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Abstract: In the current study, the genetic architecture of growth and linear type traits were investi-
gated in Akkaraman sheep. Estimations of genomic heritability, genetic correlations, and phenotypic
correlations were implemented for 17 growth and linear type traits of 473 Akkaraman lambs by the
univariate and multivariate analysis of animal mixed models. Correspondingly, moderate heritability
estimates, as well as high and positive genetic/phenotypic correlations were found between growth
and type traits. On the other hand, 2 genome-wide and 19 chromosome-wide significant single
nucleotide polymorphisms were found to be associated with the traits as a result of animal mixed
model-based genome-wide association analyses. Accordingly, we propose several genes located on
different chromosomes (e.g., PRDM2, PTGDR, PTPRG, KCND2, ZNF260, CPE, GRID2, SCD5, SPIDR,
ZNF407, HCN3, TMEM50A, FKBP1A, TLE4, SP1, SLC44A1, and MYOM3) as putative quantitative
trait loci for the 22 growth and linear type traits studied. In our study, specific genes (e.g., TLE4,
PTGDR, and SCD5) were found common between the traits studied, suggesting an interplay between
the genetic backgrounds of these traits. The fact that four of the proposed genes (TLE4, MYOM3,
SLC44A1, and TMEM50A) are located on sheep chromosome 2 confirms the importance of these
genomic regions for growth and morphological structure in sheep. The results of our study are
therefore of great importance for the development of efficient selection indices and marker-assisted
selection programs, as well as for the understanding of the genetic architecture of growth and linear
traits in sheep.

Keywords: genetic parameters; QTL; GWAS; growth; linear type traits; sheep

1. Introduction

Sheep (Ovis aries) are among the most utilized animals since domestication. The
hardy and adaptive nature of the sheep allowed the species to be widely distributed
along various environmental settings and diverse terrains, including arid areas, which
promoted the diversification of the breeds. Additionally, the variety of resources provided
by sheep established the species as an essential component of the global agricultural
economy. Indigenous sheep breeds, especially, have a wide range of adaptive traits that
have evolved for thousands of generations with natural and artificial selection, which
constitute the main pillars of food security and sustainable production in many countries.
Likewise, Akkaraman (i.e., White Karaman) sheep, a widely raised fat-tailed sheep breed
of Türkiye, is known for its hardy nature, capable of surviving and reproducing under
extreme conditions [1,2]. As a dual-purpose breed, the Akkaraman has quite a large share
of Türkiye’s sheep population with considerably low meat productivity as indicated by
slaughtered lamb weight [1]. Economically, sheep and lamb meat holds the fourth biggest
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share of global meat production [3]. Therefore, traits correlated with meat production, such
as growth and linear type traits, which are mainly composed of body condition score, chest
and rump width, body length, feet angle, and leg posture traits, have great importance in
terms of breeding practices for high-yielding, prime lambs. In fact, both trait groups have
a considerably high influence on important economic traits such as productivity, disease
resistance, mobility, reproductive performance, and certain physiological and biochemical
parameters [4,5]. Therefore, improving the selection accuracy for these traits would enhance
the overall efficiency and profitability of a sheep production system.

Although linear type traits have been around for dairy cattle, goats, and dairy sheep
for decades, studies conducted on meat sheep are very limited [6–8]. Accordingly, sev-
eral scales were proposed for scoring meat sheep for type traits, such as those based on
1 to 5 and 1 to 9 scales [5,9–11]. Studies concerning genetic parameters and the genetic
background of growth and linear type traits in sheep are quite scarce [5,10,12]. It is widely
known that growth and linear type traits in sheep are commonly affected by environmental
factors such as nutrition and seasonal variation, as well as the animals’ genetic background.
In fact, moderate heritabilities and a wide range of genetic correlations were found for
growth and linear type traits within various sheep breeds, which indicates a great potential
for utilizing the genetic determination behind those complex traits to achieve faster genetic
improvement [5,9,13–15]. A comprehensive pedigree is required, where countries signifi-
cantly lack pedigree and trait recording. To overcome this problem, it was proposed that
genomic information be exploited through the use of a genomic relationship matrix [16,17].
Additionally, using genomic information has been proven to increase the selection accuracy
of genetic improvement programs and positively affect the acquired genetic gain [18,19]. A
major prerequisite for implementing marker- and gene-assisted selection for economically
important traits such as growth performance and linear type traits is the identification of
the relevant candidate genes and quantitative trait loci (QTL). Unfortunately, sheep have a
relatively small number of discovered QTLs compared to those concerning cattle. Among
the present sheep QTLs, studies aiming at the discovery of QTLs associated with growth
and linear type traits are very few [20].

The massive advancement of next-generation sequencing technologies has resulted in
a wide range of high-throughput genotyping methods. With the availability of high-density
Single Nucleotide Polymorphism (SNP) arrays, a major opportunity for the implementation
of the genome-wide association studies (GWAS) to reveal the QTL underlying traits of
economic interest in livestock production has been provided [21]. GWA studies have
proven to be a powerful tool to identify genetic variants and candidate genes associated
with a wide range of traits in a wide range of farm animals including cattle, goats, and
sheep [8,12,22]. Up until recent years, only a few GWASs were conducted on certain
growth [12,23–26] and linear type traits [10] of sheep, which have suggested putative QTLs
on OAR1, 2, 3, 6, 8, 9, 14, 15, 16, 17, 19, and 22 for growth traits and OAR2, 5, 16, 23, and
26 for various linear type traits.

However, the scarcity of discovered QTLs, the low overlap among identified loci, and
the complex nature of the genetic background of growth and linear type traits emphasize
the need for a deep understanding of the genetic architecture of those traits as well as
the need for more QTL discovery studies in sheep. Therefore, the main objectives of the
present study were to estimate the genomic heritabilities, observe correlations for certain
growth and linear type traits of Akkaraman sheep, and implement GWASs to understand
the genetic mechanisms behind complex traits with potential implications in the genetic
improvement of an indigenous sheep breed.

2. Materials and Methods
2.1. Animals and Phenotyping

The authors followed the suggestions by the ARRIVE guidelines throughout the
study [27]. The experimental population consisted of 473 randomly selected Akkaraman
lambs (i.e., 186 male and 287 female lambs) sourced from three different large-scale com-
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mercial farms located near the outskirts of the Ankara province. The climate of the studied
region is characterized by harsh and cold winters, while summers are extremely hot and
dry. This results in a meager, poor-quality grassland diet for grazing animals. Since the
animals were registered to the National Community-based Small Ruminant Breeding Pro-
gramme, a transgenerational phenotypic selection is applied to the ancestors of the studied
animals. Within each generation, the best performing rams are mated to the best per-
forming does, where performance is measured in growth rate. Lambs were born between
January and February 2021 and weaned between April and May 2021, with an average
weaning age of 3 months. Once the lambs were weaned, 372 lambs were kept on grazing
pasture until 6 months of age while 101 lambs were finished for a period of 90 days with
750–1000 g concentrate feed (i.e., a proportional mixture of barley, corn, and wheat) per
day as well as hay.

Birth weight (BW), weaning weight (WW), and 180 days weight (180DW) records were
taken from the lambs. From those, pre-weaning average daily gain (preADG), post-weaning
average daily gain (postADG), and 180 days average daily gain (180ADG) were derived.
Weaning weight here is the adjusted weight of the lambs at 90 days, while 6 months weight
is the adjusted weight at 180 days via linear interpolation. Additionally, when the lambs
were at an average of 6 months old, scoring for 11 type traits including body condition
score (BCS), tail size (TS), rear legs rear view (RLRV), gigot roundness rear view (GRRV),
rump width (RW), rear legs width (RLW), rear legs feet angle (RLFA), gigot roundness
side view (GRSV), rear legs side view (RLSV), body length (BL), and chest width (CW)
were implemented following also the descriptions provided by [5,9–11]. Blood samples
were collected right after the scoring, where approximately 6 mL of blood samples were
taken from Vena jugularis into an EDTA-coated vacutainer. Samples were immediately
transferred within a cold chain to the Genetics Laboratory of the International Center
for Livestock Research and Training, Ankara, Turkiye, where the DNA extraction and
genotyping were executed.

The recorded environmental factors to be accounted for as fixed effects were sex
(two levels), birth type (two levels), herd (three levels), and feed type (two levels). The
preliminary statistics, data pruning, and model fitting were implemented via the R sta-
tistical environment. Continuous data were checked for normality via the Shapiro–Wilk
test, where outliers with observations deviating three standard deviations ± mean for
each trait were excluded from further analyses. Furthermore, the heteroscedasticity of
variances was tested with the Breusch–Pagan test [28]. The descriptive statistics of the
phenotypic observations after the outliers were removed and the quality control performed
are provided in Supplementary Table S1.

2.2. Genotyping and Quality Control

DNA was extracted from those collected blood samples with the QIAcube HT au-
tomated device using a commercial Blood/Tissue DNA purification kit and the relevant
manufacturer’s protocol provided by the same company (Qiagen, Hilden, Germany). The
purified DNA was exposed to a quality/quantity check step to ensure that all samples
passed the minimum genotyping requirements of A260/280 > 1.8; A260/230 > 1.5 and a sample
amount of >20 ng/µL with a MultiSkan SkyHigh UV/VIS microplate spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA). After checking for DNA integrity on gel
electrophoresis, the samples proceeded to genotyping, which was implemented using
the Axiom™ Ovine SNP Genotyping Array (50 K) and the GeneTitan™ Multi-Channel
Instrument according to the manufacturer’s guide (Axiom™ 2.0 Assay 96-Array Format
Manual Workflow, ThermoFisher Scientific, Waltham, MA, USA).

Preceding further analyses, a quality control (QC) step was performed to ensure lower
Type-I and Type-II error rates [29–31]. Correspondingly, the ‘GenABEL’ R package [32] was
used to remove SNPs with a minor allele frequency (MAF) <0.05, call rate <95%, and those
that are mapped to sex chromosomes and deviate from the Hardy–Weinberg equilibrium
(p-value cut-off = 0.05/number of SNPs). Furthermore, samples with an individual call rate
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below 90%, identity by state (IBS) of >95%, and those with too high heterozygosity (False
Discovery Rate < 1%) were also removed from the data. This resulted in 40,439 remaining
SNPs passing imposed QC criteria for follow-up statistical analyses.

2.3. Genomic Heritability and Correlations

Genomic heritability estimates and genetic correlations were obtained using univariate
and bivariate analyses of the linear animal mixed model, which is given below with the
variance-covariance structure of the estimations, on ‘sommer’ R package [33]:

y = Xβ + Zu + eV =


ZiGσ2

ui
Z′i + Iσ2

ei
· · · ZiGσui,j Z

′
j + Iσei,j

...
. . .

...
ZiGσui,j Z

′
j + Iσei,j · · · ZjGσ2

uj
Z′j + Iσ2

ej


Here, y refers to the vector containing phenotypic observations, β is the vector of

fixed effects included in the model, u is the vector of random effects for breeding values,
where u~MVN (0, Gσ2

u), e is the vector of random residual effects, assumed to be from
e~MVN (0, Iσ2

e ), and X and Z are the design matrices that are, respectively, mapping fixed
environmental effects and random breeding values to the observations. Additionally, σ2

u
and σ2

e are the additive genetic variance and random residual variances for the trait of
interest, where ‘i’ and ‘j’ represent different traits to be analyzed for bivariate analyses,
and I is the identity matrix. Below, G is the genomic relationship matrix obtained by the
method proposed by [17]:

G =
ZZ′

2 ∑ pi(1− pi)

where, when divided by 2 ∑ pi(1− pi), the G matrix becomes similar to that of a numerator
relationship matrix which was obtained from a pedigree.

Heritability estimates here are the narrow sense heritability (h2 = σ2
u

σ2
p
) where σ2

u is

the additive genetic variance and σ2
p is the total phenotypic variance (i.e., composed of

σ2
u + σ2

e ) obtained from the univariate analysis of the trait of interest with the general
model above. The components of (co)variance were obtained by the Newton–Raphson
optimization method using a direct inversion (DI)-based restricted maximum likelihood
(REML) approach to solve the mixed model above, using the genomic relationship matrix
constructed from the IBS information provided by the SNP markers [34,35]. Heritability
estimates and genetic and phenotypic correlations are given in Supplementary Table S2,
where diagonal values represent the heritability estimate of the relevant trait, above the
diagonal is the phenotypic correlation, and below the diagonal is the genetic correlation for
the matching traits. Fixed effects were omitted during the bivariate analyses for obtaining
genetic correlations to avoid any possible convergence problems. Standard errors of the
genetic correlations were estimated by using a second order Taylor series expansion on the
delta method as explained by [36].

2.4. Genome-Wide Association Analysis

Univariate genome-wide association analysis for each trait was carried out using the
linear mixed model presented above, which employs a procedure on the ‘GenABEL’ R
package originally proposed by Chen and Abecasis [37]. For this purpose, the genomic
relationship matrix was also used to account for any possible covariance between the
trait measurements of animals that is attributable to population stratification and cryptic
relatedness, which would lead to an increased Type I error rate [38,39]. Briefly, the two-step
approach for solving the mixed model equation above involves an initial step of accounting
for all fixed effects other than SNP effects (i.e., the recorded environmental factors) and
estimating the (co)variance components, where the residuals of this primary analysis are
later used to estimate the additive genetic effects of SNPs which are fitted as fixed factors
one at a time.
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Quantile–Quantile (Q–Q) plots were used to inspect the inflation of the test statistics
due to any possible systematic bias or error, considering the p-value distribution under
the null hypothesis of ‘no association’ (see Supplementary Figure S1). Furthermore, a
genomic control method was used to adjust and remove any possible inflation in the test
statistics by setting λ to 1 [40]. SNP effects were visualized as −log10 (p-value) and are
represented on Manhattan plots of each trait, with consideration being given to the relevant
chromosome. Two significant thresholds were applied to the SNPs to identify genome-
and chromosome-wide significance based on p-values. To avoid increased false positives
imposed by multiple testing, Bonferroni correction was utilized to assign both genome-
and chromosome-wide significance thresholds, where the representative significance level
of 0.05 was first divided by the total number of SNPs which passed QC for genome-wide
significance. Later, the representative significance level was divided by the average number
of SNPs per chromosome to assess for chromosome-wide significance. Thus, the obtained
genome-wide significance threshold was 1.236 × 10−6 and the chromosome-wide was
3.214 × 10−5, respectively leading to 5.90 and 4.49 on the −log10 (p-value) scale of the
Manhattan plots.

2.5. Functional Annotation of Candidate Genes

Genomic positions and nearby genes related to associated SNPs were retrieved from
the Oar_v4.0 genome assembly on NCBI Genome Data Viewer [41]. Genes that directly
contained significant SNPs were suggested as candidates. However, when the SNP was
not within a described gene, the area of the chromosome covering ±250 Kbp from the
identified SNP was scanned for the nearest candidate gene with a reasonable explanation.
Identified genes were functionally enriched to recover biological information and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways involved by using The Database
for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources
2021 [42,43]. Where the sheep genome suffers from the lack of annotation, the orthology
among species was exploited to annotate relevant genes from other species such as cattle,
mice, and humans. The biological processes of the identified genes were given with
their Gene Ontology (GO) terms and can be further detailed on QuickGO by EMBL’s
European Bioinformatics Institute [44]. Finally, the animal QTL Database was scanned to
identify whether detected SNPs in this study were previously associated with any growth-,
conformation-, and body-type traits [20].

3. Results
3.1. Phenotypic Characteristics

A total of 17 different traits, including birth weight (BW), weaning weight (WW),
pre-weaning average daily gain (preADG), 180 days live weight (180DW), post-weaning
average daily gain (postADG), six months average daily gain (sixADG), body condition
score (BCS), tail size (TS), rear legs rear view (RLRV), rear legs side view (RLSV), rear legs
width (RLW), rear legs foot angle (RLFA), gigot roundness rear view (GRRV), gigot round-
ness side view (GRSV), rump width (RW), body length (BL), and chest width (CW) were
evaluated for genetic parameter estimations and GWA analysis. Outliers were accordantly
removed following linear model fitting. Sex was not significant for any of the measured
traits. Birth type was used as an adjustment for the pre-weaning growth traits, while traits
recorded after weaning included finishing as an adjustment factor preceding GWASs. Fol-
lowing quality control, the remaining observations for each trait and its relevant descriptive
statistics are given in Supplementary Table S1.

3.2. Genetic Parameters

Genomic heritabilities as well as genetic and phenotypic correlations among the traits
are present in Supplementary Table S2. Overall, moderate heritability estimates were
found for growth traits ranging from 0.29 (preADG) to 0.52 (180DW). Contrasting this, the
linear type traits had heritabilities distributed within a wider range, between 0.07 (BL) and
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0.52 (RLW). In general, positive and high genetic correlations were observed among growth
and linear type traits, which supports the idea of using linear type traits as an indicator for
growth. A substantial proportion of the genetic correlations among the relevant traits were
almost one, indicating a near-perfect linear relationship among the traits. Interestingly,
RLW and RLFA had a moderate negative or almost no correlation with some of the traits
analyzed. Genetic correlation among the BL and GRRV did not converge to a meaningful
number, possibly due to the low genetic variance estimates of the traits. Therefore, these
traits were excluded from the results. Finally, phenotypic correlations were observed to be
within a low to moderate range among the traits, with the exception of RLW and RLFA,
which showed no correlation with most of the traits the dataset contained.

3.3. Genome-Wide Association Studies

Genome-wide association studies for 17 growth and type traits (see Supplementary Table S1)
were undertaken via univariate mixed model analysis by recursively fitting 40,439 SNPs one
at a time and building a genomic relationship matrix. The significant results are presented
in Table 1 for growth traits and Table 2 for linear type traits. Q–Q plots of the results
(Supplementary Figure S1) show reasonable patterns of associations and no proper sign of
inflation. All traits were forced to have a lambda (λ) of approximately 1 by correcting the
p-values with the genomic control. The corrected p-values of the SNPs were visualized with
Manhattan plots present in Figures 1 and 2, where the values were converted to −log10
(p-value). In total, 20 different SNPs were found to be genome- or chromosome-wide
associated with at least one trait at various p-levels. Curiously, three SNPs showed multiple
associations among the analyzed traits (see Tables 1 and 2).

Table 1. Significant SNPs for growth traits.

Trait SNP Name OAR
Oar_v4.0
Position

(bp)
p-Value Sig. MAF Candidate

Gene Distance

postADG rs407771300 4 85,034,136 7.974 × 10−6 CW 0.486 KCND2 Intron variant
postADG rs404771550 14 46,046,471 9.876 × 10−6 CW 0.253 ZNF260 ~100 bp upstream
preADG rs423706103 19 39,758,712 1.270 × 10−5 CW 0.276 PTPRG Intron variant

WW rs414279727 7 42,283,714 1.377 × 10−5 CW 0.479 PTGDR ~50 Kb downstream
postADG rs400100688 17 448,355 1.677 × 10−5 CW 0.121 CPE Intron variant
postADG rs429448354 6 30,967,377 1.701 × 10−5 CW 0.424 GRID2 Intron variant

BW rs414781462 12 51,905,842 1.793 × 10−5 CW 0.262 PRDM2 25 Kb upstream
sixADG rs414279727 7 42,283,714 3.031 × 10−5 CW 0.479 PTGDR ~50 Kb downstream

Notes: OAR = O. aries chromosome; Sig.= significance; MAF = Minor Allele Frequency. Bold SNP names indicate
those that were found common among traits. Here, BW, WW, preADG, postADG, and sixADG, respectively, stand
for birth weight, weaning weight, and pre-weaning average daily gain, post-weaning average daily gain, and
six months average daily gain. Regarding the significance column, GW stands for genome-wide and CW for
chromosome-wide significant SNPs.

Table 2. Significant SNPs for linear type traits.

Trait SNP Name OAR
Oar_v4.0
Position

(bp)
p-Value Sig. MAF Candidate

Gene Distance

RLRV rs424107094 9 32,023,081 3.510 × 10−7 GW 0.220 SPIDR Intron variant
CW rs412278842 6 97,145,365 9.972 × 10−7 GW 0.126 SCD5 ~100 Kb upstream

RLSV rs411373597 2 17,728,536 3.243 × 10−6 CW 0.258 SLC44A1 ~250 bp upstream
TS rs417737929 2 240,680,051 4.327 × 10−6 CW 0.050 TMEM50A ~100 Kb downstream

GRRV rs412278842 6 97,145,365 7.323 × 10−6 CW 0.126 SCD5 ~100 Kb upstream
BCS rs405451961 1 103,920,255 9.628 × 10−6 CW 0.399 HCN3 Exon variant
TS rs404544718 2 25,145,453 1.135 × 10−5 CW 0.347 LOC105606997 ~15 Kb upstream

RLW rs417934245 8 81,117,831 1.668 × 10−5 CW 0.356 LOC105609002 ~90 Kb downstream
GRSV rs427724890 2 56,856,646 1.769 × 10−5 CW 0.120 TLE4 ~1–2 Kb upstream
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Table 2. Cont.

Trait SNP Name OAR
Oar_v4.0
Position

(bp)
p-Value Sig. MAF Candidate

Gene Distance

RW AX-123238082 13 58,972,752 1.897 × 10−5 CW 0.326 FKBP1A ~15 Kb
RLFA rs398187690 15 73,532,306 1.912 × 10−5 CW 0.156 LOC105602367 ~90 Kb
RLW rs410532183 3 132,823,805 2.189 × 10−5 CW 0.169 SP1 ~ 1Kb upstream
RLRV rs399086810 23 3,643,516 2.215 × 10−5 CW 0.454 ZNF407 Intron variant
RW rs427724890 2 56,856,646 2.762 × 10−5 CW 0.120 TLE4 ~1–2 Kb upstream

RLSV rs409929874 2 241,787,646 3.320 × 10−5 CW 0.450 MYOM3 ~30 Kb downstream

Notes: OAR = O. arieschromosome; Sig. = significance; MAF = Minor Allele Frequency. Bold SNP names indicate
those that were found common among tested traits. Regarding the trait column, CW, RLRV, BCS, TS, GRRV, RW,
RLW, RLFA, GRSV, and RLSV are, respectively, acronyms for chest width, rear legs rear view, body condition
score, tail size, gigot roundness rear view, rump width, rear legs width, rear legs foot angle, gigot roundness
side view, and rear legs side view. Within the significance column, GW stands for genome-wide and CW for
chromosome-wide significant SNPs. GW values are also bolded for ease of identification.
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Figure 2. Manhattan plots of the linear type traits in Akkaraman sheep. −log10 (p-values) of the
SNPs are plotted against their relevant chromosomes. Horizontal solid red and dashed black lines,
respectively, represent genome-wide (5.90) and chromosome-wide significance thresholds (4.49).

There was a total of seven distinct SNPs that were found to exceed the chromosome-
wide significance threshold for analyzed growth traits on O. aries chromosomes (OAR) 4, 6,
7, 12, 14, 17, and 19. Among these, the SNP named ‘rs414279727’ on OAR7 was common
between weaning weight (WW) and 180 days average daily gain (180ADG) as outlined
in Table 1. For linear type traits, two SNPs on OAR6 and OAR9 exceeded the genome-
wide significance threshold while eleven SNPs on OAR1, 2, 3, 8, 13, 15, and 23 reached
chromosome-wide significance for the GWASs (Table 2). Specifically, GWASs for chest
width (CW) detected the SNP ‘rs412278842’ (p = 9.972 × 10−7) on OAR6 as genome-wide
significant, while the same SNP was also found to be chromosome-wide significant for
the gigot roundness rear view (GRRV), p-value of 7.323 × 10−6. The second genome-wide
significant SNP, namely rs424107094 on OAR9, was associated with the rear legs rear view
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(RLRV) trait with a p-value of 3.510 × 10−7. It is worth noting that four different type
traits were associated with five SNPs localized on OAR2. More detailed information on the
associated SNPs can be found in Tables 1 and 2.

3.4. Gene Annotation

The Oar_v4.0 genome assembly was utilized on NCBI Genome Data Viewer and UCSC
Genome Browser to annotate genomic regions of the associated SNPs and to detect the
nearby genes. In total, 17 annotated genes and three uncharacterized loci were suggested
as candidates underlying the genetic control of measured growth and linear type traits.
Among the identified genes, PRDM2, PTGDR, PTPRG, KCND2, ZNF260, CPE, and GRID2
were associated with growth traits, where PTGDR was suggested for both WW and six-
ADG. Candidates for linear type traits include SCD5, SPIDR, ZNF407, HCN3, TMEM50A,
FKBP1A, TLE4, SP1, SLC44A1, and MYOM3 genes located on various chromosomes. Fur-
thermore, SCD5 was associated with both chest width (CW) and gigot roundness rear view
(GRRV), and TLE4 was associated with both rump width (RW) and gigot roundness side
view (GRSV). Loci LOC105606997, LOC105609002, and LOC105602367 were identified as
candidates for linear type traits. Further information on the associated SNPs, detected
genes, and their relative positions are outlined in Tables 1 and 2.

4. Discussion

Growth and linear type traits are central to sheep selection programmes due to their
high influence on production, efficiency, and profitability. However, indigenous sheep
breeds, such as Akkaraman, strongly suffer from the lack of a comprehensive pedigree,
which is fundamental for a traditional selection program. The use of genomic information
in breeding decisions helps overcome this problem by maintaining genomic relationships,
where these decisions tend to also result in genetic gain [16,18,19]. The lack of a compre-
hensive annotation throughout the sheep genome has hampered genome-based selection
methods and the understanding of complex traits until recently. With the advent of genomic
technologies and the availability of highly annotated sheep reference genomes, it is now
possible to use genome-wide distributed markers to understand the genetic structure of the
economically important traits in sheep, such as growth and linear type traits. With this pur-
pose, we estimated the heritability of 17 growth and linear type traits based on a genomic
relationship matrix. Pairwise genetic and phenotypic correlations were used to understand
the nature of the phenotypic variation and the interplay between the 17 growth and linear
type traits. Subsequently, we performed a series of GWASs for 17 growth and linear type
traits using randomly selected lambs from different herds and revealed two genome-wide
and eighteen chromosome-wide associated SNPs with proposed candidate genes.

Heritability estimates of growth traits ranged from 0.29 (preADG) to 0.52 (180DW).
In contrast, linear type traits had heritabilities between 0.07 (BL) and 0.52 (RLW). Both
trait groups showed similar trends compared to those estimated in Suffolk except for body
length, which was calculated as having almost zero heritability in our study [9]. Similarly,
estimates for rump width, rear legs rear view, and feet angle were only slightly higher
than those obtained from the Spanish Churra breed [5]. While heritabilities for growth
traits mirrored what was found in the Churra and Suffolk breeds, computed estimates
obtained for growth traits were significantly higher than those determined by Safari et al.
and Behrem [13,15]. It is widely known that heritability estimates are crucial elements of
an efficient selection index construction process and a prediction of selection response,
which emphasizes the importance of accurate estimations for a breeding program. The
fact that moderate heritability estimates (Supplementary Table S2), which are consistent
with prior results, were found for growth and most linear type traits observed implies
a strong potential for faster genetic improvement with a properly designed selection
program. Unlike the low genetic and phenotypic correlations found in Bleu de Maine,
Texel, and Suffolk breeds, we obtained high correlations within the Akkaraman breed [9].
The support of our results comes from the relatively similar ranges found for growth traits
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proposed by [15]. Although negative moderate genetic correlations and again negative low
phenotypic correlations between BW/WW and BW/preADG were observed previously in
Merino sheep, the results of our study suggest an opposite trend for the traits of interest
in Akkaraman sheep, with significantly higher positive correlations [13]. Since genetic
correlations between traits may be pleiotropic in nature, linkage, and the interplay between
background genetic mechanisms are important to reveal and account for while designing a
breeding program. Otherwise, targeted selection responses may not be achieved, where
one may simultaneously improve certain traits while deteriorating others [45]. The overall
high and positive genetic/phenotypic correlations between growth and linear type traits in
our study suggest that certain traits may be used as indicators of the others for early and
easy breeding decisions; however, negative correlations should be taken into account for
the faster genetic improvement of growth.

One of the most salient manifestations of our study is the significant SNPs discovered
to be common among the growth and linear type traits, clearly indicating pleiotropy behind
the molecular mechanisms of these traits. Given that there are considerably high genetic
correlations between WW-sixADG (0.96 ± 0.01), RW-GRSV (0.96 + 0.03), and GRRV-CW
(0.96 + 0.03), the common significant SNPs may be explained by genetic interplay. A total
of 20 individual SNPs were associated with the analyzed traits at various levels, where
three SNPs rs414279727, rs427724890, and rs412278842 were commonly found between
the abovementioned traits. Further details regarding associated SNPs, p-values, candidate
genes, and their relative distance are given in Tables 1 and 2, respectively.

Analyses of associated growth traits led to the identification of seven candidate genes
on OAR4, 6, 7, 12, 14, 17, and 19, of which four of the associated SNPs were intron variants
of the candidate genes (Table 1). It is important to remember that statistical association is
not proof of causality. That also means that some of the significant SNPs might well be in
strong linkage disequilibrium with causal mutations that are not represented on the SNP
arrays. On the other hand, those SNPs that are within introns also lay the foundations for
speculating their potential role in alternative splicing and other gene/protein expression
alteration mechanisms. In fact, mounting evidence suggests that introns have expression
regulatory roles due to various other mechanisms alongside alternative splicing, which
might partially explain the abundance of significant SNPs that are intron variants in this
study [46]. Among these candidates, four genes were proposed for postADG and one
gene, namely PTGDR, was common between WW and sixADG. The prostaglandin D2
receptor (PTGDR) on OAR7 is a G-protein coupled membrane receptor that functions
as a transmembrane signaling receptor (GO: 0004871) and an eicosanoid receptor (GO:
0004953). Interestingly, the suggested gene was previously found in a selection signature
study conducted on thin- and fat-tailed sheep [47]. Additionally, PTGDR has also been
associated with hot carcass weight and body depth in various cattle breeds [48,49]. On the
other hand, SNP rs423706103 on OAR19 encompasses the intronic variant of the protein
tyrosine phosphatase receptor type G (PTPRG) gene. PTPRG carries phosphoric ester hydrolase
activity (GO: 0042578) and was associated with preADG in our study. Support for this
gene as a functional candidate comes from [50], which maintained similar results. On the
other hand, postADG was associated with SNP rs407771300 on OAR4, which is present
at an intronic variant of potassium voltage-gated channel subfamily D member 2 (KCND2).
As a transmembrane protein, KCND2 is responsible for protein complex assembly (GO:
0065003), ion transport (GO: 0006811), and the establishment of localization (GO: 0051234).
Further, KEGG analysis also suggests that it mediates serotonergic synapses. Concordantly,
another SNP within KCND2 was formerly associated with withers height in sheep [51].
Lastly, it is worth mentioning SNPs rs404771550 and rs399086810, which are associated
with postADG and RLRV, respectively, as they identified candidate genes that were zinc
finger proteins. Specifically, zinc finger protein 260 (ZNF260) was found approximately
100 bp downstream of SNP rs404771550 and an intron variant of ZNF407 was identified at
SNP rs399086810. Zinc-finger proteins (ZNFs) have long been known to be involved in the
growth and development of various species [52]. Additionally, various members of ZNFs,



Genes 2022, 13, 1414 11 of 15

ZNF395, and ZNF641, have already been associated with growth traits in sheep [24,53].
Therefore, our study further validates these previous findings as various ZNFs have already
proved their worth for genetic improvement regarding sheep growth.

The two genome-wide associated SNPs in our study, namely rs412278842 on OAR6
and rs424107094 on OAR9, were discovered as a result of GWASs for CW and RLRV, respec-
tively. The former SNP was also found to be associated with GRRV on a chromosome-wide
level. This SNP is located approximately 100 Kb upstream of the stearoyl-CoA desaturase
5 (SCD5) gene which has a critical role in the fatty acid metabolic process (GO: 0006631)
and the lipid biosynthetic process (GO: 0008610). KEGG analysis further validated SCD5’s
role in fatty acid metabolism and the biosynthesis of unsaturated fatty acids but added the
AMPK signaling pathway. A recent study implemented whole-genome tests for various
economically important traits in sheep and suggested SCD5 as a strong candidate for body
size [54]. Given that SCD5 was previously proposed to partake in the body size develop-
ment of grass-fed Brangus steers [55], there is support for this gene as a strong candidate
involved in sheep growth. The second highly and genome-wide significant SNP was found
to be associated with RLRV and lies within the gene scaffold protein involved in DNA repair
(SPIDR) of OAR9 as an intron variant. SPIDR is a nucleoplasm protein with key functions
such as the regulation of DNA recombination (GO: 0000018), DNA repair (GO: 0006281),
regulation of macromolecule metabolic processes (GO: 0010604), response to hydroxyurea
(GO: 0072710), and response to stress (GO: 0080134). Apart from the discussed genome-
wide significant SNPs, one SNP named rs427724890 on OAR2 showed a chromosome-wide
association with both the RW and GRSV type traits. The associated SNP was located only
1–2 Kb upstream from the gene which encodes Transducin-like enhancer protein 4 (TLE4), a
transcriptional co-repressor. Functional annotation within KEGG pathways showed that
it is involved in Wnt and Notch signaling pathways. As a prominent regulator of the
canonical Wnt signaling pathway (GO: 0016055) and cellular biosynthetic process (GO:
0031326), TLE4 was recently suggested to regulate muscle satellite cell quiescence and
muscle differentiation by repressing PAX7-mediated MYF5 transcriptional activation in
mice [56].

It is worth noting that an abundance of SNPs on OAR2 was associated with various
linear type traits. In total, five SNPs on OAR2 were associated with four different linear
type traits, including RW, TS, GRSV, and RLSV. As indicated by Table 2, the candidate
genes associated with tail size (TS) included TLE4, transmembrane protein 50A (TMEM50A),
and LOC105606997, where TLE4 was mentioned above as it was also found to be associated
with RW and GRSV traits. Myomesin 3 (MYOM3) and solute carrier family 44 member 1
(SLC44A1) were candidate genes identified for linear type trait RLSV. Various TMEM’s,
including TMEM8B on OAR2, have been suggested to have relationships with body weight
and body length in sheep [51,57]. Selection signature scans conducted on worldwide sheep
populations by Fariello et al. (2014) also suggested TMEM50A as a candidate for further
investigations [58]. On the other hand, MYOM3 protein is a member of the structural
proteins found within the M-band of striated muscle sarcomeres (GO: 0005515), which
specifically have actin filament binding activity (GO: 0051015). Considering the previously
associated regions on OAR2 regarding sheep growth and conformation [10,12,57,59], it
would be fair to suggest that OAR2 plays an important role in the phenotypic determination
of growth and type traits. Finally, SNP rs405451961 is associated with BCS within our
current study and is located within the 10th exon of the hyperpolarization-activated cyclic
nucleotide gated potassium channel 3 (HCN3) on OAR1. HCN3 is suggested to regulate
biological quality (GO: 0065008), measured by animal size, mass, shape, and color, and
to be involved in the regulation of membrane potential (GO: 0042391). KEGG analysis
showed that HCN3 is also involved in GnRH secretion.

The functional enrichment of the identified genes through KEGG pathway analy-
sis determined that the SP1 gene is involved in endocrine resistance, cortisol synthesis,
parathyroid hormone synthesis, and TGF-β signaling. Furthermore, the PRDM2 gene was
suggested to play a role in various metabolic processes, such as lysine degradation. Finally,
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the CPE gene was suggested to influence Type I diabetes mellitus whereas GRID2 and
PTGDR are responsible for neuroactive ligand-receptor interaction. All in all, we have
found 20 associated SNPs with 20 suggested candidates, where their biological importance
in growth and development is well observed. The discovery of common SNPs between the
traits further supports the relatively high genetic correlations among them and indicates
a shared genetic background. Although sheep genomics has recently had breakthrough
improvements, for instance the increase in genome assembly publications and the number
of high-density SNP arrays, sheep growth, and type traits have only undergone a few
studies. Therefore, our results are expected to significantly contribute to the potential
knowledge of the genetic background of growth and conformation in sheep, which are
central to the economic revenue in sheep production systems.

5. Conclusions

In this study, the genetic architecture of 17 growth and linear type traits were investi-
gated in Akkaraman sheep. Correspondingly, moderate heritabilities as well as high and
positive genetic/phenotypic correlations were observed. This indicates that (1) there is
enough genetic variance to be exploited for faster genetic improvement of the focused
traits and (2) observed genetic and phenotypic correlations among the traits can be used to
define the potential of the traits as indicators for early and easy detection of the breeding
male/females. Moreover, two genome-wide and eighteen chromosome-wide significant
SNPs were found to be associated with the traits as a result of performed GWA analy-
ses. Accordingly, PRDM2, PTGDR, PTPRG, KCND2, ZNF260, CPE, GRID2, SCD5, SPIDR,
ZNF407, HCN3, TMEM50A, FKBP1A, TLE4, SP1, SLC44A1, and MYOM3 were proposed
as the genes bearing putative QTLs for growth and linear type traits. Certain genes in
our study were found to be common between the measured traits, which suggests that
an interplay between the genetic backgrounds of these traits exists. Additionally, the fact
that four of the suggested genes were found to be located on OAR2 further emphasizes the
importance of the chromosome for growth and morphological structure in sheep. Consid-
ering the wide influence of these traits on the other traits of economic importance, these
results carry important implications regarding marker-assisted selection programs as well
as understanding the genetic architecture of growth and linear type traits and pointing out
loci for targeted genome-editing/gene-knockout studies.

To our knowledge, this is among the first studies concerning genetic parameters and
the genetic background of linear type traits and growth in an indigenous sheep breed.
Future genomic studies such as those targeting parasite resistance, disease susceptibility,
and fleece characteristics should be considered. Together, these data could be used to
design a comprehensive breeding program for sheep, specifically for Akkaraman sheep. In
turn, the efficiency, profitability, and sustainability of sheep production systems will benefit.
Nevertheless, considering the low number of discovered QTLs, it is extremely important to
implement more discovery studies with an increased number of animals to shed a light on
the complex molecular mechanisms behind growth and type traits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13081414/s1, Supplementary Figure S1: Q-Q plots of
GWA analyses; Supplementary Table S1: Descriptive statistics of growth and linear type traits;
Supplementary Table S2: Heritability, genetic and phenotypic correlations of growth and linear
type traits.
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