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Abstract

Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD)
is not completely defined. A major limit is availability of fresh brain tissue with defined AD pa-
thology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that in-
clude synaptic vesicles and large dense core vesicles offer an accessible sample to study
these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our
objective was to characterize sphingolipids in nanoparticles representative of membrane ves-
icle metabolism, and in supernatant fluid representative of interstitial metabolism from study
participants with varying levels of cognitive dysfunction. We recently described the recruit-
ment, diagnosis, and CSF collection from cognitively normal or impaired study participants.
Using liquid chromatography tandem mass spectrometry, we report that cognitively normal
participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide spe-
cies, but that their distribution differed between nanoparticles and supernatant fluid, and fur-
ther differed in those with cognitive impairment. In CSF from AD compared with cognitively
normal participants: a) total sphingomyelin levels were lower in nanoparticles and superna-
tant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant
fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover,
three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive im-
pairment compared with cognitively normal participants. The activity of acid, but not neutral
sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction
in acid sphingomylinase in CSF from AD participants was independent of depression and
psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid
B42 concentration in CSF from cognitively normal but not impaired participants. In dementia,
altered sphingolipid metabolism, decreased acid sphingomyelinase activity and its lost asso-
ciation with CSF amyloid 4> concentration, underscores the potential of sphingolipids as dis-
ease biomarkers, and acid sphingomyelinase as a target for AD diagnosis and/or treatment.
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Introduction

Late onset Alzheimer’s disease (AD) is a neurodegenerative brain disorder that affects over 5
million Americans and is projected to increase in prevalence with an aging population [1].
Without an understanding of the causes and means of preventing AD, the economic and social
ramifications will seriously strain healthcare systems [2]. AD is characterized in the early phase
by beta-amyloid deposition and subsequently by neurofibrillary tangles [3]. These protein ab-
normalities are associated with synaptic dysfunction and brain atrophy. Neuroinflammatory
processes can initiate abnormal processing of amyloid proteins and alter AD metabolic path-
ways [4]. As lipids constitute a major portion of the dry mass of the brain, changes in their com-
position can alter neuronal function [5,6]. Moreover, certain signaling lipids are inflammatory
[7,8], others resolve brain inflammation [4,8], and some induce apoptosis of neurons [9,10].

Sphingolipids (SP) are a lipid class that includes sphingomyelin (SM), ceramides (Cer), dihy-
droceramides (dhCer), and their glycosylated, sulfated or phosphorylated derivatives [11]. SPs
are the focus of this study because their roles are central to many physiological processes that
are altered in AD. SM is found in myelin sheaths of neurons and lipid rafts of cell membranes.
Degradation of SM may cause disturbances in action potentials and synaptic dysfunction associ-
ated with neurological disorders [12,13]. The major enzymes that regulate SM levels are sphin-
gomyelin synthase and sphingomyelinases (SMase). SMases degrade SM to form Cer and
choline. Acid (aSMase), neutral (nSMase), and alkaline forms of the enzyme exist [14,15].
nSMase is membrane-bound while aSMase is secreted or localizes to lysosomal compartments
[16]. An increase in SMase expression or activity may cause excessive breakdown of SM. On the
other hand, low levels of SMase such as in Niemann-Pick Disease may result in the buildup of
SM in major organs including the brain, resulting in irreversible neurological damage [16,17].

Catabolism of SM forms Cer, an important lipid second messenger associated with apopto-
sis [17-19]. Cer also promotes beta-amyloid biogenesis and studies link it to oxidative stress
[20,21]. Since Cers regulate neurotransmitter release and synaptic vesicle fusion [22,23], their
altered levels may lead to synaptic dysfunction.

Secretase enzymes involved in amyloid precursor protein processing are localized in SP-rich
lipid rafts and amyloid transport is associated with SM levels [24,25]. Moreover, the autopha-
gocytic clearance of amyloid peptides involves both nSMase and aSMase activities [26], and
perturbation of SP metabolism is related to learning and memory [27,28].

It is clear from these roles that SP metabolism will be altered in AD, although many details
have not been characterized. SPs have been characterized in several CSF studies and have been
shown to change in prodromal AD [29-32]. However, it is not known whether SPs in CSF are
derived from neuronal vesicles or other brain components. The discovery of abundant nano-
particles in CSF that include synaptic vesicles and large dense core vesicles [33] allowed us to
test this hypothesis by determining the SP composition of brain-derived nanoparticles (NP)
compared to the interstitial fluid-derived supernatant fluid (SF) fraction. We show that SPs are
differentially distributed in cell membranes and in supernatant fluids, and change with aSMase
activity and beta amyloid in study participants that are cognitively normal (CN) compared
with mild cognitive impairment (MCI) or AD.

Materials and Methods
Materials

HPLC solvents were purchased from VWR (West Chester, PA). Tris base and Tris acid, ammo-
nium acetate and butylated hydroxyl toluene (BHT) were purchased from Sigma (St Louis,
MO). Internal standard (IS) [1,2-diundecanoyl-sn-glycero-3-phosphocholine, PC(11:0/11:0],
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1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1), and SP standards (bovine
SM, Cer, dhCer, GlcCer) were purchased from Avanti Polar Lipids (Alabaster, AL).

Clinical methods and cerebrospinal fluid collection

All protocols were approved by the Institutional Review Board of the Huntington Hospital
(Pasadena, CA) and conformed to the Helsinki Declaration. Informed consents were signed by
each study participant or by their legal representative. CN participants (n = 70) with mean age
(SD) of 77 (7) years, ranging in age from 63-89 years (61.5% females), were asymptomatic with
a Clinical Dementia Rating [34] score of zero, and their classification methods were reported
recently [35]. Briefly, the participants were characterized after a full medical intake, including
medication history, the Geriatric Depression Scale (GDS, 15 items), and neurological examina-
tion; they were classified as CN if they had neuropsychological measures within one standard
deviation of the mean for their age and education according to published normative values,
and did not meet the criteria for MCI [36] or dementia [37]. MCI (n = 40) with mean age (SD)
of 77 (7), age range 60-91 years (60% females), and clinically probable AD (n = 29) with mean
age (SD) of 77 (10), age range 47-91 years (55.2% female) were diagnosed in study participants
by current clinical criteria [37,38]. CSF samples were collected between 8.00-10.00 am after an
overnight fast and within a month of neuropsychological assessment. Total protein, cell counts,
and glucose were determined immediately, and the remainder of the CSF was stored at -80° C
in 1 ml aliquots.

Determination of protein content

CSF fractions were diluted using PBS and the concentrations of protein determined using a
fluorescence-based Quant-iT Protein Assay detection Kit (Invitrogen, Eugene, OR) using bo-
vine serum albumin (BSA, 0-500 ng) for standardization.

Amyloid 42 and total tau in CSF

AP, and total tau levels in CSF were measured using a sandwich ELISA kit (Innotest
B-amyloid ;_42) and Innotest hTAU-Ag, Innogenetics, Gent, Belgium) following the manufac-
turer’s recommended protocol. All assays were performed in the same week from CSF aliquots
that had never been re-frozen, were collected within a 2 year period and stored in a monitored
freezer that never warmed above -75°C. CSF samples were analyzed in duplicate, with 8 stan-
dards in duplicate, by an investigator blinded to diagnosis.

APOE genotype
Blood peripheral lymphocytes and standard methods for APOE genotyping were used [39].

Cerebrospinal fluid fractionation and sphingolipid extraction

CSF was fractionated into SF and NP fractions using ultracentrifugation. NP pellets were
washed once and re-suspended in phosphate buffered saline [33]. To reduce contaminants, bo-
rosilicate glass tubes were used for extraction of all lipid samples. Glass test tubes were washed
with 2 mL CHCl3/CH3;0H (1:1), heated at 100°C for 1 hr., rinsed with 2 mL CH3OH, followed
by heating at 100°C for 15 min before use. IS [5 ng PC(11:0/11:0)] was added to 1 ml SF or NP
suspended in 1 ml water containing 0.9% formic acid and 1 M NaCl before lipid extraction
using a modified Bligh and Dyer method [40]. Methanol used in the extraction contained 0.2
mg/ml BHT. All extraction procedures were performed at room temperature. The lipid-rich
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chloroform layer containing SPs (SM, Cer, and dhCer) was dried under a stream of N, and
used for liquid chromatography-mass spectrometry (LC-MS) studies.

Liquid chromatography of sphingolipids

LC was performed using an HP-1100 system equipped with an autosampler, a column oven
maintained at 35°C, and a binary pump system [41]. SPs were separated using a TSK-Gel
Amide-80 Column (2.0 x 150 mm) with a solvent system of acetonitrile/isopropanol/20 mM
ammonium formate (20:73.6:6.4, v/v/v, Solvent A), and isopropanol/20 mM ammonium for-
mate (20:80 v/v, Solvent B) at a flow rate of 0.25 ml/min. The solvent composition was main-
tained at 100% A for 5 minutes to elute Cer and dhCer. Subsequently, the percentage of solvent
B was increased to 20% over 20 min to elute SM.

Electrospray ionization tandem mass spectrometry of sphingolipids

SPs from the LC column were positively ionized using electrospray ionization and detected
using a triple quadrupole mass spectrometer (TSQ Quantum from Thermo Fisher Scientific).
The MS parameters were optimized for best detection of SP species eluting from the LC at dif-
ferent solvent mixtures at 0.25 mL/min. The MS was operated with a spray voltage of 4.5 kV,
heated capillary temperature of 300°C, with nitrogen (50 units) and argon (5 units) as the
sheath gas and the auxiliary gas, respectively. Cer species (RT 1.6 min) was obtained using neu-
tral loss scan of 264 with acquisition mass range of 460-1200. dhCer species (RT 1.8) was ac-
quired using neutral ion loss of 266 with a m/z range of 470-1200. PC(11:0/11:0) IS (RT ~14.9
min) was acquired using selected reaction monitoring (SRM) of m/z 595 (precursor ion) to 184
(product ion) [41]. SM (RT 20.5) was acquired using precursor scanning m/z 184 with m/z
range of 630-920. Baseline resolution of PC from SM gives us confidence that we are identify-
ing the right lipid species in our samples, S1 Fig SP scans were optimized with respect to colli-
sion energies and acquired data integrated using Xcalibur software (Thermo Fisher Scientific).
SP amounts were determined using standard curves obtained from running authentic stan-
dards (0-50 ng) containing PC(11:0/11:0) IS.

Mass spectrometry data analyses

SP peaks were integrated using the Qual Browser module of the Xcalibur software (Thermo
Fisher, San Jose, CA) and normalized to PC(11:0/11:0) used as an internal standard (IS). For
calibration curves, 0-50 ng SP standards (Cer (C18:0), GlcCer (C18:0), dhCer (C18:0) and bo-
vine SM) and a fixed amount of IS [5 ng PC(11:0/11:0)] were run separately and standard
curves of SP amounts versus SP/PC(11:0/11:0) obtained. From the ensuing standard curve, SP
levels in SF (ng/ml CSF) or NP (ng/ml CSF equivalent) were calculated.

Using the spectra function of the Qual Browser software, 15 representative SM molecular
species were quantified. SP species were chosen from the Lipid Maps Databases (http://www.
lipidmaps.org/tools/ms/sphingolipids_batch.html). Extracted ion intensities of identified peaks
were compared to the internal standard [PC(11:0/11:0)] and amounts estimated using standard
curves for SM. Our approach for isolating isobaric SM species [41], calculation of SP levels,
and rationale for not using LIPID MAPS sphingolipid internal standards [42] are described in
§1-S3 Methods, S2 and S3 Figs.

Sphingomyelinase activity assays

nSMase activity was measured with the Amplex Red SMase Assay Kit (Molecular Probes). CSF
samples were diluted to a concentration of 10 ug protein/100 uL. Samples were preincubated at
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37°C for 5 minutes, and then 100 pL assay cocktail solution containing 2U/mL horseradish per-
oxidase, 0.2 U/mL choline oxidase, 8 U/mL alkaline phosphatase and 0.5 mM SM was added to
each sample for a total volume of 200 pL. Fluorescence was measured at excitation 545 nm and
emission at 590 nm for 1 h at 37°C.

For aSMase assay, CSF protein (10 pg) was incubated with SM in acetate buffer (pH 5.0) for
1 h at 37°C. The pH of the solution was increased to 8.0 using 100 mM Tris/HCl buffer before
the addition of the assay cocktail solution to detect released choline phosphate as described
above for nSMase. For a combined two-step assay, aSMase assay was determined under acid
conditions and the change in fluorescence representing nSMase activity monitored for 1 hour
after increasing the pH to 8.0 as described above.

Statistical analyses

To avoid any bias in our study, CSF samples were randomly processed under identical extrac-
tion conditions, and the technician was blinded to diagnosis throughout data acquisition and
analyses. SP levels and amount of SM molecular species in SF and NP are presented as the
mean + SEM for all clinical groups. Wilcoxon test of paired ¢-test data was used to compare the
proportion of SM species in SF and NP fractions. Mann—Whitney U tests were used to com-
pare SP and SMase levels between different cognitive groups. For multiple comparisons, we
used ANOVA (Kruskel Wallis) with Dunn's multiple comparisons tests. Receiver operating
characteristic (ROC curves) were obtained by comparing CN controls to either MCI or AD
samples. Confounding variables were evaluated using non-parametric ANCOVA. All analyses
were performed using Graph Pad Prism software (La Jolla, CA) or SAS (Cary, NC), and signifi-
cance was set at P value < 0.05.

Results
Demographic data and CSF biomarkers

We recruited 70 CN study participants, 40 MCI subjects, and 29 subjects with probable AD.
The AD group differed from the MCI and CN groups by education and APOE genotype, well
—recognized for AD cohorts [43]. GDS scores were higher in the AD participants compared
with the CN group; the use of anti-depressants was not different between the clinical groups;
the use of total psychotropic medications (mainly from anti-cholinesterase therapies) was
greater in the AD compared to both MCI and CN groups (Table 1) The other demographic
and CSF parameters are well matched between the groups. CSF Ay, levels were higher

(p < 0.05) in the CN (722 + 299) and MCI (754 + 268) groups than in AD (506 + 230). CSF
total tau levels were lower (p < 0.05) in the CN (273 + 149) and MCI (265 + 168) groups than
in AD (473 £ 222).

Table 1. GDS scores and usage of anti-depressants and psychotropic drugs by clinical group.

Clinical group GDS (0-15 scale) Mean (SD) Anti-depressant use Psychotropic use
CN,n=70 1.2 (1.9) 16% 19%

MCI, n =37 1.5 (1.9) 24% 16%

AD, n =33 2.4 (1.8)* 36% 67%**

*GDS score of the AD group is higher than the CN group, ANOVA p < 0.05.
**The use of psychotropic drugs is greater in the AD cohort than both CN and MCI groups, ANOVA p < 0.0001.

doi:10.1371/journal.pone.0125597.1001
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Table 2. MS scan parameters, recovery, limit of detection, and linearity of SP standards.

SPs MS Scan precursors,(m/z) LOD (ng) R?, mean * SEM, (95% CI), n % Recovery (95% Cl), n
Cer (C18:0) 264 0.47 0.97 + 0.03(0.89-1.04), 5 65.5 + 2.8(58.6-72.3), 6
GlcCer (C18:0) 264 0.70 0.97 + 0.02(0.89-1.02), 3 88.7 £ 4.1(71.2-106.2), 3
dhCer (C18:0) 266 25 0.96 + 0.02(0.89-1.02), 5 71.0 £ 2.0(65.8-76.2), 6
SM (Bovine brain) 184 0.16 0.95 + 0.02(0.93-0.97), 4 88.7 + 6.9(70.9-106.4), 6
PC(C11:0/C11:0) SRM 184 N/A N/A N/A

Abbreviations: LOD, limit of detection; Cl, confidence interval

doi:10.1371/journal.pone.0125597.1002

Sphingolipid content of CSF fractions

To determine if there were differences in the origin or metabolism of SP between the SF and
NP fractions, we first examined the SP composition of these fractions from the CN group. Ini-
tial identification of SP classes and species in CSF fractions from the CN study participants al-
lowed subsequent targeted analyses and comparison with MCI and AD samples. PC(11:0/11:0)
served as a useful internal standard since it was resolved from SP classes and gave a linear rela-
tionship with each class (Table 2), S2 Fig Scan and retention time-specific analyses revealed
three major SP classes in SF from the CN group: SM, Cer and dhCer (Fig 1A). On the LC col-
umn, all three SP classes were partially resolved into two peaks; SM1 and SM2 for SM; Cer1
and Cer2 for Cer; and dhCerl and dhCer2 for dhCer. The high peak intensity of the SM peak
allowed us to examine its spectral composition. SM1 appears to be predominantly made of
higher m/z molecular species compared to SM2 (Fig 1A). The same LC-MS/MS analysis of NP
from CN participants shows a similar profile of SPs (Fig 1B). However, the ratio of SM1 to
SM2 in the NP fraction (1.41 + 0.32) was higher (P < 0.005) than that in SF (0.49 + 0.19) sug-
gesting that the NP fraction had a higher proportion of higher m/z species than the SF fraction.
Cer and dhCer also partially resolved into two peaks in the CSF fractions but their intensity
was not high enough for quantitative analyses for most CSF fractions. Examination of the most
intense samples showed that Cer peaks (Cerl and Cer2) had a similar distribution to the SM
peaks (Cer2 > Cerl in SF and Cerl > Cer2 in NP), while the distribution for dhCer was re-
versed, with a higher dhCer2/dhCerl in the NP than in the SF fraction (Fig 1A and 1B).

Using standard curves, we quantified SP classes in SF and NP (Fig 1C and 1D). The SF and
NP fractions had similar sphingolipids but with different proportions (Fig 1C and 1D, respec-
tively). When normalized to the protein content of each fraction (Fig 1E and 1F), total SP levels
were over 20-fold higher in the NP fraction (118.4 £ 9.9, n = 69) than the SF (5.6 + 0.3, n = 69).
The different proportions of SPs in CSF fractions were evident when comparing the SM to Cer
ratio in SF (46.8 £ 2.7, n = 69) with SM/Cer in NP (18.4 £ 1.3, n = 69) or the percentage of total
for each SP class (Fig 1F). While SM levels were higher in SF than in NP (P < 0.05), propor-
tions of Cer and dhCer were significantly enriched in the NP compared to the SF fraction (Fig
1G) (P < 0.05).

Sphingomyelin molecular species in CSF fractions. Since SM is highly expressed in SF
and NP, we were able to extract and quantify the most intense molecular species in CSF frac-
tions. Spectral analyses of SM showed several distinct species in SF (Fig 2A) and NP (Fig 2B).
Detailed analyses revealed at least 45 SM species that were spectrally resolved in our LC-MS/
MS runs, S1 Table. Using extracted ion chromatography, we were able to reliably quantify a
representative set of SM species in SF and NP fractions, S4 Fig As expected, ion intensities of
each species were higher in SF than NP when normalized to CSF volume, $4 Fig Input of ex-
tracted masses into the Lipid Maps MS prediction tool for sphingolipids resulted in the
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Fig 1. Identification and quantification of sphingolipids. SPs extracted from CSF fractions were detected using LC-MS/MS. Fig 1 shows the scan specific
chromatograph for Cer, dhCer, SM, and the spectra of early- (SM1) and late- (SM2) eluting SM peaks for SF (A) and NP (B), respectively. Fig 1C and 1D are
SP levels in SF and NP normalized to the volume of CSF while Fig 1E and 1F are levels of SP in SF and NP normalized to the amount of protein in each
fraction. Fig 1G shows the percent distribution of SPs in SF and NP. The asterisk (*) denotes SP distribution in SF > NP (P < 0.05) and # denotes SP
distribution in NP > SF (P < 0.05). These data are the mean + SEM for n = 70 (SF) and n = 67 (NP), respectively.

doi:10.1371/journal.pone.0125597.g001

identification of SP species in SF and NP fractions, S2 and S3 Tables. We next calculated levels
of 15 different SM species in CSF fractions that were not burdened by isobaric interference as
described in the Methods. Fig 2C and 2D show the levels of these species in SF and NP, respec-
tively. Next we compared levels of SM species in CSF fractions by expressing the quantities of
each species as a percentage of the total in each fraction (Fig 2E). Wilcoxon tests of paired t test
data revealed that some SM species [SM(d18:1/16:0), SM(d18:1/18:1), SM(d18:1/18:0) and SM
(d18:1/24:2)] were higher in SF than NP; others [SM(d18:1/16:1), SM(d18:1/17:0), SM(d18:1/
19:0), SM(d18:1/20:1), SM(d18:1/20:0), SM(d18:1/22:1), SM(d18:1/22:0), SM(d18:1/23:0) were
higher in NP than SF, while others [SM(d18:1/23:1), SM(d18:1/24:1), SM(d18:1/25:1)] had
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Fig 2. Spectra and levels of sphingomyelin species. SM species from LC-MS/MS were processed using the spectral feature of the Qual Browser
software. Fig 2 shows representative spectra of SM species identified in SF (2A) and NP (2B). Amounts of 15 SM molecular species were determined in SF
(2C) and NP (2D) and expressed as a percent of total in each CSF fraction (2E). The P values were obtained using a paired t-test. The asterisk (*) on Fig 2E
denotes SM species whose proportions are higher in SF than NP (P < 0.05) and # denotes SM molecular species whose proportions are higher in NP than
SF (P < 0.05). The unmarked species have similar proportions in both fractions (P > 0.05). These data are the mean + SEM for SF (n = 70), and NP (n = 67).

doi:10.1371/journal.pone.0125597.9002
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similar proportions in each fraction. The lower m/z species were more likely to be higher in SF
than NP while the higher m/z species were higher in NP than SFE. To confirm our extracted ion
chromatography (EIC) data that SF and NP were enriched with SM species, we used multiple
reaction monitoring (MRM) to identify the major SM species in these fractions. Targeted
MRM studies showed a similar distribution of SM species as the EIC data (data not shown).
Together, these data showed the abundance and variety of SM species in CSF from older cogni-
tively normal adults, and their different levels between the SF and NP fractions.

Ceramide species in CSF fractions. SPs have modified variants including hydroxylated,
glucosylated, and sulfated species (http://lipidlibrary.aocs.org/Lipids/sphingo.html). The Cer
peaks Cerl and Cer2 are composed of several molecular species, S5 Fig We identified glyco-
sphingolipid (GlcSP) species in the SF fraction, S5 Fig and S4 Table, and in the NP fraction, S5
Fig and S5 Table, that varied considerably between different CSF samples,

Dihydroceramide species in CSF fractions. Similar to Cer, several dhCer variants are
known [44]. dhCer molecular species were different in SF and NP fractions, S5 Fig, S6 and S7
Tables.

Changes in sphingolipids based on neurocognitive classification

We next quantified the abundance of SP classes in SF from CN, MCI and AD. Although mean
SM levels in all three clinical groups were similar, we noticed a slight decrease in MCI and AD
(Fig 3A). Levels of Cer and dhCer were not different when comparing CN to MCI (Fig 3B and
3C). In contrast, there was an increase in Cer and dhCer in AD (Fig 3B and 3C). The slight de-
crease in SM (-7.3% for AD) concomitant with the increase in Cer (21.8% for AD) in CSF was
more evident when we compared the ratio SM/Cer in CN to that of AD (Fig 3D). A similar
study examining SP changes in NP fractions revealed a decrease in the mean levels of SM
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Fig 3. Sphingolipid levels are altered in Alzheimer’s disease. Levels of SPs in SF or NP were determined using LC-MS/MS. Fig 3A, 3B, 3C, and 3D are
the levels (mean + SEM) of SM, Cer, dhCer, and the ratio SM/Cer in SF for CN, MCl or AD subjects. Fig. 3E, 3F, 3G, and 3H are the levels (mean + SEM) of
SM, Cer, dhCer, and the ratio SM/Cer in NP for CN, MCI or AD subjects. Group comparisons were performed using Kruskal Wallis test and non-parametric
comparisons using Mann Whitney test and differences between cognitive groups indicated when P < 0.05.

doi:10.1371/journal.pone.0125597.9003

PLOS ONE | DOI:10.1371/journal.pone.0125597 May 4, 2015 9/22


http://lipidlibrary.aocs.org/Lipids/sphingo.html

el e
@ ) PLOS ‘ ONE Sphingolipids Correlate with Amyloid in AD

A) B)
400 1 151
= Hl CN = N CN
£ = vma & 3 mcl
300 1 = 2 T =
£ A0 ] AD
T a
V2] =z
£2001 £ "
wv wv
g g |
[ (O]
2100 1 o
= =
0 wn #x . #

N SRS SRS A NS DN A

NSO OO N N AT

IDENPEN

B O VT RD WD WA AT A ASADT DT AR AR A 6" "NOT N7 RS WD WA AT ADADT AT AR AR
IVELMENWANENSINSAY ~.\\”%\\”’;\\”?.\\®%.\\” AN APE\NENWADENSINNAY ..\\”%\\’%\\”?.\\” NN
A7 AT AT AT AT AT ANY N : AT AT AT ANY N A7 AN AT AT AT ANTANY N 3 AT AT AT AT N
SOAGGASLERGEEEE HOAGGEEOGERHGESY
NN Tt N T g ™ NN T S T g

Fig 4. Some sphingomyelin species decrease in Alzheimer’s disease. After LC-MS/MS of SF and NP, SM species were extracted and their intensities
normalized to PC(11:0/11:0) as an internal standard. Amounts of each molecular species were determined in SF (4A), in NP (4B) in CSF fractions from CN
(n=69), MCI (n = 38) and AD (n = 28). The P values were obtained using Kruskal Wallis test with Dunn’s multiple comparison and Mann-Whitney U test. Data
are the mean + SEM and * denotes values of P < 0.05 for CN compared with AD and # denote P < 0.05 for CN compared with MCI.

doi:10.1371/journal.pone.0125597.g004

(Fig 3E), Cer (Fig 3F, P < 0.05) and dhCer (Fig 3G) in AD compared with CN such that the
ratio SM/Cer did not change (Fig 3H).

We determined the levels of SM molecular species in the three clinical groups in the SF (Fig
4A) and NP (Fig 4B) fractions. In the NP fraction, three molecular species [SM(d18:1/16:1),
SM(d18:1/16:0), SM(d18:1/17:0)] were significantly depleted in AD compared with CN (Fig
4B). Three SM species [SM(d18:1/16:1), SM(d18:1/22:0), SM(d18:1/23:1)] were lower in the
NP fraction of MCI compared with CN while no differences in the levels of SM species were
detected when comparing MCI with AD (Fig 4B). Together, these data showed an increase in
Cer in the supernatant fluid fraction and a decrease in Cer and three SM species in the particu-
late fraction in AD compared with CN study participants.

Sphingomyelinase activity in cerebrospinal fluid

Since SMase activity can account for the decrease of SM in CSF fractions concomitant with the
increase of Cer in SF, we measured the activity of the major SMase isoforms, aSMase and
nSMase, in CSF. Both aSMase and nSMase activities were detected in CSF from CN study par-
ticipants (Fig 5). Compared with CN (26.6 + 1.2 RUF/min, n = 69, range = 45.48), mean
aSMase activity decreased in CSF from MCI (-6.1%, range = 37.46) and in AD (-44.4%,

range = 26.75, P < 0.05) (Fig 5A). Mean nSMase activity also decreased in MCI (-10.5%) and
AD (-10.1%) compared with CN (Fig 5B). Spearman correlation studies indicate that aSMase
and nSMase activities do not correlate with SP levels in all cognitive groups (data not shown).
Together, these data suggest that SMase activity in CSF is not related to the depletion of SM
and the increase of Cer in the SF fractions in AD, but is consistent with a role in the decreased
Cer in the NP fraction.

We compared SMase activities with levels of AB,, or total tau since these enzymes are
known to induce Ay, release or are activated in cell culture studies [45]. aSMase activity posi-
tively correlated with AB,, levels in CSF from CN (Spearman r = 0.32, p <0.01, n = 69) but not
for MCI (Spearman r = 0.0007, p > 0.99, n = 37) or AD (Spearman r = 0.18, p > 0.18, n = 24)
participants (Fig 6A, 6B and 6C, respectively). In contrast, nSMase activity did not correlate
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Fig 5. Sphingomyelinase activity decreases in Alzheimer’s disease. aSMase (5A) and nSMase (5B) activities were measured in CSF using fluorescent
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(n=40), and AD (n = 29). The asterisk (*) denotes values of P < 0.05 compared with CN.
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doi:10.1371/journal.pone.0125597.9006
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with APy, in any of the groups (data not shown). Similarly, total tau levels in CSF did not corre-
late with aSMase or nSMase activity (data not shown). These data suggest that SP metabolism
known to be important in autophagocytosis [26], may be linked to the higher levels of AB,,
found in the CSF from cognitively normal subjects while the lower levels of aSMase may par-
tially account for lower Ay, levels found in CSF from AD subjects.

Since depression and anxiety have been associated with aSMase activity [46,47], we com-
pared GDS scores with aSMase activity in our clinical groups. GDS scores are not correlated
with aSMase activity in AD: Spearmans r = 0.09. p = 0.7. aSMase levels for AD on antidepres-
sants (N = 11; mean (SD) = 35.2 (26.6); median = 33.3) do not differ from AD study partici-
pants not on antidepressants (N = 13; mean(SD) = 38.8 (13.7); median = 41.1): Kruskal Wallis
test P = 0.24. SMase levels for AD patients on psychotropics (N = 16; mean (SD) = 37.5 (23.6);
median = 37.7) do not differ from AD not on psychotropics (N = 8; mean (SD) = 36.6 (12.1);
median = 39.0): Kruskal Wallis test P = 0.71.

Using non-parametric ANCOVA’s to examine group differences in SMase activity levels: a)
Controlling for GDS, F(3,116) = 2.91, P = 0.06; aSMase activity in the AD group was signifi-
cantly lower than both MCI (P = 0.02) and CN (P = 0.04) groups; the MCI and CN groups do
not differ from one another (P = 0.6). b) Controlling for antidepressant medications, F(3,126)
=2.38, P = 0.10; aSMase activity in the AD group was significantly lower than the MCI group
(P =0.03) and borderline lower than the CN group (P = 0.07); the MCI and CN groups do not
differ from one another (P = 0.5). ¢) Controlling for psychotropic medications, F(3,126) = 2.77,
P =0.07; SMase activity in the AD group was significantly lower than the MCI (P = 0.03) and
CN (P = 0.04) groups; the MCI and CN groups do not differ from one another (P = 0.7).

Acid sphingomyelinase as a CSF biomarker of cognitive function

To determine if aSMase activity can discriminate CN from AD, we performed sensitivity and
specificity calculations using a cutoff of 20 RFU/min for low activity. This 20 REU/min cutoff
was chosen such that about 80% of the AD samples had lower SMase activity. For CN, 14 CSF
samples were below the cutoff and 55 were above. For MCI, aSMase activities in 10 CSF sam-
ples were below and 27 were above 20 RFU/min. Comparing AD and CN, sensitivity and speci-
ficity of 79.2% and 79.7% were obtained with positive predictive value of 57.6% and negative
predictive value of 91.6%. For AD and MCI, sensitivity and specificity of 79.2% and 73% were
obtained with positive predictive value of 65.5% and negative predictive value of 84.4%. Finally,
for MCI and CN, sensitivity and specificity of 27% and 79.7% were obtained with positive pre-
dictive value of 41.7% and negative predictive value of 67.1%. These data were supported by
ROC curves showing that aSMase activity did not differentiate CN from MCI (Fig 6D) but sig-
nificantly differentiated CN from AD (Fig 6E), and MCI from AD (Fig 6F).

Discussion

To examine SP metabolism in the brain, we used LC-MS/MS to quantify the major SP classes
in CSF fractions of supernatant fluid (SF) and nanometer-sized particles (NP). The major dis-
coveries from our study are: 1) SP composition differs between the SF and NP fractions when
normalized to CSF volume or the protein content of each fraction. Relative to protein content,
SPs were much more abundant in the NP fraction. We measured proportionally more SM in
the SF than the NP fraction. Conversely, the proportions of Cer and dhCer were higher in the
NP than the SF fraction. The distribution of SP species also differed between the two fractions.
2) Comparing levels of the major sphingolipids between clinical groups, the SM/Cer ratio in-
creased in the SF fraction in AD compared with CN, while the Cer fraction decreased in the
NP fraction when we compared AD to MCI. 3) Levels of three out of 15 low molecular SM

PLOS ONE | DOI:10.1371/journal.pone.0125597 May 4, 2015 12/22



@’PLOS ‘ ONE

Sphingolipids Correlate with Amyloid in AD

species decreased in the NP fraction of AD compared with CN participants. 4) aSMase but not
nSMase activity decreased in CSF from AD compared with CN and MCI. aSMase decrease in
AD was independent of depression or the use of psychotropic medications. 5) aSMase activity
correlated with Ay, levels in CSF only in CN participants. 6) aSMase levels differentiate CN
from AD, and MCI from AD. These results suggest an important potential role of SP compart-
mentalization in metabolism and neurodegeneration, a possible diagnostic role for aSMase,
and implications for candidate targets for AD therapy.

Compartmentalization of sphingolipid in cognitively healthy participants

Sphingolipids are synthesized in the endoplasmic reticulum with serine and palmitoyl CoA as
the main precursors. Our measurements of dhCer, Cer and SM levels in CSF fractions give di-
rect knowledge of the complexity and compartmentalization of SP metabolism. Hannun and
Obeid proposed a new paradigm in Cer metabolism in which compartmentalization is based
on the activities of over 28 different enzymes [48]. Microarray studies reveal variation in several
enzymes that metabolize SPs as a function of brain region [49,50]. Our data support such an
enzyme and substrate compartmentalization involving multiple pathways by showing differ-
ences in SP composition between different CSF fractions. Whereas SM constitutes most of the
SP in the SF fraction, the NP fraction has reduced SM and is significantly enriched with dhCer
and Cer. One interpretation of these data is that the NP fraction may be the site for the de novo
synthesis of SP. Of interest also is the fact that there are different SM species in SF and NP frac-
tions, supporting the notion that there are different metabolic pathways for different sphingoli-
pid pools in the brain

While we show differential distribution of Cer species in CSF fractions, the low abundance,
low sensitivity, or low resolving power of our MS does not allow us to identify and reliably
quantify these species. Since sulfatide species that are components of myelin sheaths and have
been shown to be depleted in AD [51], a comprehensive database including unsaturated, satu-
rated, hydroxylated, glucosylated, and sulfated variants is needed to enable the complete identi-
fication of these species in CSF.

Role of sphingolipid metabolism in AD

SP metabolism has been associated with AD in several studies [52-56]. SPs play important
roles in AD by interacting and controlling Ay, secretion [54,57], and forming signaling mole-
cules involved in cell growth or apoptosis [22]. In our study, we report an increase in Cer in SF
and a decrease in the NP fraction in the AD group. The increase in Cer was evident when we
examined the SM to Cer ratio in SF and found a lower ratio in AD compared with CN. Since
we measured Cer increases in the SF fraction and a decrease in the NP fraction, this may indi-
cate different SP metabolism in interstitial fluid versus brain membranes. Ceramides are
formed by several pathways in response to different apoptotic signals [22,58]. Cer increase in
the SF fraction may indicate an increase in de novo synthesis concomitant with a decrease in
SM synthesis. In the NP fraction, decreased Cer may be accounted for by a decrease in the SM
pathway and may be related to a decrease in membrane-bound SMase activity. These data sug-
gest that there are different sphingolipid pools or metabolic pathways that change in AD com-
pared with CN participants.

Sphingomyelinase activity

A major pathway associated with cytokine-induced apoptosis is the enzyme-dependent hydro-
lysis of SM. Several studies suggest that both aSMase and nSMase can induce apoptosis in cell
lines [59,60]. We hypothesized that the changes in SM and Cer measured in CSF were due to
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an increase in SMase activity. Paradoxically, we measured a significant decrease in aSMase ac-
tivity in AD compared with CN and MCI, whereas nSMase activity was only slightly decreased,
suggesting that the SMase pathway is not directly responsible for the increase in Cer and subse-
quent decrease in SM/Cer found in SF from our AD participants. SP metabolism is linked to
major depression and anxiety disorders [46,47] and antidepressant therapy has been shown to
decrease aSMase activity [61,62]. Our analysis demonstrated that the decrease of aSMase in
AD we report here was not due to any confounding effect from depression, its treatment, or
from the use of psychotropic medications, notably the greater use of anticholinesterases by

AD participants.

The decrease in SMase activity, however, may relate to the decrease in the Cer content of the
NP fraction. Recent studies suggest that there are many enzymatic pathways that control Cer
levels [48]. An increase in SM synthase activity has recently been associated with AB,, secretion
of cells and the regulation of protein trafficking [63,64]. Therefore, the SM decrease we de-
tected in both CSF fractions may indicate a decrease in SM synthase activity and this may relate
to the decreased secretion of AB4,in AD. Increased Cer may also result from de novo synthesis
when an enzyme such as DES that is responsive to increased oxidative stress is activated [65].
Therefore, any increase in Cer levels may be due to changes in the expression or activities of
several enzymes in AD.

Sphingomyelinase activity and A4, secretion

SPs are linked to exosome formation and have recently been shown to promote Ay, secretion,
endocytosis, and plasma membrane repair. Whereas the increase in SM synthesis stimulates
exosome formation, the increase in nSMase activity prevents exocytosis [66]. Secreted exo-
somes containing AP, are thought to be metabolized by glial cells in a phosphatidylserine-de-
pendent pathway that involves lysosomal processing [57]. aSMase is a lysosomal enzyme that
may play a role in autophagocytosis [67,68].

Our data show that higher aSMase activity corresponds to higher Ap,, in CSF from CN par-
ticipants. Similarly, lower aSMase activity in the CSF from AD corresponds to lower Ay, levels
compared with CN. aSMase activity significantly correlates with AB,; levels in CN but not in
MCI or AD while no similar correlation is found for nSMase or to total tau protein. These data
suggest that aSMase activity in CSF may be involved in the secretion of APy, in health, thus
preventing the accumulation of neurotoxic peptides in brain tissues. A scheme depicting how
lower activities of aSMase may result in lower Ay, levels in CSF and higher plaque load in AD
brain tissues is shown on Fig 7. This scheme suggests that dysfunction in SP metabolism in AD
alters exocytosis/endocytosis at many sites. Amyloid precursor protein processing may be ad-
versely affected in at least 6 locations: 7A) Pro-aSMase is distributed between the Golgi secreto-
ry pathway and the lysosomal pathway. Defective proteolytic maturation of SMase can lead to
dysfunction and abnormal SM metabolism found in lipid storage disease [16]. This might re-
sult in the difference in sphingolipid metabolism that we report in CSF fractions from our AD
subjects. The lower amounts of soluble aSMase found in AD will lower enzyme activity and
compromise SM metabolism. 7B) Since aSMase [68,69], ceramidase [70] and phospholipase A,
[71-73] are implicated in secretory vesicle formation and membrane restructuring, decreased
aSMase that we measured in AD may impact membrane remodeling and the generation of
nano- or micro-sized particles, such as those in the NP fraction of CSF. Increased phospholi-
pase A, activity that we recently reported in CSF from AD subjects [41] may also modify mem-
brane lipids. Any such modification of membrane composition will result in a shift in the
physical properties of cellular membranes, anomaly in exocytosis, defective trafficking of lipids,
and altered distribution of membrane-anchored proteins [74]. 7C) Secreted aSMase plays a
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doi:10.1371/journal.pone.0125597.9007
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role in endocytosis, membrane repair or remodeling [66]. Thus a decrease in aSMase that we
measured in AD will reduce these processes and alter membrane properties and function. 7D)
Brain aSMase and S1P levels correlate with amyloid beta peptide and hyperphosphorylated tau
protein levels [75]. Both aSMase and nSMase mediated-endocytosis influence APP processing
and thus regulate AB,, concentration [57,75], and influence membrane properties when they
interact with components of lipid rafts. Lower aSMase activity in CSF from AD subjects will de-
crease APP processing and lower the ability of brain cells to clear toxic AB,,. 7E) Lysosomal
aSMase is important in autophagocytosis when phagophores fuse with lysosomes [76]. Less
aSMase or improperly processed aSMase in AD will result in lowered endocytosis. 7F) aSMase
plays a role in autophagocytosis, a process where denatured or oxidized DNA, lipids, and pro-
teins such as AP, that would otherwise be toxic to brain cells are digested and neutralized for
resorption [77]. The lower aSMase activity in AD will result in less clearance of toxic products
such as Ay, resulting in AB,, accumulation and neuronal death. In summary, a hallmark of
AD pathology is the dysfunction of SP metabolism which impacts membrane remodeling and
results in the abnormal clearance of neurotoxic ARy, peptides. Means of enhancing the secre-
tion of AB,, from brain tissue may limit its accumulation and subsequent formation of
neurotoxic plaques.

Dysfunction in SP metabolism in blood brain barrier cells may also alter their function. Dis-
ruption of pericyte structure compromises blood-brain-barrier function, and lowers amyloid
clearance in an animal AD model [78]. Since SMase is involved in cell membrane repair, low-
ered aSMase activity that we report in AD would limit the ability of post-mitotic brain cells to
repair after insults. In contrast, higher levels of aSMase in the CN population provide tools for
better repair of damaged cell membranes. Approaches that prevent dysfunction in SP metabo-
lism should result in better repair of post-mitotic neurons and regulation of crosstalk between
apoptosis and autophagocytosis [79].

Acid sphingomyelinase as a biomarker of cognitive function and
potential for therapy

CSF ARy, is a reliable biomarker of AD and when combined with tau, the specificity for detect-
ing AD is increased [80]. However, there is a need for other markers to be used with AB,; to in-
crease diagnostic sensitivity and better understand AD pathophysiology. Our studies show that
aSMase activity in CSF is sensitive in differentiating CN from AD and has a >90% value for
predicting which subjects are CN. Thus, lower aSMase activity in CSF can also be utilized as a
biomarker of AD.

Exploring treatment implications from these results

Studies suggest that SMase is a multipurpose enzyme important in exocytosis, AB,, clearance,
plasma membrane repair, and the control of SM levels [15,57,66]. Moreover, macrophages de-
ficient in aSMase do not effectively traffic or efflux cholesterol while neurons lacking aSMase
show anomaly in the distribution of glycosyl-anchored proteins [74,81]. Animal studies using
recombinant aSMase show promise in regulating SM levels in lysosomal storage diseases [82].
Our results showing lower levels of aSMase in CSF from AD participants suggest that a similar
approach to replace aSMase in AD may enhance AB,, secretion and clearance from the brain
while stabilizing or repairing damaged neuronal plasma membranes.

Conclusions

We show how sphingolipid metabolism differs between CSF fluid and particulate fractions and
find a potential role of acid sphingomyelinase as an AD biomarker and a candidate therapeutic
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target. However, longitudinal studies are required to further evaluate whether the sphingolipid
changes in CSF fractions are a cause or consequence of AD, whether they distinguish preclini-
cal AD, or if they predict conversion to a more cognitively-impaired stage. More research into
sphingolipid metabolism using different chromatographic approaches and higher resolution/
accurate mass spectrometers is needed to identify specific ceramide and sphingomyelin species
involved in AD pathology. These studies may reveal how compounds that attenuate ceramide
toxicity, stabilize sphingolipid metabolism, and influence amyloid beta peptide clearance may
be beneficial in AD prevention.
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