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Key messages

 ► The study provides detailed analysis of the associ-
ation between respiratory emergency department 
(ED) visits from a large German hospital and meteo-
rological data and data on air pollution depending on 
the day of the week, year and the season.

 ► This study shows that the temporal variables highly 
affect respiratory ED visits with highest admission 
rates on Mondays. Furthermore, respiratory ED visits 
increased over time.

 ► Our data did not result in direct associations be-
tween environmental variables and ED visits.

 ► Analyses such as presented herein can help focus 
future studies and enhance strategies to reduce in-
creasing numbers of respiratory diseases, ED visits 
and to reduce the potential higher costs of medical 
care associated with increasing ED visits.

AbstrAct
Introduction Associations between air pollutants, 
meteorological conditions and respiratory diseases have 
been extensively shown. The aim of this study was to 
investigate associations between daily meteorological 
data, data on air pollution and emergency department (ED) 
visits depending on the day of the week, season and year 
(study period from 2013 to 2015).
Methods Highly correlated environmental data entered 
a categorical principal components analysis (CATPCA). 
We analysed cross-correlation functions between the 
time series of the respective daily environmental factors 
and daily ED visits. Time lags with peak correlations of 
environmental variables obtained by the CATPCA on ED 
visits together with day of the week, year, running day 
(linear, quadratic and cubic), season and interaction terms 
entered the univariate analysis of variance (UNIANOVA) 
model.
results The analyses demonstrated main effects on ED 
visits for the day of the week with highest admission rates 
on Mondays (B=10.69; ƞ2=0.333; p<0.001). A significant 
time trend could be observed showing increasing numbers 
of ED visits per each year (p<0.001). The variable ‘running 
day’ (linear, quadratic and cubic) indicated a significant 
non-linear effect over time. The variable season showed 
significant results with winter, spring and summer 
recording fewer ED visits compared with the reference 
season autumn. Environmental variables showed no direct 
associations with respiratory ED visits.
Discussion ED visits were significantly associated 
with temporal variables. Our data did not show direct 
associations between environmental variables and ED 
visits.
In times of rapid urbanisation, increases in respiratory 
diseases, temperature and air pollution, our analyses can 
help focus future studies and enhance strategies to reduce 
increasing numbers of respiratory diseases and ED visits. 
Because the potential costs of medical care in hospitals 
can be high compared with physicians, public health 
recommendations for reducing the increasing ED visits 
should be promoted and evaluated.

IntroDuctIon
Environmental and meteorological factors 
are likely to influence respiratory morbidity 
and mortality. The correlation between expo-
sure to ambient air pollutants and adverse 

health effects has been shown in a variety of 
studies1–3 and is of concern to governments 
and public health organisations worldwide.4 5 
The effect of ambient particulate matter on 
respiratory mortality has been consistently 
reported.6 7 In a multicity study conducted in 
Italy, an increase of particulate matter with 
an aerodynamic diameter of ≤10 µm (PM10) 
resulted in an increase in respiratory mortality 
of 2.29% (95% CI 1.03 to 3.58) at a lag of 0–3 
days. This effect was higher in summer.8

Simulation models of the future climate 
suggest that extreme weather events such as 
the heat phenomena in Europe during the 
summer 2003 are likely to increase.9 The 
effect of meteorological conditions such as 
high ambient temperature on mortality has 
been demonstrated in many epidemiological 
studies.10–13 Urban populations are of specific 
interest due to the increasing numbers of 
urban individuals and the often risk-ag-
gravating environmental conditions such 
as the so-called ‘urban heat island effect’, 
which describes the temperature differ-
ences between an urban area and the rural 
surroundings.14 15 An impact of thermal stress 
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Figure 1 Map of the city of Hamburg with the location of the hospital and the airport weather station Fuhlsbüttel, Northern 
Germany.

on heat-related morbidity and mortality in urban settings 
has been shown in several studies.16–18 The effect of heat 
stress on hospital admissions for respiratory diseases 
during summer months was demonstrated in a spatial 
analysis conducted in Berlin, Germany. Results showed 
significant intraurban disparities in the relative risk for 
hospital admissions with respiratory diseases, adjusted for 
socioeconomic covariables.19 The United Nations project 
that the number of people living in urban areas might 
rise to more than 70% by 2050 worldwide.20 Hence, 
the combined effect of increases in urban populations 
together with increases in heat events might become 
more important, even in more temperate climates.21 
Increases in respiratory diseases were also found to be 
associated with cold weather conditions as it has been 
shown, for instance, by Hashimoto et al22 or by Gold-
stein.23 Therefore, short-term effects of high air pollutant 
concentration or high ambient temperature on health 
might plausibly vary by season and can result in changes 
of morbidity and mortality.17 24 25

Effect modification between highly correlated air 
pollutants (eg, near surface ozone, summer smog) and 
meteorological conditions (eg, heatwaves) with respect 

to health has been analysed in several studies. Breitner et 
al26 investigated interactive effects of temperature and air 
pollutants (PM10 and O3) on mortality in three cities of 
Bavaria, Germany. Findings suggest that modifying effects 
for O3, but not for PM10 exist. Same modifying effects 
could be found, for instance, for a study conducted in 
Berlin, Germany, by Burkart et al27 or a study conducted 
in Brisbane, Australia, by Ren et al.28

However, so far only a few studies have focused on the 
multicollinearity of pollutants and meteorological condi-
tions. The objective of the study is to investigate the asso-
ciation between daily meteorological data and data on 
air pollutants classified with a number of indicators as 
a principal components analysis (PCA)-based score and 
hospital admission rates of respiratory diseases, adjusted 
for seasonality, year and day of the week.

MethoDs
study area
This study was conducted at the University Medical Center 
Hamburg-Eppendorf in Northern Germany (figure 1). 
Hamburg is the second largest city in Germany with 
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Table 1 Variables considered for the statistical analyses

Name of the variable Unit Minimum Median Maximum

Indication 

  COPD (ICD-10 J44) Cases per day* 0 7 20

  Asthma bronchiale (ICD-10 J45) Cases per day* 0 4 13

Determinants 

  Day of the week Monday to Sunday – – –

  Season Winter, spring, summer, autumn† – – –

  Year 2013, 2014, 2015 – – –

  Running day Day – – –

  Running day² Day – – –

  Running day³ Day – – –

  Tmean (°C‡) −10.3 9.9 27.2

  Tmax (°C)‡ −8.7 13.9 36.4

  Tmin (°C)‡ −12.5 5.8 19.2

  Daily mean relative humidity§ (%)‡ 42.5 82.0 100.0

  Daily mean vapour pressure§ (hPa)‡ 2.2 9.7 23.1

  PETmean§ (°C)‡ −18.0 5.6 29.1

  PETmax§ (°C)‡ −15.1 12.5 44.0

  PETmin§ (°C)‡ −20.5 0.0 15.1

  Daily mean wind speed§ (m/s)‡ 0.6 3.9 10.3

  NO concentrations§ (µg/m3)‡ 2.0 4.3 110.6

  PM10 concentrations§ (µg/m3)‡ 4.5 17.8 84.6

  O3 concentrations§ (µg/m3)‡ 1.4 46.6 132.2

Environmental data were retrieved for the airport station Hamburg-Fuhlsbüttel. Minimum, maximum and median values are shown for the 
analysis period (2013–2015).
*Time interval from 1 January 2013 to 31 December 2015.
†Winter: December, January, February; spring: March, April, May; summer: June, July, August; autumn: September, October, November.
‡Time interval from 1 December 2012 to 31 December 2015.
§Variables selected for the final categorical principal component analysis.
COPD, Chronical Obstructive Pulmonary Syndrome; NO, nitric oxide; O3, ozone; PET, physiological equivalent temperature; PM10, particulate 
matter with an aerodynamic diameter of ≤10 µm; T, daily temperature.

a population size of approximately 1.9 million (census 
2016).29 The topography of the study area is generally 
flat. The city of Hamburg is characterised by a maritime 
influenced climate with a mean annual ambient temper-
ature of ≈9°C (reference period from 1981 to 2010) and 
four distinct seasons: winter (months December, January 
and February with mean seasonal ambient tempera-
tures of ≈2°C); spring (months March, April and May, 
mean seasonal ambient temperature of ≈9°C); summer 
(months June, July and August with mean seasonal 
ambient temperature of ≈17°C) and autumn (months 
September, October and November with mean seasonal 
temperatures of ≈10°C).30

Hamburg has 31 hospitals of which the University 
Medical Center Hamburg-Eppendorf is one of the 
largest, located in the city centre. Driver of ambulances 
are obliged to transport emergency cases to the next 
hospital available with free capacities. In cases where 
ambulance transport is not required, patients can choose 
their preferred hospital.

Data collection
Emergency department (ED) visits for respiratory diseases
Data about daily ED visits were obtained from the Univer-
sity Medical Center Hamburg-Eppendorf (2013–2015). 
The data do not allow any conclusions to be drawn about 
persons. The following initial diagnoses classified by Inter-
national Classification of Diseases 10 (ICD-10) code were 
considered for the respiratory health outcome: ICD-10 
J44 (chronic obstructive pulmonary syndrome (COPD)) 
and ICD-10 J45 (Asthma bronchiale). Both indications 
were summarised to one respiratory health outcome and 
used for all analyses. Additionally, the admission date and 
day of week was provided (table 1).

Environmental data
To avoid a bias between the location of the study hospital 
and the environmental data, we chose the meteorological 
station located closest to the University Medical Center 
Hamburg. Meteorological data of mean temperature, 
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relative humidity, vapour pressure and wind speed 
as well as maximum and minimum temperature per 
day were obtained from the airport weather station 
Hamburg-Fuhlsbüttel which is operated by the German 
Meteorological Service.31 Based on hourly values for air 
temperature, relative humidity, wind speed and cloudi-
ness, mean radiant temperatures have been calculated 
using the algorithm described by Staiger.32 Mean radiant 
temperatures summarise the amount of short and long 
wave radiative conditions received by the human body. 
From those hourly values, diurnal mean, maximum and 
minimum physiological equivalent temperatures (PET)33 
are derived to describe the thermal stress experienced by 
a person. PET is a rational thermal index based on the 
heat balance of the human body, which summarises the 
effects of all relevant meteorological quantities on heat 
stress into one value.

Besides the meteorological data, measurement results 
for air pollution have also been obtained: Daily mean 
values for concentration of nitric oxide (NO), PM10 and 
O3 were retrieved from the same airport station.34 To 
account for the ED visits, which occurred at the begin-
ning of January 2013, additional environmental data 
from December 2012 were used. Table 1 lists the mete-
orological factors, data on air pollutants per day and 
medical indications that were considered in our model.

statistical analyses
To account for seasonality, the variable ‘season’ was 
computed by using the respective months (table 1) and 
considered for statistical analyses. Additionally, the vari-
able ‘running day’ was included as a linear, quadratic and 
cubic term to account for a potential continuous time 
trend; furthermore, we included the year of ED visits. 
We also assumed the day of the week as a variable poten-
tially explaining ED visits. We examined correlations 
between the environmental and the temporal variables 
season, year and day of the week. Additionally, relation-
ships among environmental variables were examined by 
Pearson and Spearman correlations and by non-linear 
categorical principal component analysis (CATPCA, 
table 1),35 36 considering a three-dimensional solution 
and applying a Promax axis rotation. The estimated 
component scores were used as continuous variables in 
further analyses, instead of the original environmental 
variables. Two different sets of environmental conditions 
were tested in the CATPCA: one with PET, excluding 
temperature, and one with temperature, excluding PET 
and the remaining environmental variables, respectively. 
We used two different sets, since PET already includes 
the effects of the environmental variables on the thermal 
stress experienced by the human body (see above) and 
shows highest correlation with temperature. To model 
temporal associations between the number of respiratory 
ED visits and the variables obtained from the CATPCA, 
the cross-correlation functions between the time series of 
the respective daily environmental factors and daily ED 

visits were analysed. A time lag of up to 7 days prior to the 
admission data was chosen.8 37 Environmental variables at 
time lags displaying peak correlations with the dependent 
variable were used as covariates in general linear model 
analyses (SPSS routine UNIANOVA) to estimate respira-
tory ED visits based on environmental data, day of the 
week, a linear, quadratic and cubic term of running day, 
year and season as covariates as well as interaction terms 
between these variables. As a measure of association 
between a covariate and the respiratory health endpoints, 
the respective regression coefficient B, along with esti-
mated partial eta-square (ƞ2) of the UNIANOVA model 
was calculated. Regression coefficients are shown with 
their 95% CI and p values. The adjusted R2 was provided 
as a measure of overall goodness-of-fit of the statistical 
model. In a further step, a stepwise hierarchical-back-
ward elimination regression approach38 was applied. 
Criterion for inclusion of an independent variable in the 
final model was p<0.05. To check stability of our results, 
we also conducted analyses using only the environmental 
variable, which had highest positive loadings on a factor 
computed by the CATPCA, respectively, together with the 
temporal variables. An autocorrelation function of the 
residuals of the final model was examined to verify that 
the residuals were not significantly autocorrelated. The 
IBM SPSS Statistics 25 program was used for calculations.

results
In total, 11 820 respiratory ED visits (7777 COPD and 
4043 Asthma bronchiale) were recorded during the study 
interval of 3 years (January 2013– December 2015, 1095 
days).

As expected, all meteorological variables were signifi-
cantly correlated with season (Spearman rank correla-
tion, all p values <0.001), no pattern was found with day 
of the week. Furthermore, the year of investigation was 
significantly associated with all meteorological variables 
(data not shown). The environmental data describing air 
pollution resulted in different patterns where NO showed 
highly significant correlations with season and PM10 with 
day of the week (all p values <0.001). O3 showed no signif-
icant correlation with any temporal variable (table 2).

Because PET is calculated from temperature data and 
to avoid that temperature enters the CATPCA more 
than once, two analyses were conducted. The CATPCA 
with PET considered resulted in slightly higher vari-
ances explained by the nine original variables compared 
with the CATPCA where T and the respective environ-
mental variables were included (Total (Eigenvalue)=7.66 
compared with Total (Eigenvalue)=7.63). Hence, the 
results of the CATPCA, which included PET were consid-
ered for further analyses. The following nine daily vari-
ables entered the CATPCA: PET (mean, maximum and 
minimum), mean relative humidity, mean vapour pres-
sure, mean wind speed as well as concentrations of NO, 
PM10 and O3. The results of the CATPCA are presented in 
table 2. The CATPCA resulted in three main components: 
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Table 2 Correlation coefficients of the cross correlation function between air pollution and temporal variables using 
Spearman rank correlation

Day of the week Year Season NO PM10 O3

Day of the week 0.003 0.000 0.040 0.099 −0.024

Year 0.930 0.066 0.038 −0.067 0.056

Season 0.990 0.027 0.124 0.009 0.005

NO 0.187 0.199 <0.001 0.278 −0.646

PM10 0.001 0.028 0.777 <0.001 −0.203

O3 0.419 0.063 0.868 <0.001 <0.001

Note: above the diagonal are the correlation coefficients r, below all p values
NO, nitric oxide; O3, ozone; PM10, particulate matter with an aerodynamic diameter of ≤10 µm.

Table 3 Results from the categorical principal component 
analysis

Environmental 
determinants (daily 
values)

Weight for*

Factor 1 Factor 2 Factor 3

PETmean 0.98 0.51 0.15

PETmax 0.93 0.58 0.25

PETmin 0.97 0.35 0.00

Mean relative humidity −0.34 −0.92 0.07

Mean vapour pressure 0.97 0.24 0.02

Mean wind speed −0.26 0.16 −0.80

NO concentrations −0.16 −0.58 0.79

PM10 concentrations 0.02 −0.02 0.70

O3 concentrations 0.36 0.89 −0.55

Factors interpreted as Thermal 
conditions

High ozone 
levels

High air 
pollution

*Highest loadings of the variables are depicted in bold.
NO, nitric oxide; O3, ozone; PET, physiological equivalent 
temperature; PM10, particulate matter with an aerodynamic 
diameter of ≤10 µm; PM10, particulate matter with an 
aerodynamic diameter of ≤10 µm.

Factor 1 showed high positive loadings at the variables 
‘PET’ (mean (0.98), maximum (0.93) and minimum 
(0.97)) and ‘mean vapour pressure’ (0.97) and therefore 
was associated with thermal conditions; for example, cold 
stress in winter and heat stress in summer and moderate 
conditions in between. Factor 2 showed high negative 
loadings at the variable ‘mean relative humidity’ (−0.92) 
and high positive loadings at the variable ‘ozone concen-
trations’ (0.89) and hence was associated with dry condi-
tions together with high ozone levels. Finally, factor 3 
showed high positive loadings at ‘NO concentrations’ 
(0.79) and ‘PM10 concentrations’ (0.70) and high nega-
tive loadings at ‘mean wind speed’ (−0.80) and hence 
was associated with high air pollution (table 3, respective 
numbers in bold).

By using a histogram, clumping and truncation were 
checked (data not shown). The distribution of the respec-
tive scores showed internal coherence, suggesting appro-
priate and sufficient choice of environmental variables.

Results from the cross-correlation functions between 
the time series of the respective factors obtained from the 
CATPCA and daily ED visits showed highest peaks of the 
cross-correlation functions at the same day (time lag=0 
days) for all three factors (data not shown).

The results from the UNIANOVA models are shown 
in table 4. In the initial model, a significant main effect 
on respiratory ED visits could be detected for the day 
of the week (p<0.001). We found a clear weekly pattern 
with highest numbers of ED visits on Mondays (B=10.59; 
p<0.001) and lowest numbers on weekends (Sunday: 
B=1.09, p<0.001; Saturday (reference day) B=0). For 
Mondays, the ƞ2, which describes the proportion of the 
variability in the ED visits that is attributable to the day 
‘Monday’, was 0.330. Hence, 33% of the explainable vari-
ability of the respiratory ED visits can be attributed to the 
variable ‘Monday’, followed by approximately 25% by 
the variable ‘Tuesday’ (ƞ2=0.250, table 3). The variable 
‘running day’ entered the model as a third degree poly-
nomial with all terms (linear, quadratic and cubic) being 
highly significant (B=−0.02, p=0.002; B=3×10−5, p=0.006; 
B=−2×10−8, p=0.002, respectively) and indicating a 
non-linear effect over time. Furthermore, the results also 
indicate that respiratory ED visits significantly increased 
over the 3-year study period (variable ‘year’, table 3). The 
variable ‘season’ as well as the three environmental factors 
obtained from the CATPCA did not result in any signif-
icant effect on ED visits in the initial regression model. 
Only one significant interaction, ‘spring’ together with 
‘high ozone levels’ (factor 2), could be found (B=−1.03, 
p=0.022). The determinants showing the least significant 
effects were successively excluded in a stepwise regres-
sion model to obtain a parsimonious regression model 
containing only significant independent variables. The 
first variable excluded was ‘factor 1’, followed by ‘factor 
3’, and finally ‘factor 2’.

In the final model, the results showed again main effects 
of ‘day of the week’ on ED visits (explaining up to 33% of 
the explainable variability of the respiratory ED visits with 
the variable ‘Monday’ (ƞ2=0.333)). Furthermore, the vari-
able ‘season’ was now significant with winter, spring and 
summer recording significantly fewer ED visits compared 
with ‘autumn’ (winter: B=−1.46; ƞ2=0.011; p=0.001; 
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Table 4 Associations between determinants and respiratory emergency department visits*

Determinants

Initial regression model Final regression model

B 95% CI P values ƞ2 B 95% CI P values ƞ2

Year† <0.001 <0.001

2013 −5.84 −8.56 to −3.12 <0.001 0.017 −6.38 −8.88 to −3.88 <0.001 0.023

2014 −3.44 −5.04 to −1.85 <0.001 0.017 −3.43 −4.86 to −1.99 <0.001 0.020

Season† 0.610 0.006

Winter‡ −0.13 −2.05 to 1.80 0.898 0.000 −1.46 −2.28 to −0.64 0.001 0.011

Spring‡ −0.64 −1.74 to 0.45 0.250 0.001 −1.28 −2.15 to −0.40 0.004 0.008

Summer‡ 0.26 −1.62 to 2.13 0.788 0.000 −0.86 −1.59 to −0.12 0.023 0.005

Day of the week† – – <0.001 <0.001

Monday 10.59 9.68 to 11.50 <0.001 0.330 10.69 9.78 to 11.59 <0.001 0.333

Tuesday 8.74 7,82 to 9.65 <0.001 0.250 8.84 7.94 to 9.75 <0.001 0.255

Wednesday 7.46 6.55 to 8.37 <0.001 0.196 7.56 6.65 to 8.46 <0.001 0.200

Thursday 7.76 6.85 to 8.67 <0.001 0.210 7.82 6.92 to 8.73 <0.001 0.211

Friday 4.95 4.03 to 5.86 <0.001 0.097 5.05 4.14 to 5.95 <0.001 0.100

Sunday 1.09 0.18 to 2.01 <0.001 0.005 1.01 0.15 to 1.96 0.023 0.005

Running day −0.02 −0.03 to −0.01 0.002 0.009 −0.02 −0.25 to −0.01 0.001 0.010

Running day2 3×10−5 10×10−6 to 6×10−5 0.006 0.007 2×10-5 4×10−6 to 4×10−5 0.018 0.005

Running day3 −2×10−8 −4×10−8 to −8×10−9 0.002 0.009 1×10-8 2×10−8 to 4×10−9 0.007 0.007

Factor 1§ 0.37 −0.55 to 1.29 0.834 0.001

Factor 2§ −0.76 −1.63 to 0.11 0.087 0.003

Factor 3§ −0.52 −1.21 to 0.17 0.142 0.002

Factor 1*factor 2 0.25 −0.33 to 0.83 0.395 0.001

Factor 1*factor 3 0.33 −0.14 to 0.80 0.173 0.002

Factor 2*factor 3 −0.04 −0.39 to 0.30 0.799 0.000

Year*factor 1† 0.482

2013*factor 1 −0.48 −1.28 to 0.32 0.239 0.001

2014*factor 2 −0.34 −1.14 to 0.45 0.397 0.001

Year*factor 2† 0.143

2013*factor 2 0.75 −0.13 to 1.51 0.054 0.004

2014*factor 2 0.57 −0.24 to 1.38 0.165 0.002

Year*factor 3† 0.461

2013*factor 3 0.37 −0.28 to 1.03 0.261 0.001

2014*factor 3 0.01 −0.64 to 0.66 0.985 0.000

Season*factor 1 – – 0.206 – – – –

Winter*factor 1 0.98 −0.49 to 2.44 0.190 0.002

Spring*factor 1 0.74 −0.20 to 1.67 0.122 0.002

Summer*factor 1 −0.76 −2.22 to 0.69 0.303 0.001

Autumn*factor 1 0.37 −0.54 to 1.29 0.428

Season*factor 2 – – 0.236 – – – – –

Winter*factor 2 0.20 −0.99 to 1.40 0.737 0.000 – – – –

Spring*factor 2 −1.03 −1.91 to −0.15 0.022 0.005 – – – –

Summer*factor 2 −0.55 −1.64 to 0.55 0.326 0.001 – – – –

Autumn*factor 2 −0.76 −1.63 to 0.11 0.087 0.003 – – – –

Season*factor 3 – – 0.087 – – – – –

Winter*factor 3 0.80 −0.11 to 1.70 0.085 0.003 – – – –

Continued
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Determinants

Initial regression model Final regression model

B 95% CI P values ƞ2 B 95% CI P values ƞ2

Spring*factor 3 0.33 −0.37 to 1.04 0.351 0.001 – – – –

Summer*factor 3 −0.11 −1.09 to 0.87 0.830 0.000 – – – –

Autumn*factor 3 −0.52 −1.21 to 0.17 0.142 0.002 – – – –

Adjusted R2=0.47 Adjusted R2=0.47

*Univariate analysis of variance (UNIANOVA) model
†Reference year: 2015; reference season: Autumn; reference day of week: Saturday; year 2015*factor 1–3, respectively.
‡Winter: December, January, February; spring: March, April, May; summer: June, July, August; autumn: September, October, November.
§Classified by categorical principal component analysis; factor 1: high loadings at physiological equivalent temperature; factor 2: high 
loadings at ozone; factor 3: high loadings at air pollution; all time lags=0 days.
ƞ2, partial eta squared mutually adjusted; B, regression coefficient mutually adjusted.

Table 4 Continued

spring: B=−1.28; ƞ2=0.008; p=0.004; summer: B=−0.86; 
ƞ2=0.005; p=0.023). The study year again showed highly 
significant increases in respiratory ED visits (year 2013: 
B=−6.38; ƞ2=0.023; p<0.001; year 2014: B=−3.43; ƞ2=0.020; 
p<0.001; year 2015 (reference year) B=0). Finally, the 
variable ‘running day’ (linear, quadratic and cubic) indi-
cated again a significant nonlinear effect over time (all p 
values <0.05).

The final model explains 47% of ED visit variation 
(adjusted R2=0.47) (table 3).

To check stability of our results, we also conducted 
the analysis by using only the environmental variable, 
which had highest positive loadings on a respective 
factor computed by the CATPCA (table 3) together with 
the temporal variables. Hence, the variables PET mean 
instead of factor 1, O3 concentration instead of factor 
2 and NO concentration instead of factor 3 entered 
the UNIANOVA model. However, the stepwise regres-
sion model resulted in the same final model with only 
temporal variables included.

DIscussIon
The analysis of the respiratory ED visits in the Univer-
sity Medical Center Hamburg-Eppendorf during the 
study interval of 3 years (January 2013–December 2015) 
clearly indicated a strong association between the day of 
the week and hospital admissions, showing a pattern with 
high numbers of ED visits at the beginning of the week 
and low numbers on weekends. Additionally, the variable 
‘season’ showed significant contributions to explainable 
variability of respiratory ED visits in the final model and 
depicted lowest numbers of ED visits in winter. The asso-
ciation between respiratory ED visits and the variable 
‘running day’ (linear, quadratic and cubic) indicated a 
significant non-linear time trend suggesting increasing 
numbers of ED visits during the study interval. These 
results are supported by the variable ‘year’ showing 
increasing numbers of respiratory ED visits during the 
study interval of 3 years. No direct associations between 
any factors obtained by the CATPCA could be detected in 
the final UNIANOVA model.

The direct association of day of the week and hospital 
admissions is congruent with other studies reporting 
similar variations in hospital admissions with highest 
numbers of emergency visits early in the week and 
reduced numbers on Saturdays and Sundays.39 40 Most 
patients are aware of the reduced numbers of medical 
and nursing staff during weekends and resulting possible 
longer waiting times for patients not being classified as 
emergency patients. Therefore, patients with no acute 
respiratory disease might avoid EDs during weekends but 
go instead on Mondays. A further explanation for higher 
numbers of ED visits during the week might be the loca-
tion of the hospital where the study was conducted. 
The University Medical Center Hamburg-Eppendorf is 
one of the largest hospitals and centrally located in the 
city of Hamburg (figure 1). Due to the working popu-
lation during the week, the intraurban population in 
the surrounding area of the hospital is higher than on 
weekends, which might result in rising numbers of ED 
visits. However, no data on the exact time of admission 
was available; hence, we cannot examine if an ED visit 
possible occurred during work hours. The working popu-
lation might also explain the high correlations between 
the day of the week and PM10 as shown in the Spearman 
rank correlations. Many people commute during the 
week to work by using their car, which hence, influences 
the PM10 concentrations.

Additionally, the variable ‘season’ showed significant 
associations with respiratory ED visits in the final model 
showing the highest effect in winter and significant less 
ED visits compared with autumn.

As expected, all meteorological factors showed highly 
significant correlations with season. Furthermore, NO was 
highly correlated with season. This is in line with other 
studies: The German Environment Agency (Umwelt-
bundesamt), for instance, published a study showing 
increasing NO emissions with decreasing temperatures.41 
Same results were found in a study conducted in a city 
located in Southern Germany.42

Other seasonal cofactors such as allergen pollen 
(spring/summer) or influenza season (winter) might be 
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associated with the number of respiratory ED visits, as it 
has been investigated in other studies: the temporal asso-
ciation between the increased occurrence of airborne 
pollen concentrations and increased respiratory diseases 
was investigated in several studies. Brunekreef et al,43 for 
instance, found strong associations between the day-to-day 
variations in pollen concentrations and that of deaths 
due to COPD and pneumonia. Results from the second 
National Health and Nutrition Examination Survey 
suggest strong associations and interactions of specific 
allergens with upper and lower respiratory diseases.44 
Additionally, studies found strong associations between 
the occurrence of seasonal influenza and increased 
hospitalisations for respiratory health outcomes.45 46 
However, no data on airborne pollen concentrations or 
data on influenza infections were available for the city 
of Hamburg and hence could not be adjusted for our 
model. Furthermore, holiday season might influence 
the occurrence of ED visits. During summer time, for 
instance, more people are likely to travel, especially when 
they have school-age children, which might result in 
possibly lower numbers of ED visits.

To check stability of our model, we also conducted 
the analyses by using the variable ‘months’ (January–
December) instead of the variable ‘season’ (winter, 
spring, summer and autumn). However, we obtained 
similar results showing less numbers of ED visits during 
winter months and higher numbers of ED visits during 
summer months. However, no significant interactions 
between ‘months’ and any of the three environmental 
factors could be found and the adjusted R2 was slightly 
less (0.45 compared with 0.47 at the model were ‘season’ 
was considered). Hence, the variable ‘season’ remained 
in the final model.

Our results showed a significant independent time 
trend (variables ‘running day’ and ‘year’) which suggests 
an increase in respiratory ED visits, possibly forecasting 
a trend of increasing numbers of respiratory diseases. 
According to the WHO, an increasing amount of 
people is of greater risk to acquire respiratory disease 
due to an unhealthy lifestyle (eg, smoking, no physical 
activity47). For instance, data (year 2015) provided by 
the Robert-Koch-Institute in Germany suggest that only 
about two-fifths of adults in Germany comply with the 
WHO’s exercise recommendations.48

Furthermore, the Association of Statutory Health 
Insurance Physicians Hamburg (Kassenärztliche Verein-
igung Hamburg) report an increasing trend of patients 
going directly to the ED instead of going to a physician as 
demanded by the German health system. Patients hope 
to find better and prompt medical support by going 
directly to the hospital.49 50 This negative trend is already 
recognised and several projects such as the ‘doctor’s 
call Hamburg’ (Arztruf Hamburg) are implemented to 
counter this trend. By calling a specific number, patients 
can receive telephone advice from a physician. Besides 
a reduction of the ED visits, the concept also helps to 
reduce the potentially high costs of medical care in 

hospitals compared with the costs of medical care in 
medical practices.50

A further explanation for higher numbers of ED visits 
might be an increasing awareness of people for respira-
tory diseases due to programmes such as the ‘Global Initia-
tive for Chronic Obstructive Lung Disease (GOLD)’51 
or the ‘Global Alliance Against Respiratory Disorders 
(GARD)’ project.52 Apart from strategies for diagnoses 
and management, one main goal of this initiatives is to 
prevent COPD and asthma by increasing awareness in 
the general public.51 52 Furthermore, the population of 
the city of Hamburg increases to approximately 40 000 
people per year.30 In addition, data show an increasing 
amount of people aged 65 and older,29 which also might 
explain the increasing numbers of respiratory diseases.

To account for multicollinearity, a CATPCA was 
conducted. A PCA is a multivariate statistical tech-
nique used to reduce dimensionality in a data set while 
preserving maximum variability of the included covari-
ables, which allows the highly correlated variables to 
be grouped into a regression model.53 54 An advantage 
of a PCA is that it reduces the complexity of correlated 
data. On the other hand, the process of generalisation 
leads to a loss of information, the criteria for the selec-
tion of variables for PCA are not well defined and the 
number of selected components or the type of rotation 
(if any) is arbitrary. Whether a single principal compo-
nent can sufficiently determine an environmental vari-
able as conducted in this study is entirely dependent on 
the data and the correlation matrix of the variables, their 
validity and reliability.53 55 To consider the high correla-
tions between the environmental covariables (p<0.001), 
conducting a PCA was the appropriate choice and is in 
line with other studies.56–58 In the analyses of the present 
study, none of the environmental factors obtained by the 
CATPCA showed significant associations with respiratory 
ED visits in the final UNIANOVA model.

Many studies demonstrate a significant temporal 
trend of temperatures or thermal stress on adverse 
health effects.10–13 Due to the simulated consequences of 
global warming and the projected increased frequency 
and intensity of heatwaves,9 heat-related morbidity and 
mortality may increase.59 However, Hamburg has a mari-
time and mild climate, although heat stress conditions 
became more frequent in recent years.60 Heatwaves are 
less frequent compared with other more continental 
or southern cities. Therefore, longer time series or 
extreme value statistics might be needed to appropriately 
consider the impact of heat stress in Hamburg. Addition-
ally, only environmental data from one weather station 
close to the airport was used. Due to its characteristics 
and location, the measurements at the airport station 
might be different from those conditions experienced 
by the patients admitted to the hospital. In future, envi-
ronmental data on the micro level shall be collected and 
used for further analyses.

In times of rapid urbanisation accompanied by 
increases in respiratory diseases, increases in ED visits, 
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temperature and air pollution, analyses such as ours can 
help focus future studies and enhance strategies to reduce 
increasing numbers of respiratory diseases and ED visits. 
Because of the potential higher costs of medical care asso-
ciated with ED visits compared with physicians, public 
health concepts and recommendations for reducing the 
increasing ED visits should be further promoted and eval-
uated, as it is already been implemented in Hamburg.50
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