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Abstract: A solid-state polymer electrolyte membrane is formed by blending poly(vinylidene fluoride-
co-hexafluoropropylene) with the synthesized copolymer of poly(methyl methacrylate-co-1-vinyl-
3-butyl-imidazolium bis(trifluoromethanesulfonyl)imide, in which lithium bis(trifluoromethane)
sulfonimide molecules are applied as the source of lithium ions. The accordingly formed membrane
that contains 14 wt.% of P(MMA-co-VBIm-TFSI), 56 wt.% of PVDF-HFP, and 30 wt.% of LiTFSI mani-
fests the best electrochemical properties, achieving an ionic conductivity of 1.11 × 10−4 S·cm−1 at
30 ◦C and 4.26 × 10−4 S·cm−1 at 80 ◦C, a Li-ion transference number of 0.36, and a wide electrochem-
ical stability window of 4.7 V (vs. Li/Li+). The thus-assembled all-solid-state lithium-ion battery of
LiFePO4/SPE/Li delivers a discharge specific capacity of 148 mAh·g−1 in the initial charge–discharge
cycle at 0.1 C under 60 ◦C. The capacity retention of the cell is 95.2% after 50 cycles at 0.1 C and the
Coulombic efficiency remains close to 100% during the cycling process.

Keywords: solid polymer electrolyte; all-solid-state; lithium-ion battery; ion conduction; polymer
composite

1. Introduction

After three decades of development, the lithium-ion battery (LIB) has become the most
popular secondary battery because of its high energy density, high operating voltage, low
self-discharging rate and good cycling stability. However, there are still safety issues arising
from the flammable organic liquid electrolytes contained in the LIB. In recent years, solid-
state electrolytes (SSEs) have become the focus of attention due to their excellent properties,
including nonflammability, favorable thermal stability, wide electrochemical window, and
enhanced compatibility with Li metal anodes [1,2]. SSEs can be classified into three major
categories: inorganic ion conductors, solid polymer electrolytes, and organic–inorganic
hybrid composites [3]. Compared to inorganic ion conductors, the advantages of solid
polymer electrolytes (SPEs) include small interfacial resistance, good flexibility, and low
cost [4]. The relatively low ionic conductivity of polymer electrolytes remains problematic.
Thus, improving the ionic conductivity of solid polymer electrolytes is of great importance
for their practical application.

The ionic transport mechanism of SPEs has been controversial. The widely-accepted
theory is that Li ions coordinate with the polar functional groups in the polymer chains,
hopping from one interaction site to another, which mostly occurs in the amorphous parts
of the polymer electrolyte [5]. The segmental relaxation and lithium-ion conduction of the
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SPEs are coupled phenomena [6]. Therefore, the ionic transport in SPEs is mainly associated
with segmental motions. As a result, the ionic conductivity of SPEs can be promoted by
decreasing the crystallinity and improving the flexibility of polymer chains.

Poly(methyl methacrylate) (PMMA) and poly(vinylidene difluoride) (PVDF) are two
commonly used polymers for SPEs. The carbonyl groups in the PMMA matrix provide
coordination sites for Li ions, which makes lithium salts easier to dissociate. It also exhibits
great dielectric properties and enhanced interfacial stability, but the poor mechanical
flexibility hinders its practical application [7]. PVDF manifests high polarity and has a large
dielectric constant owing to the strong electron-withdrawing group C–F, which assists in
the dissolution of lithium salts [8]. Besides, it exhibits excellent thermal stability, mechanical
strength, and chemical inertness [9]. However, PVDF shows a relatively high degree of
crystallinity under room temperature (40–70%) [10]. To address the shortcomings of these
two polymers, a variety of strategies have been suggested, such as blending with other
polymers, incorporating other monomers into their matrixes, and introducing inorganic
fillers to the systems. PMMA is usually used as a blender due to its good compatibility with
other polymers [11]. Polymer blending combines the synergistic advantages to offset the
respective weaknesses of different polymers [12]. For instance, blending PMMA with PEO
decreases the crystallinity of PEO and the brittleness of PMMA [13]. Copolymer PVDF-
HFP has been demonstrated to be a promising polymer host, whose structure consists
of a crystalline region (formed by VDF unit) and an amorphous region (formed by HFP
unit) [14]. The crystalline region promotes tensile strength and chemical stability, while the
amorphous region reduces chain regularity and crystallinity [15]. The addition of nanoscale
inorganic fillers such as Al2O3 or SiO2 can also enhance the tensile strength, interfacial
stability, and ionic conductivity of SPEs by disrupting polymer crystallinity [16–19].

Ionic liquids (ILs), which are salts with a low melting point less than 100 ◦C, are
considered solvents of the future because of their nonflammability, nonvolatility, high ionic
conductivity, and wide electrochemical stability window. ILs have been applied to the
electrolyte system of LIBs and have attracted tremendous attention in the past decade.
They can be used as electrolyte solvents [20,21], additives in solid-state electrolytes [22,23],
or fillers in polymer frameworks to obtain gel polymer electrolytes [24–27]. When ionic
liquid units are linked together with themselves or other monomers, poly(ionic liquid)s
(PILs) are formed, reflecting a combination of the excellent properties of both ILs and
polymers [28–30].

In this study, methyl methacrylate was copolymerized with imidazolium-based
ILs in order to produce a copolymer with high flexibility and ionic conductivity. As
the most studied IL cation, imidazolium has a weak binding effect with anion, and
is easy to graft with different functional groups. As a result, imidazolium-based ILs
are characterized by low viscosity, high ionic conductivity and flexibility in design [31].
Bis(trifluoromethanesulfonyl)imide (TFSI−), compared with other IL anions, shows better
thermal and electrochemical stability [32–35]. Hence, the IL 1-vinyl-3-butyl-imidazolium
bromide (VBIm-Br) was chosen to be the polymeric monomer. After copolymerization,
bromide ions are replaced by TFSI− via the anion exchange process. The thus-synthesized
copolymer was blended with PVDF-HFP for further improvement of the electrochemi-
cal properties. The lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was
added to the system as the lithium-ion donor.

2. Materials and Methods
2.1. Material

1-Vinylimidazole (99%), 2, 2′-Azobis(2-methylpropionitrile) (AIBN) (99%, recrys-
tallized), N, N-Dimethylformamide (DMF) (99.5%), methyl methacralyte (MMA), and
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were purchased from Aladdin. Ethyl
acetate (99%), acetonitrile (99%), N-butyl bromide (98%), and poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-HFP) (average Mw~455,000) were purchased from Rhawn.



Polymers 2022, 14, 1950 3 of 12

Nano-scale LiFePO4 (99%) was purchased from Shenzhen Dynanonic. All other reagents
were used as received.

2.2. Synthesis of the Ionic Liquid Monomer VBIm-Br

VBIm-Br was synthesized by using a traditional quaternary ammonization method
according to the literature [36]. 1-Vinylimidazole and N-butyl bromide (mole ratio 1:1)
were dissolved in ethyl acetate, refluxed at 80 ◦C for 20 h under nitrogen atmosphere. After
static stratification of the solution, the hot ethyl acetate on the upper layer was removed,
and the cool ethyl acetate was added. The sticky ionic liquid VBIm-Br in the lower layer
was intensely stirred to make it recrystallized into white grains, which were subsequently
vacuum-dried at 40 ◦C for 18 h to remove residue solvent.

2.3. Synthesis of the Copolymer P(MMA-co-VBIm-TFSI)

P(MMA-co-VBIm-Br) was synthesized by using a traditional free radical polymeriza-
tion process. MMA and VBIm-Br (mole ratio 7:3) were dissolved in acetonitrile using AIBN
(1 wt.% with respect to the monomers) as the initiator, refluxed at 65 ◦C for 16 h under
nitrogen atmosphere. The solution was then added to a large amount of deionized water,
allowing the raw product to precipitate as flocculent deposit, which was subsequently
washed and dried using a lypholizer. Finally, P(MMA-co-VBIm-TFSI) was synthesized by
anion exchange reaction. P(MMA-co-VBIm-Br) and LiTFSI (mole ratio 2:3) were dissolved
in methanol separately, and then the P(MMA-co-VBIm-Br) solution was slowly added to
the LiTFSI solution. After stirring for 12 h, the mixture was added to a large amount of
deionized water to make P(MMA-co-VBIm-TFSI) precipitate to form a powdery deposit,
which was subsequently washed and vacuum-dried at 70 ◦C for 12 h.

2.4. Preparation of Polymer Electrolyte Membranes

The polymer electrolyte membranes with different weight compositions were prepared
by the solution casting method. PVDF-HFP, P(MMA-co-VBIm-TFSI), and LiTFSI were
dissolved in DMF, then stirred for 12 h to obtain a homogeneous solution. The mixture was
cast into a Teflon tray, vacuum-dried at 60 ◦C for 20 h, and then at 80 ◦C for 4 h. Finally,
the membranes were cut into discs and stored in an argon-filled glove box. Lithium salts
work as a Li-ion donor as well as a plasticizer in membranes. The addition of lithium
salts increases the concentration of free Li-ions, but reduces the mechanical strength of the
membranes. The optimized LiTFSI concentration was found to be 30%. The composition of
the polymer electrolyte membranes are showed in Table 1.

Table 1. Composition of the prepared SPE membranes.

Sample PMMA-IL (wt.%) PVDF-HFP (wt.%) LiTFSI (wt.%) Weight Ratio of
PMMA-IL/PVDF-HFP

PVDF-HFP 0 70 30 -
PIL-10% 7 63 30 1:9
PIL-20% 14 56 30 2:8
PIL-30% 21 49 30 3:7

2.5. Assembly of Cells

The cathode was composed of 80 wt.% LiFePO4, 10 wt.% acetylene black as the
conductive agent, and 10 wt.% PVDF as the binder. The materials were dissolved in
N-methyl-pyrrolidone (NMP), then stirred for 12 h to obtain a homogeneous paste. The
paste was cast on aluminum foil and vacuum-dried at 70 ◦C for 12 h, and then air-blast-dried
at 100 ◦C for 4 h. CR2016 button cells were assembled by sandwiching the SPE membrane
between the LiFePO4 cathode and the Li metal anode in an argon-filled glove box.
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2.6. Characterization

The functional groups and chemical bonds of the SPEs were confirmed by Fourier trans-
form infrared spectroscopy (Thermo Scientific Nicolet 6700, Thermo Scientific, Waltham,
MA, USA) over the wavenumber range of 4000 cm−1 to 400 cm−1. X-ray diffraction (Bruker
D8 Advance, Bruker, Billerica, MA, USA) with Cu-Kα radiation was applied to analyze
the crystallinity of the SPEs with different compositions. The diffraction angle (2θ) was set
between 5◦ and 70◦ with a scan rate of 10◦ per minute. The melting point, glass transition
temperature, and thermal stability of the SPEs were investigated by simultaneous thermal
analysis (Netzsch STA449F3, Netzsch, Selb, Germany). Thermogravimetric (TG) and the
differential scanning calorimetry (DSC) were conducted from 30 to 700 ◦C and −150 to
120 ◦C, respectively, with a heating rate of 10 ◦C per minute under nitrogen atmosphere.
The mechanical properties of the SPEs were characterized by an electrical tension tester
(Instron 5967, Instron, Norwood, MA, USA) at room temperature. The surface morphology
of the SPEs was investigated by scanning electron microscopy (JEOL JSM-7500F, JEOL,
Tokyo, Japan).

2.7. Electrochemical Properties

Electrochemical measurements were carried out on a multifunctional electrochemical
workstation (Princeton VersaSTAT3, Princeton, Dublin, Ireland). The ionic conductivity
(σ) of the SPE was measured by electrochemical impedance spectroscopy (EIS) over the
frequency range of 100 kHz to 1 Hz under an AC amplitude of 10 mV at various tempera-
tures (from 30 ◦C to 80 ◦C, measured every 10 ◦C) with the SS (stainless steel)/SPE/SS cell,
calculated using the following equation:

σ =
L

Rb·S
(1)

where Rb is the bulk electrolyte resistance, and L and S are the thickness and contact area of
the electrolyte membrane, respectively [37].

The electrochemical stability window of the SPE was evaluated by linear sweep
voltammetry (LSV) and cyclic voltammetry (CV) at 60 ◦C with the SS/SPE/Li cell. LSV
curves were recorded from 0 to 6 V with a scan rate of 10 mV·s−1, and CV curves were
measured from −1 to 1.5 V with a scan rate of 0.5 mV·s−1.

The interfacial resistance between the lithium electrode and SPE was evaluated by
EIS, and the Li-ion transference number of the SPEs was measured by combining EIS
and DC polarization at 60 ◦C with the Li/SPE/Li asymmetric cell, calculated by the
Bruce–Vincent equation:

tLi+ =
Is(∆V − I0R0)

I0(∆V − IsRs)
(2)

where I0 and IS are the initial and stable state polarization current, R0 and RS are the initial
and stable state interfacial resistance, respectively, ∆V is the applied polarization voltage.
EIS was recorded over the frequency range of 100 kHz to 1 Hz under an AC amplitude of
10 mV. DC polarization was carried for 3000 s under an applied voltage of 10mV.

Furthermore, the cycling performance of the LiFePO4/SPE/Li full cell was evaluated
by the galvanostatic charge–discharge tests from 2.5 V to 3.8 V at 60 ◦C on the battery cycler
system (LAND CT2001A, LAND, Wuhan, China).

3. Results and Discussion

The designed poly(ionic liquid)s were synthesized through traditional free radical
polymerization using AIBN as the initiator in the presence of MMA and pre-synthesized
VBIm-Br, as schematically shown in Figure 1. FTIR spectra of P(MMA-co-VBIm-Br) and
P(MMA-co-VBIm-TFSI) are shown in Figure 2a to qualitatively investigate the formation
of poly(ionic liquid)s. The characteristic absorption bands at 1729 cm−1 and 1150 cm−1

originate from the stretching vibration of C=O and C-O-C bonds of MMA. The absorption
band at 1569 cm−1 corresponds to the skeletal vibration of the imidazole ring. Moreover, the
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weak absorption band at 1633 cm−1 attributed to the stretching vibration of C=C suggests
that most of the monomers has been polymerized. This indicates the successful synthesis
of P(MMA-co-VBIm-Br). The synthesized copolymer is a random type according to the
literature due to the similar reactivity ratio of the two applied monomers [36]. In addition,
three new peaks appear in the spectra of P(MMA-co-VBIm-TFSI) after replacing bromide
anions with TFSI− through ion exchange process. The absorption bands at 1352 cm−1

and 1193 cm−1 originate from the asymmetric and symmetric stretching vibration of
S=O bond of TFSI−, respectively. The absorption band at 1058 cm−1 corresponds to the
stretching vibration of C-F bond of TFSI−, demonstrating that the anion exchange reaction
has been accomplished.
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The strain–stress curves of the thus-cast SPE membranes with different compositions
are displayed in Figure 2b. It is apparent that the addition of P(MMA-co-VBIm-TFSI) has
a negative effect on the mechanical properties, resulting in the decline in both the tensile
strength and breaking elongation rate. The introduction of ILs into PMMA chains improves
the flexibility and weakens the mechanical strength. As can be seen, a membrane with a
weight ratio of P(MMA-co-VBIm-TFSI) to PVDF-HFP that exceeds 3:7 becomes too fragile to
be practically applied in batteries. Thus, membrane consisting of 20 wt.% poly(ionic liquid)
moieties were applied in the following electrochemical measurements to ensure high ionic
conductivity and reasonable mechanical strength. The XRD patterns of SPE membranes are
shown in Figure 2c. With the increase in the content of P(MMA-co-VBIm-TFSI), a decrease
in the intensity of the diffraction peak at around 2θ of 20◦ is observed. In addition, the
intensity of two diffraction peaks at 2θ of around 37◦ and 39◦ decreased with the addition
of P(MMA-co-VBIm-TFSI), which nearly disappear in the pattern of the PIL-30% sample. It
can be thus concluded that the addition of P(MMA-co-VBIm-TFSI) to PVDF-HFP reduces
the crystallinity of the SPE by augmenting the amorphous region, promoting the ionic
conductivity of the SPE.

SEM images of the fabricated SPE membranes are showed in Figure 3. It can be
observed that the blended membranes present a coarse and porous surface structure, and
the surface of the PVDF-HFP/LiTFSI membrane is relatively smooth. SEM images with
higher magnification are shown in the insets in Figure 3. Apparently, the crevices on the
membrane become larger with the addition of P(MMA-co-VBIm-TFSI). This phenomenon
suggests that the addition of P(MMA-co-VBIm-TFSI) to PVDF-HFP leads to a decrease in
surface density, thus weakening the mechanical strength of the SPE membranes.
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Figure 3. SEM images of SPE membranes with different compositions: (a) PVDF-HFP; (b) PIL-10%;
(c) PIL-20%; (d) PIL-30%.

TG and DSC curves of the fabricated SPE membranes are presented in Figure 4. As
observed in Figure 4a, a slight weight loss occurs from room temperature to about 150 ◦C
due to the moisture evaporation. A massive weight loss starts at around 300 ◦C, resulting
from the decomposition of the lithium salt and polymer backbone. With the addition of
P(MMA-co-VBIm-TFSI), the decomposition temperature of the SPE slightly increases owing
to the highly stable TFSI− anion, suggesting that the thermal stability can be improved by
blending the IL copolymer with conventional polymer electrolyte. From the DSC curves in
Figure 4b, it can be seen that the melting temperature (Tm) and glass transition temperature
(Tg) of the SPE decrease with the addition of P(MMA-co-VBIm-TFSI). The decrease in Tm
further demonstrates the reduced crystallinity, and the decrease in Tg suggests the increase
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in chain flexibility, both of which facilitate the mobility of the SPE chain segments, thus
improving the ionic conductivity of the SPE.
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Figure 5a shows the temperature-dependent ionic conductivity of SPE membranes. It
can be observed that the ionic conductivity increases initially with the addition of P(MMA-
co-VBIm-TFSI), reaching a peak value at the PIL content of 20%. With a further increase in
the content of P(MMA-co-VBIm-TFSI), the ionic conductivity of the membrane starts to
decrease. This phenomenon can be understood in that the addition of PIL fraction reduces
the crystallinity and improves the flexibility of the SPE, thus accelerating the segmental
motion of the polymer chains which in turn enhances the lithium-ion migration. Mem-
branes containing either PIL or PVDF-HFP were prepared and the temperature-dependent
ionic conductivity is displayed in Figure 5b. Since lithium salts can act as plasticizer in SPE
membranes, the content of lithium salt is reduced from 30% to 15% to make the formation
of PIL membrane with certain mechanical strength successful. Because the bulk ionic
conductivity of P(MMA-co-VBIm-TFSI)/LiTFSI is less than PVDF-HFP/LiTFSI, the total
ionic conductivity of the SPE decreases if excess PIL is added. Thus, the optimized weight
ratio of PIL to PVDF-HFP is 1:4 with which the SPE exhibits a maximum ionic conductivity
of 1.11 × 10−4 S·cm−1 and 4.26 × 10−4 S·cm−1 at 30 ◦C and 80 ◦C, respectively. It is found
that temperature dependence of ionic conductivity of pure PVDF-HFP or PIL SPE is almost
linear, thus suggests that its ion transport mechanism is Arrhenius type, implying that
the ion transport occurs via a simple hopping mechanism decoupled from the segmen-
tal motion of polymer chains. However, temperature-dependent ionic conductivity of
the blended modified SPE is non-linear, suggesting that its ionic transport mechanism is
Vogel–Tamman–Fulcher (VTF) type, which implies that its ion transport involves polymer
segmental relaxation [38]. These phenomena further indicate that improving the chain flex-
ibility and accelerating the segmental motion are essential for enhancing ionic conductivity
of the blended modified SPE.

The LSV curves of the membranes are displayed in Figure 6a to investigate the elec-
trochemical windows of the fabricated SPEs. It is found that the electrochemical stability
window of the PVDF-HFP membrane is approximately 4.7 V (vs. Li/Li+), whereas it
slightly decreases with the addition of P(MMA-co-VBIm-TFSI). For example, an obvious
drop from 4.7 to 4.6 V (vs. Li/Li+) is observed when the weight ratio of PIL to PVDF-HFP
is up to 3:7. Similar phenomenon has been reported in previous research, which could
be a result of the relatively low decomposition potential of PMMA (4.7 V vs. Li/Li+) in
comparison to PVDF (5.0 V vs. Li/Li+) [39]. The PIL-20% sample exhibits the maximum
ionic conductivity and an electrochemical stability window suitable for practical applica-
tions (about 4.7 V vs. Li/Li+) and the CV curve of such SPE is shown in Figure 6b. Only a
lithium dissolution peak at 0.23 V (vs. Li/Li+) and lithium deposition peak at −0.27 V (vs.
Li/Li+) were observed, further demonstrating its promising electrochemical stability.
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and PVDF-HFP sample after various storage times. (d) The interfacial resistance derived from AC
impedance spectra.

The AC impedance spectra of the Li/SPE/Li symmetric cells assembled with the PIL-
20% sample and PVDF-HFP sample after various storage times is displayed in Figure 6c.
For comparison, the result of the PVDF-HFP sample is presented as the inset in the same
figure and the derived values are displayed in Figure 6d. The initial interfacial resistances
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of the two samples are 75 and 76 Ω, very close to each other. Within a week the interfacial
resistance of the PVDF-HFP sample increased from 75 to 109 Ω, whereas it increased from
76 to 96 Ω for the PIL-20% sample due to the formation of solid electrolyte interphase (SEI)
between the SPE and Li metal. The lower resistance of the PIL-20% sample after a week of
storage compared to the PVDF-HFP sample could be the result of the enhanced interfacial
stability of PMMA, and the interaction between the IL and Li metal surface. It has been
reported that IL with TFSI− anion favors uniform lithium deposition on the surface of Li
anode, forming a SEI layer with low resistance [40]. Therefore, the interfacial resistance
between the SPE and Li metal can be reduced by the addition of P(MMA-co-VBIm-TFSI).

Current–time curves and AC impedance spectra of the Li/SPE/Li symmetric cells
assembled with the PVDF-HFP sample and PIL-20% sample are displayed in Figure 7.
Calculated by Bruce–Vincent equation, the Li-ion transference number of the PIL-20%
sample is 0.36, much larger than that of the PVDF-HFP sample (0.21). This indicates that
the migration of Li ions can be facilitated by the blending of P(MMA-co-VBIm-TFSI) with
PVDF-HFP, due to the decreased crystallinity and improved segmental flexibility. At a
high current rate, Li-ion transference number of electrolytes is a decisive factor in the cell
performance. Therefore, the blending modification can increase the discharging capacity
and reduce the capacity loss of the cell testing at high current rates.
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Since the PIL-20% sample exhibits the best electrochemical properties and acceptable
mechanical strength, it was thus applied as solid electrolyte for the assembly of an all-
solid-state LiFePO4/SPE/Li battery. The electrochemical performance of the battery was
tested from 2.5 to 3.8 V at 60 ◦C. For comparison, the cells assembled from the PVDF-HFP
sample were also tested under the same condition. The initial charge–discharge capacity
of the cells at 0.1 C is shown in Figure 8a. It can be observed that the cell assembled with
the PIL-20% sample exhibits a discharge capacity of 146.0 mAh·g−1 with the coulombic
efficiency of 99.9%, remarkably higher than those of the cell assembled from the PVDF-
HFP (133.5 mAh·g−1 with the coulombic efficiency of 97.6%). The cycling performance of
the cells at 0.1 C is displayed in Figure 8b. After 50 charge–discharge cycles, the capacity
retention of the cell assembled from the PIL-20% sample is 95.2% with an average coulombic
efficiency of about 98.0% whereas the cell assembled from the PVDF-HFP sample has a
capacity retention of 97.5% with an average coulombic efficiency of about 98%. The high
discharge capacity of the cell assembled with the PIL-20% sample is attributed to the
high ionic conductivity and low interfacial resistance of the blended SPE membrane. The
constant coulombic efficiency indicates that the stable SEI is formed between the SPE
and electrodes.
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Figure 8. The initial charge–discharge capacity (a) and the cycling performance (b) of the cells
assembled with the PVDF-HFP sample and PIL-20% sample at 0.1 C under 60 ◦C.

The charge–discharge capacity and cycling performance at various current rates were
further investigated, as presented in Figure 9. It can be observed that the discharge
capacity of the cell assembled from the PVDF-HFP sample evidently decreases from 133.8
to 46.8 mAh·g−1 with the increase of the current rate from 0.1 to 1 C, implying a capacity
loss of 65% at 1 C. After a further decrease in the current rate to 0.1 C, the discharge
capacity of the assembled cell is about 122.8 mAh·g−1 with a capacity recovery of 91.8%.
By comparison, the cell assembled from the PIL-20% sample shows a slight decrease in
discharge capacity from 148.4 to 127.5 mAh·g−1 with the increase in the current rate from
0.1 to 1 C, and only 14.1% of the capacity loss at 1 C. Moreover, the capacity recovery is 95.4%
(141.5 mAh·g−1) after the current rate is switched back to 0.1 C. The superior performance
at a high current rate of the cell assembled with the PIL-20% sample is attributed to the
excellent electrochemical properties, particularly the enhanced Li-ion transference number.
This is because enhancing the Li-ion transference number reduces the anion accumulation
on the anode interface, resulting in a decrease in the internal polarization resistance of the
cell. These results clearly indicate that the blended modified SPE exerts a positive influence
on the cell performance.
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4. Conclusions

In summary, a novel SPE membrane was prepared by blending copolymer P(MMA-co-
VBIm-TFSI) with PVDF-HFP. The addition of P(MMA-co-VBIm-TFSI) promotes the ionic
conductivity and Li-ion transference number, reducing the interfacial resistance between
the SPE and Li metal. However, the addition of poly(ionic liquid) fractions had a negative
effect on the mechanical properties of the formed membranes, resulting in a decreased
mechanical strength and a slightly decreased electrochemical stability window. Under
an optimized composition, the resulting SPE exhibits the maximum ionic conductivity
(1.11 × 10−4 S·cm−1 at 30 ◦C and 4.26 × 10−4 S·cm−1 at 80 ◦C), an electrochemical stability
window suitable for application in lithium-ion cells (about 4.7 V vs. Li/Li+), acceptable
mechanical properties and a promising Li-ion transference number (0.36). The accordingly
assembled all-solid-state LiFePO4/SPE/Li cell shows a remarkable cycling performance
under various current rates. After 50 cycles at 0.1 C under 60 ◦C, the capacity retention
is 95.2% with an average coulombic efficiency of about 98%. A relatively high discharge
capacity is obtained at 1 C (127.5 mAh·g−1) and the capacity recovery is 95.4% after the
rate is switched back to 0.1 C.
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