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Abstract 1 

Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of 2 

natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies 3 

of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased 4 

force of infection, host receptor binding, or immune evasion may influence bottleneck size, the 5 

relationship between transmissibility and the transmission bottleneck is unclear. Here, we 6 

compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages 7 

to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals 8 

in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens 9 

collected close to the time of transmission, within-host diversity was extremely low. At a 2% 10 

frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 11 

iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 12 

infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-13 

VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The 14 

tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of 15 

transmission, a relationship that may be more pronounced in rapidly transmissible variants. The 16 

tight bottlenecks identified here will limit the development of highly mutated VOC in typical 17 

transmission chains, adding to the evidence that selection over prolonged infections in 18 

immunocompromised patients may drive their evolution. 19 

  20 
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Introduction 21 

Viral populations are often subject to multiple bottleneck events as they evolve within and 22 

between hosts. These bottlenecks drastically reduce the size and genetic diversity of the 23 

population, which will affect how new mutations spread through host populations (1, 2). In the 24 

setting of a tight transmission bottleneck, most mutations that arise within a host are not 25 

propagated between them. Bottlenecks also reduce the virus’s effective population size, which 26 

captures the number of virions that reproduce and genetically contribute to the next 27 

generation; selection is less effective in smaller populations. Therefore, tight bottlenecks 28 

constrain adaptive evolution by limiting the spread of newly arising mutations and reducing the 29 

efficiency of selection on these mutations along transmission chains. Many viruses, such as HIV 30 

(3, 4), influenza (5), and SARS-CoV-2 (6–10), have tight bottlenecks, with 1-3 distinct viral 31 

genomes transmitted. 32 

 33 

The size of the transmission bottleneck may be impacted by viral dynamics, route of infection, 34 

or molecular interactions at the virus-host interface. For example, it has been suggested that 35 

transmissibility, or force of infection, may influence bottleneck size. Increased transmissibility 36 

may lead to wider bottlenecks in several ways. First, increasing the infectious dose, perhaps 37 

through increased shedding in the donor host or increased intensity of contact, can lead to 38 

wider bottlenecks as shown in experimental infections of influenza A virus (11, 12) and tobacco 39 

etch virus (13). Additionally, the number of virions that initially infect cells is directly related to 40 

bottleneck size (14). More transmissible viruses may have an increased ability to infect 41 
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individual cells, such as through increased receptor affinity or escape from intrinsic or innate 42 

immunity.  43 

 44 

While early studies of SARS-CoV-2 transmission estimated a tight transmission bottleneck, the 45 

last 20 months of the pandemic have witnessed the emergence of highly transmissible variants 46 

of concern (VOC). In December 2020, B.1.1.7 (Alpha) was detected for the first time with a 47 

substantial increase in transmissibility over previous SARs-CoV-2 lineages (15). Since then, 48 

additional variants of concern characterized by an increase in transmissibility have arisen. The 49 

Alpha, Beta, Gamma, Delta, and Omicron VOC are 25-100% more transmissible than the original 50 

Wuhan strain (16).  There are multiple and overlapping mechanisms for the increased 51 

transmissibility in SARS-CoV-2 that may influence bottleneck size, including increased binding to 52 

ACE2 (17–20), increased viral shedding (21, 22), innate immune evasion (23), rapid cellular 53 

penetration (18), and alternative entry pathways (24, 25).  54 

 55 

Here we explore the relationship between viral transmissibility and transmission bottlenecks by 56 

comparing bottleneck size across multiple VOC and pre-VOC lineages. We sampled viral 57 

populations from two household cohorts in Michigan, obtaining high depth of coverage 58 

sequence from 168 individuals in 65 households.  We found that bottleneck size did not vary 59 

significantly between transmission pairs infected with pre-VOC lineages and those infected with 60 

highly transmissible Alpha, Delta, or Omicron (BA.1) lineages. This tight bottleneck was largely 61 

the result of limited diversity in the donor host at the time of transmission. 62 

 63 
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Methods 64 

Households and sample collection 65 

Households were enrolled through two household cohorts in Southeast Michigan – MHome and 66 

the Household Influenza Vaccine Evaluation Study (HIVE). MHome is a case ascertained 67 

household cohort in which households are recruited following identification of an index case 68 

who meets a case definition for COVID-like illness and is positive for SARS-CoV-2 by clinical 69 

testing. Households in this study were enrolled between November 18, 2020  and January 19, 70 

2022. HIVE is a prospective household cohort with year-round surveillance for symptomatic 71 

acute respiratory illness. We identified all HIVE households with ≥1 individuals positive for 72 

SARS-CoV-2 between June 1, 2021 and January 18, 2022. For both studies, written informed 73 

consent (paper or electronic) was obtained from adults (aged >18). Parents or legal guardians 74 

of minor children provided written informed consent on behalf of their children. Both study 75 

protocols were reviewed and approved by the University of Michigan Institutional Review 76 

Board (HIVE: HUM118900 & HUM198212, MHome: HUM180896).  77 

 78 

In MHome, index enrollees meeting the case definition (at least one the following: cough, 79 

difficulty breathing, or shortness of breath; or at least two of the following: fever, chills, rigors, 80 

myalgia, headache, sore throat, new loss of smell or taste) with a positive clinical test result 81 

within the last 7 days are invited to enroll themselves and their household members. Nasal 82 

swabs were collected on days 0, 5, and 10 after enrollment for all participating household 83 

members. For HIVE, study participants were instructed to collect a nasal swab at the onset of 84 

illness, with weekly active confirmation of illness status by study staff. Eligible illness was 85 
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defined as two or more of cough, nasal congestion, sore throat, chills, fever/feverish, body 86 

aches, or headache (for participants 3 years & older) or two or more of cough, runny nose/nasal 87 

congestion, fever/feverish, fussiness/irritability, decreased appetite, trouble breathing, or 88 

fatigue (for participants under 3 years old). If a participant had symptoms of a respiratory 89 

illness, specimens were collected from all members of that household on days 0, 5, and 10 of 90 

the index illness. For both cohorts all samples were nasal swabs that were self-collected, or in 91 

the case of young children, parent-collected following an established protocol (26). In both 92 

cohorts, participants were questioned about the day of symptom onset and duration of 93 

symptoms. In MHome, the index case was defined as the individual with the earliest symptom 94 

onset date. If two or more individuals shared the earliest onset date, they were considered to 95 

be co-index cases. 96 

 97 

Viral sequencing 98 

All samples were tested by quantitative reverse transcriptase polymerase chain reaction (RT-99 

qPCR) with either the TaqPath COVID-19 Combo Kit from Thermofisher (MHome) or CDC 100 

Influenza SARS-CoV-2 Multiplex Assay (HIVE). We sequenced the first positive sample in each 101 

individual with a cycle threshold (Ct) value ≤30 from each individual. RNA was extracted using 102 

the MagMAX viral/pathogen nucleic acid purification kit (ThermoFisher) and a KingFisher Flex 103 

instrument. Sequencing libraries were prepared using the NEBNext ARTIC SARS-CoV-2 Library 104 

Prep Kit (NEB) and ARTIC V3 (MHome, through November 10, 2021) and V4 (MHome, after 105 

November 10, 2021; HIVE) primer sets. After barcoding, libraries were pooled in equal volume. 106 

The pooled libraries (up to 96 samples per pool) were size selected by gel extraction and 107 
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sequenced on an illumina MiSeq (2x250, v2 chemistry). We sequenced all samples in duplicate 108 

from the RNA extraction step onwards, randomizing sample position on the plate between 109 

replicates.  110 

 111 

We aligned the sequencing reads to the MN908947.3 reference using BWA-mem v 0.7.15 (27). 112 

Primers were trimmed and consensus sequences were generated using iVar v1.2.1  (28). 113 

Intrahost single nucleotide variants (iSNV) were identified for each replicate separately using 114 

iVar (28) with the following criteria: average genome wide coverage >500x, frequency 0.02-115 

0.98, p-value <1x10-5, variant position coverage depth > 400x. We also masked ambiguous and 116 

homoplastic sites (29). Finally, to minimize the possibility of false variants being detected, the 117 

variants had to be present in both sequencing replicates. Indels were not evaluated. 118 

 119 

Delineation of transmission chains and SARS-CoV-2 lineages 120 

Alignments of consensus sequences within each household were manually inspected. We 121 

considered infections to be consistent with household transmission if the consensus sequences 122 

differed by ≤2 mutations (30). We excluded individuals whose consensus sequences were 123 

inconsistent with household transmission but retained the rest of the household if there was 124 

evidence of household transmission among the other members. Households were split and 125 

analyzed separately if the consensus sequences supported multiple independent transmission 126 

chains within the household. If necessary, we reassigned the index case, so that the index case 127 

was part of the transmission chain. 128 

 129 
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For households with genetically linked infections, we further analyzed all samples with high 130 

quality sequencing (>500x coverage) from households with ≥2 members. We used Nextclade to 131 

annotate clades and variants of concern (31). We used the WHO definition to classify variants 132 

of concern (i.e., Alpha, Beta, Gamma, Delta, and Omicron: BA1)(32). Variants of interest were 133 

included in the non-variants of concern group for all analyses.  134 

 135 

Infection dynamics 136 

Serial intervals were calculated as the time between symptom onset of the index and each 137 

household contact and compared across clades using an ANOVA. Additionally, the times 138 

between symptom onset and sample collection for index cases were calculated. Serial intervals 139 

and time to sampling across clades were compared using an ANOVA followed by a Tukey HSD. 140 

We also compared the Ct values from the nucleocapsid gene of sequenced samples and the 141 

other positive non-sequenced samples for index cases.  142 

 143 

Bottleneck estimation  144 

We defined the possible transmission pairs within each household as follows: the index was 145 

allowed to be the donor for household contacts, and the household contacts were allowed to 146 

be donors to each other. The only case in which the index case was allowed to be the recipient 147 

was when there were co-index cases. Co-index cases were allowed to be both donor and 148 

recipient with respect to the other co-index. After defining the transmission pairs, we applied 149 

the approximate beta-binomial approach (33). This method accounts for the variant calling 150 

frequency threshold and stochasticity in the recipient after transmission. We estimated the 151 
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bottleneck size for each transmission pair individually and also calculated an overall bottleneck 152 

size for each clade using a weighted sum of loglikelihoods (33). We re-calculated the above 153 

bottleneck estimates after merging replicate aligned fastq files to examine the impact of our 154 

variant calling strategy.  155 

 156 

Data and materials availability 157 

Raw sequencing reads are available on the NCBI short read archive under BioProject 158 

PRJNA889424 . Data and scripts necessary to replicate the analyses are available on github 159 

(https://github.com/lauringlab/SARS-CoV-2_VOC_transmission_bottleneck).  160 

 161 

Results 162 

We used high depth of coverage sequencing to characterize SARS-CoV-2 populations collected 163 

from individuals enrolled in a prospective surveillance cohort (HIVE) and a case-ascertained 164 

household cohort (MHome). There were 65 multiply infected households (infections ≤14 days 165 

apart) with 168 cases. High quality, whole genome sequences (see Methods) were obtained 166 

with technical replicates from 131 cases. Depth of coverage was generally high and iSNV 167 

frequency was similar across both replicates (Figure S1). There were five households that had 168 

consensus sequences inconsistent with household transmission (Figure S2). Of these five, two 169 

households with two individuals each were excluded. In two households, there was a single 170 

individual whose consensus sequence differed from the others and was excluded. In the final 171 

household, the consensus sequences were consistent with two separate transmission pairs, and 172 

these were analyzed separately. All 5 households with multiple introductions were due to 173 
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either Delta or Omicron viruses, consistent with high community prevalence during these 174 

waves (34). The final transmission analysis dataset included 45 households, 110 individuals, and 175 

134 possible transmission pairs (Table 1).  Alpha (B.1.1.7), Gamma (P.1), Delta (AY.3, AY.4, 176 

AY.39, AY.44, AY.100), and Omicron (BA.1, BA.1.1) were represented in these households. 177 

Variants of interest included one household with Lambda (C.37).  178 

 179 

There was rapid transmission of SARS-CoV-2 in the sampled households. The median serial 180 

interval ranged between 2 and 3.5 with no significant difference observed between clades (df 181 

=4, F =.879, p =0.483, Figure 1A, Figure S3). Households with Delta and Omicron had a greater 182 

range of serial intervals. Viral specimens were collected soon after symptom onset in both 183 

household studies, with a clade-specific medians ranging from 2-6.5 days. Omicron had a 184 

shorter time between index symptom onset and sample collection for sequencing than non-185 

VOC (df=3, F=8.138, p <0.001) and Alpha (p =0.01) (Figure 1B, S3). This is likely due to the 186 

number of Omicron cases in HIVE households, which had a shorter time between index 187 

symptom onset and sample collection for sequencing than MHome households (df =1, F 188 

=15.363, p < 0.001). 189 

 190 

We further examined the timing of index case sampling by trending RT-qPCR Ct values for all 191 

index case specimens. In nearly all cases, the index cases were sampled at peak viral shedding 192 

(Figure 1C). Therefore, our sequence data for the index cases should be reflective of the genetic 193 

diversity present in donor hosts when risk of household transmission was highest. Consistent 194 

with the short time between the infection onset and sample collection, we found low genetic 195 
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diversity in nearly all specimens. (Figure 2A). A majority (56/110, 51%) had no iSNV above the 196 

2% frequency threshold; 42% (46/110) of samples had 1-2 iSNV; and 7% (8/110) had ³ 3 iSNV. 197 

There were no specimens with more than 5 iSNV. Fifty-two percent of iSNV were present at 198 

<10% frequency within hosts, Figure 2B).   199 

 200 

Bottleneck size is calculated based on shared diversity between members of a transmission 201 

pair. Within each household, possible transmission pairs included the index case as donor and 202 

each household contact as a recipient, and household contacts as donors for other household 203 

contact recipients. While the majority of sampled households had only two cases, 12 had three 204 

cases, and 4 had four cases (Figure 3A). The number of possible transmission pairs per 205 

household ranged from 1 to 12 (Table S1). When we compared the frequency of iSNV in the 206 

donors and recipients, we found only a single shared iSNV – C29708T (noncoding) – in 6 207 

possible transmission pairs from a single household (Figure 3B). This iSNV was present in all 208 

three individuals in the household at a frequency of 0.56, 0.97, and 0.24 respectively. All other 209 

iSNV were either absent (frequency of 0) or completely fixed (frequency of 1) in the other 210 

individual of the transmission pair for all households. This pattern is highly suggestive of a 211 

narrow bottleneck. 212 

 213 

We used the beta binomial model (33) to obtain a quantitative estimate of the transmission 214 

bottleneck. Because bottleneck size can only be calculated when there are iSNV in the 215 

transmission donor (see Figure 2A), we were able to use 64 potential pairs in this analysis (Table 216 

S1). All VOC clades had an overall bottleneck size of 1 (Alpha, Delta, Omicron: 95% CI 1:1, 217 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.10.12.511991doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.12.511991
http://creativecommons.org/licenses/by-nc/4.0/


  

Gamma: 95% CI 1:7). The Non-VOC clades had an overall bottleneck size of 2 (95% CI 2:2), 218 

which was driven entirely by the single shared iSNV in one household. The 6 transmission pairs 219 

in this household exhibited bottlenecks of 2, 4, and 6 (Table S2). All other transmission pairs 220 

had a bottleneck size of 1 inclusive of all clades. Across all transmission pairs, the upper bound 221 

of the 95% confidence interval varied greatly, from 1 to 200, the maximum bottleneck size we 222 

evaluated (Table S2).  223 

 224 

We were stringent in our variant calling criteria and required iSNV to be present in both 225 

sequencing replicates, because false positive iSNV can artifactually inflate bottleneck estimates 226 

(7, 35–37). To ensure that our stringency did not lead to an underestimate, we re-analyzed our 227 

dataset after merging sequencing reads across the technical replicates. This had only a small 228 

effect on the number of iSNV identified in each specimen (Figure S4). Thirty-nine out of 110 229 

specimens still had no iSNV present, and all but 2 specimens had ≤8 iSNV. The remaining two 230 

specimens had 25 and 57 iSNV. The newly detected iSNV in the merged dataset tended to be 231 

present at very low frequency (<3%) and shifted the iSNV frequency distribution toward lower 232 

values (Figure S4). In this lower stringency dataset, an additional 19 transmission pairs had iSNV 233 

in the donor. However, the bottleneck sizes for all clades were identical to the previous 234 

estimates (Table S3). This suggests that the tight bottlenecks we estimated were not due to 235 

overly stringent variant calling. 236 

 237 

Discussion 238 
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Here, we used in depth sequencing of two well-sampled household cohorts to define the 239 

relationship between transmissibility and transmission bottleneck size. We found that all clades 240 

exhibited short serial intervals in our households and low genetic diversity in specimens 241 

collected close to the time of transmission. This limited genetic diversity across all clades 242 

resulted in a tight estimated bottleneck. In line with bottleneck estimates for first-wave 243 

lineages of SARS-CoV-2 we found that VOC clades had a bottleneck of 1 and non-VOC had a 244 

bottleneck of 2. These very tight bottleneck estimates were robust to reductions in the 245 

stringency in variant-calling. 246 

 247 

Consistent with prior studies of SARS-CoV-2 and other viruses, we found low genetic diversity 248 

within and between hosts. Allowing for slight differences due to analytic pipelines, previous 249 

studies have largely reported low within-host genetic diversity in SARS-CoV-2 (6, 9, 38–40).  250 

Much of this diversity is not shared between hosts, as multiple studies in different settings have 251 

measured a tight transmission bottleneck for SARS-CoV-2  (6–10). Tight bottlenecks appear to 252 

be broadly applicable across routes of infection and viral family. Potato Y virus (0.5-3.2) and 253 

Cucumber mosaic virus (1-2), both transmitted by aphids (41, 42), along with Influenza (1-2), 254 

HIV (3, 4), Venezuelan equine encephalitis  (43), and HCV (44) have tight bottlenecks .  255 

 256 

Additionally, we demonstrate that increased transmissibility, whether through force of 257 

infection or immune escape, doesn’t change the bottleneck size for SARS-CoV-2. Genetic 258 

diversity constrains bottleneck sizes, and with sufficiently low genetic diversity the bottleneck 259 

cannot be greater than one. For both non-VOC and VOC, the short generation time of SARS-260 
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CoV-2 does not allow for diversity to accumulate in the donor, much less transmit. These 261 

effects may be exaggerated in highly transmissible variants if time to transmission is shortened. 262 

While we did not find variant-specific differences in serial interval in our cohorts, multiple 263 

studies that explicitly modeled generation time during household transmission have shown 264 

shorter generation times as the pandemic has progressed. Even before variants of concern 265 

arose, the generation time of SARS-CoV-2 was decreasing (45), and this trend continued as 266 

variants of concern arose with Delta (3.2 days) exhibiting a shorter generation time than Alpha 267 

(4.5 days) (46). A shortening of generation could potentially have a larger impact on bottleneck 268 

size for other viruses, particularly those that generate more diversity than SARS-CoV-2 prior to 269 

transmission. 270 

 271 

Our work highlights how transmission bottlenecks, as typically measured, are distinct from 272 

infectious dose. Within-host processes in the recipient influence bottleneck size, because not all 273 

virions that initiate an infection go on to establish a genetic lineage (1). After infection begins, 274 

stochastic loss (genetic drift) during exponential growth, superinfection exclusion, cell-to-cell 275 

heterogeneity, and host immune response cause some virions to be lost (47). These within-host 276 

processes combined with the starting genetic diversity cause bottleneck size to, in many cases, 277 

be smaller than the infectious dose. In experimental systems, genetic barcoding and more 278 

frequent sampling of donor and recipient hosts can be used to link bottlenecks to infectious 279 

dose and identify lineages that are lost (12, 48).  280 

 281 
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Our study is subject to at least three limitations. First, in all studies of natural transmission, 282 

there is always some ambiguity about who infected whom. In two-infection households, it is 283 

possible that both were exposed to a common donor outside the household, and in households 284 

with >2 cases, there are multiple possible transfection pairs. Because individuals who don’t 285 

transmit to each other are unlikely to share diversity, incorrect pairing will underestimate the 286 

bottleneck (5). However, we found that all transmission pairs had equal bottlenecks even when 287 

we tested mutually exclusive transmission pairs. Second, virus populations may be spatially 288 

segregated within hosts, and the transmitted population may not have been well sampled by 289 

our analysis of nasal swabs (49–53). However, given the low viral diversity identified in nearly 290 

all cases, even spatially segregated viral populations are likely to be genetically similar to each 291 

other. Third, rare diversity may have been under sampled in the donors and recipients due to 292 

the sensitivity of our sequencing approach. This possibility was addressed in our analysis of 293 

merged technical replicates. Given that more common variants (10-50% frequency) were not 294 

shared between hosts, it is unlikely that even perfect detection would find shared iSNV at lower 295 

frequencies. 296 

 297 

Understanding how different viral properties promote or impede evolution is critical for 298 

predicting and effectively monitoring the course of the COVID pandemic. The tight bottlenecks 299 

we have estimated for SARS-CoV-2 VOC will both limit the spread of new mutations and reduce 300 

the effectiveness of natural selection. Weakened selection will inhibit the evolution of new 301 

lineages and may be especially important for new VOC. Whereas other lineages may evolve 302 

through non-selective mechanisms, such as genetic drift, the existing VOC have exhibited 303 
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strong signals of prior positive selection at the time of their emergence (16)(54–56). The tight 304 

bottlenecks identified here will limit the development of highly mutated VOC in typical 305 

transmission chains, adding to the evidence that selection over prolonged infections in 306 

immunocompromised patients may drive the evolution of SARS-CoV-2 variants of concern (6, 307 

15, 57, 58).  308 
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Figure Legends 562 

 563 

Figure 1. Serial interval and timing of sample collection. (A) Days between index symptom onset 564 

and household contact symptom onset for the indicated clades. “Non-VOC” includes all lineages 565 

not designated as a WHO variant of concern. No Beta variant transmission pairs were analyzed. 566 

(B) Days between symptom onset and collection of the sequenced specimen for the index case. 567 

Index cases from MHome are indicated in teal, and index cases from HIVE are indicated in red. 568 

Omicron had a shorter time between index symptom onset and sample collection for 569 

sequencing than non-VOC (df=3, F=8.138, p <0.001) and Alpha.  HIVE households had a shorter 570 

time than MHome households (df =1, F =15.363, p < 0.001). (C) RT-qPCR cycle threshold values 571 

(inverted y-axis) for all specimens collected from index cases. Sequenced specimens are 572 

indicated with filled circles. 573 

 574 

Figure 2. Genetic diversity in sequenced specimens. (A) Histogram of the number of iSNV per 575 

specimen. (B) iSNV frequency histogram.  576 

 577 

Figure 3. Diversity across transmission pairs. (A) The number of individuals per household with 578 

sequenced specimens. Colors represent the different clades. (B) Shared genetic diversity 579 

between transmission pairs. Each point is an iSNV within a transmission pair. Red points 580 

indicate mutation C29708T, which was shared in a single household (see text). 581 

 582 
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Figure S1. Sequencing coverage and consistency. (A) Boxplot of median (+/- IQR) coverage 583 

across the genome in 400bp non-overlapping sliding windows. (B) Frequency of iSNV in each 584 

replicate for iSNV that were identified in both replicates. 585 

 586 

Figure S2. Inclusion and exclusion of transmission pairs. (A) Examples of possible transmission 587 

pairs in households. In each panel, the index cases are in blue, and the household contacts are 588 

in black. The grey arrows indicate transmission pairs, and they point from the donor to the 589 

recipient. (B) Consensus genome alignments inconsistent with household transmission. The 590 

genomes were visualized using Nextclade. Both Nextclade and Pango lineages are reported. 591 

Colored bars are mutations with reference to the Wuhan-Hu-1/2019 (MN908947) strain. Gray 592 

partial bars indicate missing data. Asterisks next to household names indicate households that 593 

were removed from further analyses. Asterisks next to sample names indicate samples that 594 

were removed from further analyses, while the rest of the household was retained. The black 595 

cross (†) indicates a household with two separate transmission pairs. 596 

 597 

Figure S3. Timing of symptom onset and specimen collection by household. Each panel shows a 598 

household, grouped by the indicated clades. Within each household, blue symbols indicate 599 

index case(s) and black symbols indicate household contact(s). Open triangles indicate time of 600 

symptom onset and filled triangles indicate specimens that were sequenced. If there is no 601 

symptom onset, the case was considered to be asymptomatic. 602 

 603 
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Figure S4. Timing of symptom onset and specimen collection by household. Each panel shows a 604 

household, grouped by the indicated clades. Within each household, blue symbols indicate 605 

index case(s) and black symbols indicate household contact(s). Open triangles indicate time of 606 

symptom onset and filled triangles indicate specimens that were sequenced. If there is no 607 

symptom onset, the case was considered to be asymptomatic. 608 

 609 

Figure S5. iSNV detected when sequencing replicates are merged. (A) The number of iSNV per 610 

specimen. Nearly still had a low number of iSNV. However, merging the reads greatly increased 611 

the number of iSNV in two individuals. These iSNV were near the 2% threshold. (B) Most iSNV 612 

were found at low frequencies. The frequency distribution shifted toward lower frequencies 613 

compared to when iSNV had to be detected in both replicates. 614 
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Table 1 616 

 617 

 618 

 

Non-

VOC Alpha Gamma Delta Omicron Total 

Individuals with successful 

sequencing 
22 21 3 25 40 111 

Households with successful 

sequencing* 
11 7 1 12 15 46 

Possible transmission pairs 26 34 2 19 55 134 

Transmission pairs included 

in bottleneck analysis** 
15 19 1 12 17 64 

* Households that have 2 or more individuals with successful sequencing   

** Only includes transmission pairs where there are iSNV in the donor     
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Figure 1. Serial interval and timing of sample collection. (A) Days between index symptom onset and household contact symptom onset for the indicated clades. “Non-VOC” includes all lineages not designated as a WHO variant of concern. No Beta variant transmission pairs were analyzed. (B) Days between symptom onset and collection of the sequenced specimen for the index case. Index cases from MHome are indicated in teal, and index cases from HIVE are indicated in red. Omicron had a shorter time between index symptom onset and sample collection for sequencing than non-VOC (df=3, F=8.138, p <0.001) and HIVE households had a shorter time than MHome households (df =1, F =15.363, p < 0.001). (C) RT-qPCR cycle threshold values (inverted y-axis) for all specimens collected from index cases. Sequenced specimens are indicated with filled circles.
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Figure 2. Genetic diversity in sequenced specimens. (A) Histogram of the number of iSNV per specimen. (B) iSNV frequency histogram. 
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Figure 3. Diversity across transmission pairs. (A) The number of individuals per household with sequenced specimens. Colors represent the different clades. (B) Shared genetic diversity between transmission pairs. Each point is an iSNV within a transmission pair. Red points indicate mutation C29708T, which was shared in a single household.
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Figure S1. Sequencing coverage and consistency. (A) Boxplot of median (+/- IQR) coverage across the genome in 400bp non-overlapping sliding windows. (B) Frequency of iSNV in each replicate for iSNV that were identified in both replicates.
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Figure S2. Inclusion and exclusion of transmission pairs. (A) Examples of possible transmission pairs in households. In each panel, the index cases are in blue, and the household contacts are in black. The grey arrows indicate transmission pairs, and they point from the donor to the recipient. (B) Consensus genome alignments inconsistent with household transmission. The genomes were visualized using Nextclade. Both Nextclade and Pango lineages are reported. Colored bars are mutations with reference to the Wuhan-Hu-1/2019 (MN908947) strain. Gray partial bars indicate missing data. Asterisks next to household names indicate households that were removed from further analyses. Asterisks next to sample names indicate samples that were removed from further analyses, while the rest of the household was retained. The black cross (†) indicates a household with two separate transmission pairs.
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Figure S3. Timing of symptom onset and specimen collection by household. Each panel shows a household, grouped by the indicated clades. Within each household, blue symbols indicate index case(s) and black symbols indicate household contact(s). Open triangles indicate time of symptom onset and filled triangles indicate specimens that were sequenced. If there is no symptom onset, the case was considered to be asymptomatic.
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Figure S4. Timing of symptom onset and specimen collection by household. Each panel shows a household, grouped by the indicated clades. Within each household, blue symbols indicate index case(s) and black symbols indicate household contact(s). Open triangles indicate time of symptom onset and filled triangles indicate specimens that were sequenced. If there is no symptom onset, the case was considered to be asymptomatic.
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Figure S5. iSNV detected when sequencing replicates are merged. (A) The number of iSNV per specimen. Nearly still had a low number of iSNV. However, merging the reads greatly increased the number of iSNV in two individuals. These iSNV were near the 2% threshold. (B) Most iSNV were found at low frequencies. The frequency distribution shifted toward lower frequencies compared to when iSNV had to be detected in both replicates.
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