence
of the Kuroshio Current System (KCS), the ecological conditions
between southeastern Chinese (SEC) coasts and Japanese (JPN)
coasts are roughly homogeneous [14]. It is thought that parallel
evolution could be possibly detected in marine organisms
between the two regions. The marbled rockfish Sebastiscus mar-
moratus is probably an ideal candidate for the detection of
parallel evolution. With low genetic background noise, the gen-
etic homogeneity in this species [15] allows us to identify
selective outliers associated with local adaptation [13]. Reported
biological studies have demonstrated that the mating seasons
of S. marmoratus are roughly identical between SEC and JPN
regions [16,17]. It is commonly known that mating seasons
largely influence the reproduction and population recruitment
of ovoviviparous fish, rather than spawning seasons. The
shared reproductive features could be an indicator of environ-
mental and genetic similarity. In addition, our recent
population genetic study explicated the close relationship
between sampled individuals from Xiamen and Japan [18].
Therefore, in the present study, with the objective of delineating
a precise genetic pattern of S. marmoratus populations, we
applied a genotyping-by-sequencing (GBS) approach to investi-
gate the population diversity and structuring of 10 populations
(five Chinese populations and five Japanese populations)
sampled from the NWP. The inclusion of S. marmoratus samples
from SEC and JPN regions may provide possible evidence for
parallel evolution of this species.
2. Material and methods
2.1. Sample collection
Adult S. marmoratuswere obtained from 10 locations along the
NWP (figure 1 and table 1). The sampleswere collected by trawl
net or hook fishing in offshore waters, thus ensuring that the
samples collected were representative of the local populations.
Muscle tissues were preserved in 95% ethanol. All samples
were collected in accordance with national legislation.

2.2. DNA extraction, GBS library preparation and
sequencing

DNA isolation was accomplished by a standard phenol–
chloroform extraction protocol, followed by RNase A treat-
ment. The GBS libraries were constructed following Elshire
et al. [19]. Briefly, the DNAwas digestedwith both high-fidelity
NlaIII andMseI restriction enzymes. A total of 10 libraries were
created by uniquely barcoding each of the individuals from the
respective site and then pooling these individually barcoded
samples. The barcodes used were six nucleotides in length.
The libraries were pooled for multiplexed polymerase chain
reactions (PCRs), and then the PCR products were purified.
The sequencing was performed in three lanes of an Illumina
HiSeq2500 platform, using 150-bp paired-end reads. The
library preparation and sequencing processes were performed
commercially at Novogene Co. Ltd in Beijing, China.

2.3. SNP calling and filtering
Raw sequences were parsed, trimmed and demultiplexed
using the bioinformatics tool Trimmomatic 0.36 [20] with
default parameters. A draft genome sequence of S. marmoratus
assembled using SOAPdenovo2 software [21] based on
whole-genome resequencing data was used as the reference.
All quality-filtered reads were sorted and aligned to the refer-
ence sequence using the bwa-mem algorithm in BWA 0.7.12
[22] with default parameters. After the alignment, single-
nucleotide polymorphism (SNP) calling was performed using
SAMtools 1.3.1 [23]. SNP filtering was produced using
VCFtools [24] with the following parameters. Filtering criteria:
(i) the SNP was called in 90% of individuals, (ii) the minor
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Table 1. Sample information of S. marmoratus in the northwestern Pacific Ocean.

sample site code country coordinates sample size collection date

Rushan, Yellow Sea RS China 36°430 N, 121°390 E 20 Oct 2015

Zhoushan, East China Sea ZS China 30°030 N, 122°210 E 20 Nov 2015

Xiamen, East China Sea XM China 24°220 N, 118°130 E 10 Mar 2016

Zhuhai, South China Sea ZH China 22°160 N, 113°360 E 10 Sep 2015

Fangchenggang, South China Sea FCG China 21°300 N, 108°210 E 20 Oct 2015

Niigata, Sea of Japan NI Japan 37°570 N, 138°540 E 10 Jul 2015

Kochi, Pacific Ocean KO Japan 33°270 N, 133°340 E 10 Sep 2012

Yokosuka, Pacific Ocean YO Japan 35°170 N, 139°430 E 10 Nov 2011

Tottori, Sea of Japan TO Japan 35°330 N, 134°120 E 10 Jun 2015

Iki Island, Sea of Japan IK Japan 33°470 N, 129°380 E 10 Sep 2012
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allele frequency (MAF)wasgreater than 5%, (iii) only twoalleles
were present, (iv) sites that contained an indel were excluded,
and (v) sites that failed the Hardy–Weinberg equilibrium
(HWE) test at p < 0.05 were excluded. The parameter scripts of
BWA, SAMtools and VCFtools are shown in the electronic sup-
plementarymaterial.We also tested for departures from linkage
disequilibrium (LD) expectations within each sample site and
chose to exclude loci that exhibited strongLD(r2 > 0.8 [25]). Test-
ing for LD made use of the TASSEL 5.0 software [26]. All
datasets were reformatted using PGDSpider 2.0.5.2 [27].

2.4. Outlier detection
To identify outlier loci putatively under selection, two differ-
ent approaches were used. Firstly, we used the fdist approach
implemented in Lositan [28]. The probability of each locus Fst
belonging to the neutral distribution is used to classify loci
into one of three selection categories: neutral selection
(0.1–0.9), balancing selection (less than 0.1) and divergent
selection (greater than 0.995) [29]. Outlier analyses were
based on 60 000 simulations assuming an infinite allele
mutation model and using neutral mean Fst, 0.95 confidence
intervals and a false discovery rate of 0.1. Five independent
runs were performed to further reduce false positives.
Secondly, we used a Bayesian model-based approach in
BayeScan 2.1 [30], which has been shown to have lower
type 1 error rates [31]. Analyses were conducted using
default settings. Loci under selection were defined as those
with a false discovery rate (FDR) of 0.1. Loci both under
divergent selection in Lositan and with an FDR of 0.1 in
BayeScan were considered as outliers. Following removal of
these outliers and those under balancing selection, the
retained loci were set as the non-outlier dataset. The non-out-
lier dataset was used in population genetic analyses.

2.5. Population genetic analyses
The program Arlequin 3.5 [32] was used to estimate average
SNP diversity (π) and expected heterozygosity (He) of each
population. Given that genetic diversity indexes are normally
correlated to sample size [33], rarefaction of sample size
(10 individuals per population) was randomly subsampled
and the genetic diversity indexes were recalculated based
on the non-outlier dataset. Allele frequencies of outliers
across all populations were calculated using Arlequin and
then the differences were compared SNP by SNP between
populations. Hierarchical clustering using Euclidean distance
with the Ward clustering method was performed on allele
frequencies using the R package pheatmap to detect popu-
lation homogeneity based on allele frequencies. The
pairwise fixation index (Fst) for each of the two populations
was estimated using Arlequin software and the significance
of each pairwise Fst value was assessed by 10 000 bootstrap
permutations [32]. To correct for multiple hypothesis testing
we applied a Benjamini–Hochberg FDR (α = 0.01) correction
[34] using the R function p.adjust in the package stats.

Population structurewas investigated by using the program
Admixture 1.3.0 [35]. The best value of the coancestry cluster (K)
was estimated using a cross-validation procedure in the
Admixture software. The best value of the coancestry cluster
exhibited the lowest cross-validation error (CVE) compared
with the other cluster values. In order to further estimate the
substructure of S. marmoratus populations, we increased the
coancestry clusters spanning from 2 to 10 and ran the analysis
with 10 000 iterations. Principal component analysis (PCA)
was also implemented using the R package adegenet [36] to
determine whether sampled individuals reflected a history
of differentiated populations. Finally, a population-based
neighbour-joining (NJ) tree was constructed using the program
Populations [37] based on estimates of genetic distance among
populations (Cavalli-Sforza and Edwards chord distance, Dc)
with 1000 bootstrap replications on individuals and visually
displayed using SplitsTree 4.14.4 [38].
2.6. Gene prediction and functional annotation
The contigs containing outlier loci were used as queries in
nucleotide searches with BlastX (E-value 1 × 10−3) against the
NR database at the National Center for Biotechnology Infor-
mation (NCBI) website. In the case of multiple hits, the best
match was chosen. Then, the functional annotations of these
genes were obtained using Blast2GO [39]. This software con-
ducts Blast similarity searches and maps Gene Ontology (GO)
for homologous sequences. Blast2GOproducesGOannotations
aswell as corresponding enzyme commission numbers (EC) for
sequences with E-values <1 × 10−6, annotation cut-off values
greater than 55 and a GO weight greater than 5.
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Figure 2. Genetic diversity index among S. marmoratus populations based on the non-outlier dataset.

Table 2. Pairwise Fst estimates among populations using non-outlier loci. Significant values are shown in italics ( p < 0.05, FDR α = 0.01).

NI KO YO TO IK RS ZS XM ZH FCG

NI —

KO 0.0107 —

YO 0.0121 −0.0055 —

TO 0.0088 0.0032 0.0028 —

IK 0.0074 0.0103 0.0126 0.0115 —

RS 0.0139 0.0225 0.0255 0.0257 0.0113 —

ZS 0.0120 0.0292 0.0319 0.0315 0.0172 0.0105 —

XM −0.0010 0.0122 0.0150 0.0118 0.0081 0.0138 0.0112 —

ZH 0.0092 0.0114 0.0132 0.0129 0.0047 0.0095 0.0149 0.0089 —

FCG 0.0052 0.0155 0.0175 0.0142 0.0112 0.0162 0.0147 0.0052 0.0079 —
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3. Results
The 130 individual S. marmoratus in this study (figure 1 and
table 1) were sampled from Rushan (RS, n = 20), Zhoushan
(ZS, n = 20), Xiamen (XM, n = 10), Zhuhai (ZH, n = 10), Fang-
chenggang (FCG, n = 20), Niigata (NI, n = 10), Kochi (KO, n =
10), Yokosuka (YO, n = 10), Tottori (TO, n = 10) and Iki Island
(IK, n = 10).

3.1. Genotyping, SNP calling and filtering
The GBS sequencing produced 212.8 million high-quality
reads, with a mean of 1.64 million reads per individual (elec-
tronic supplementary material, table S1). Quality-filtered
reads were mapped against the assembled genome. A total
of 563 880 putative SNPs were produced among our samples
and 17 653 SNPs were retained following filtering steps.
Of these loci, 1.0% (n = 180) were identified as outliers,
0.8% (n = 141) were under balancing selection, and the rest
(n = 17 332) were considered as the non-outlier dataset.

3.2. Gene annotation analyses
Genome-wide scans for selection identified 180 outlier loci.
The BlastX analysis showed 14 contigs containing outliers cor-
responding to known proteins in the NR database and
eight contigs were functionally annotated. The low proportion
of annotated loci might be due to the combination of a lack of a
high-quality reference genome and short assembled contigs of
GBS reads. The annotated loci had homology to proteins
associated with metabolic activities such as transferase activi-
ties, protein binding, motor activities and oxidoreductase
activities, among others (electronic supplementary material,
table S2). Consequently, inhibition or promotion of such
protein expression could result in a broad spectrum of pheno-
types. In addition, different geographical populations also
need to adapt to a variety of other biotic and abiotic factors
not considered in this study.

3.3. Population genetic analyses
The global average SNP diversity (π) of S. marmoratus was
0.136 ± 0.064 and ranged from 0.074 to 0.199 within each
sample location. The global observed heterozygosity (Ho)
and expected heterozygosity (He) were 0.130 ± 0.077 and
0.136 ± 0.066, respectively, and the estimates within each
population ranged from 0.152 to 0.185 and from 0.158 to
0.202, respectively (figure 2). Genetic diversity estimates of Chi-
nese populations were comparatively higher than those of
Japanese populations. Among the 10 populations the highest
diversity estimates were all detected in population ZS,
even when 10 individuals per population were randomly
subsampled (electronic supplementary material, table S3).

The pairwise Fst values ranged from −0.0055 for the
Yokosuka–Kochi comparison to 0.0319 for the Yokosuka–
Zhoushan comparison, overall showing a low degree of genetic
differentiation (table 2). However, all pairwise Fst values were
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statistically significant after FDR correction ( p < 0.05, FDR
α= 0.01) except for the Niigata–Xiamen and Yokosuka–Kochi
pairs, indicating a certain degree of population differentiation.

Different methods of determining population structure
generally produced similar results. The most likely numbers
of the coancestry clusterwere one (K = 1), suggestingpopulation
panmixia.As theK value increased, theplots showed six genetic
subpopulations when K ranged from 5 to 10: (1) RS, (2) ZS, (3)
XM, NI, (4) KO, YO and TO, (5) IK, ZH and (6) FCG (figure 3).
The PCA recovered the same clusters achieved by Admixture
analyses (figure 4a), showing genetic homogeneity among
sampled populations. The NJ tree mirrored the results of the
Admixture and PCA analyses, showing shallow genetic struc-
turing across all populations (figure 4b).

It is worth noting that the substructure of the Admixture
analyses revealed an unexpectedly close relationship in two
populationpairs (i.e.XM-NIandZH-IK),where thepopulations
within the pairs have large geographical and latitudinal dis-
tances (figure 3). Given the relatively short geographical
distance, a close genetic relationship should probably be
detected in the XM-ZH andNI-IK pairs. Themismatch between
genetic distance and geographical distance could be possible
evidence for parallel adaptive evolution. Therefore, we further
reconstructed outlier-based population structures of 10 popu-
lations and these four populations, respectively. PCA plotting
revealed clear grouping within the XM-NI and ZH-IK pairs,
which was consistent with clustering based on allele frequency
of outliers (figure 5), showing evolutionary similarity of popu-
lations with large geographical and latitudinal gradients.
4. Discussion
In the present study, using high-resolution genomic SNPs,weak
but statistically significant levels of genetic differentiation were
detected among S. marmoratus populations. S. marmoratus is a
demersal rockfish with restricted migration during the juvenile
and adult life history and thus is considered to disperse only
during the larval stage. However, given a very short pelagic
larval duration lasting about 10 days [40], larval dispersal
might also be restricted. Therefore, it is likely that the genetic
similarity could be the result of limited divergence time from
shared ancestry populations. The contemporary distribution
ranges ofS.marmoratuswere almost exposedduring the last gla-
cial period [41], so this species may have been extirpated
through large parts of its range and survived in glacial refu-
gium. Population expansion and subdivision from glacial
refugium are expected when favourable conditions returned
and genetic homogeneity would also be expected in the recolo-
nized regions given the relatively young postglacial ecosystems
(less than 10 000 years) [41]. Under such a scenario, it can
be inferred that the East China Sea glacial refugium, i.e. the
Okinawa Trough, should be the centre of the diversity and
origin of S. marmoratus, integrated with the highest genetic
diversity of population ZS. Similar inferences were also derived
in the population genetic studies of Lateolabrax maculatus [41],
Synechogobius ommaturus [42] andThamnaconus hypargyreus [43].

Understanding the capacity of natural populations to adapt
to their local environment is a central topic in evolutionary
biology [44]. Geographically distinct populations that are
exposed to similar environmental conditions generally evolve
similar genotypic and phenotypic traits [13]. In the present
study, structuring analyses demonstrated genetic similarity in
XM-NI and ZH-IK population pairs, in which populations
span geographical distances of approximately 2000 km and
latitudinal distances of approximately 10°. However, we
failed to detect such genetic similarity in XM-ZH and NI-IK
pairs. The close genetic relationship was also detected when
using mitochondrial coding gene sequences [18]. Integrated
with similar reproductive features and an outlier allele fre-
quency pattern, the genetic similarity detected in XM-NI and
ZH-IK population pairs could be considered possible evidence
forparallel evolution inS.marmoratus. A similar conclusionwas
also drawn in theAtlantic herring case [13], inwhich genotypes
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were shared among geographically distant populations with
low genetic differentiation. In addition, parallel genetic evol-
ution was also reported in the threespine stickleback [8–10]
and Atlantic cod [12], given similar environmental conditions
(salinity in the threespine stickleback and temperature inAtlan-
tic cod). Previous parallel evolution studies on marine
organisms generally focused on populations in the same latitu-
dinal gradients, ensuring that individuals undergo similar
selective pressures. Herein, despite the high latitudinal interval
(ca. 10°), possible parallel evolution evidencewas also detected
in S. marmoratus populations. To our knowledge, this might be
the first report of parallel evolution in the NWP.

In spite of the large geographical and latitudinal interval,
the habitats of SEC and JPN regions are generally homo-
geneous because of the influence of the KCS [14].
Environmental similarity might promote similar or identical
genetic variants in the two regions [4]. The similar mating
season [16,17] between the two regions could be an indicator
of physiological and biological similarity. However, because
of the low-efficiency annotation of the GBS technique, we
failed to detect genetic variants associated with reproductive
biology in this study. Moreover, the complex and polygenic
nature of parallel evolution restricted our understanding of
genetic parallelism in S. marmoratus. Further studies linking
environment, genotype and biology are warranted to fully
demonstrate the pattern of parallel evolution in this species.
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