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ABSTRACT Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional
breeding improvement in many crop species. This study evaluated the potential of genomic selection to
predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat
under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated
under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles
and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for
specific environments and environment groups. Additive genetic variance was smaller than residual genetic
variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than
additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant
lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new
populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain
from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by
half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on
having phenotypic data from environments with strong correlations with target production environments to
build prediction models. By combining high-density marker genotypes, stress-managed field evaluations,
and mixed models that model simultaneously covariances among genotypes and covariances of complex
trait performance between pairs of environments, we were able to train models with good accuracy to
facilitate genetic gain from genomic selection.
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Abiotic stresses such as water deficit during the growing season are a
major limitation to crop production worldwide (Fischer et al. 2014; Ray
et al. 2015; Foulkes and Reynolds 2015). However, the incidence and
severity, as well as the timing of water deficit can differ markedly
between sites and years, contributing to the historically low rates of
genetic gain for yield in water deficit environments compared to well-
watered environments (Richards et al. 2010; Araus et al. 2002).

An alternative to selection for grain yield directly is to identify useful
traits that confer physiological adaptation to water deficit conditions
(Rebetzke et al. 2009; Bernier et al. 2008; Reynolds et al. 2016; Lopes
et al. 2011). For example, selection for major genes for reduced height

and photoperiod insensitivity has been used to alter plant architecture
and provide drought escape potential in wheat (Passioura 1996;
Bennett et al. 2012; Kamran et al. 2014). Water soluble carbohydrate
(WSC) accumulation and remobilization can contribute to perfor-
mance under water deficit as a source of assimilate for grain filling in
many crop species (Slewinski 2012). Carbohydrate accumulation oc-
curs when the crop synthesizes assimilate at a rate greater than needed
by the various sinks (for example, developing florets, elongating shoots
and roots). For wheat, the excess carbohydrate is stored mainly in the
lower parts of stems and culms (Gebbing 2003), where the quantity of
WSC can reach as much as 40% of total stem weight (Schnyder 1993).
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The main sink for remobilization of WSC is the developing grain
(Schnyder 1993; Takahashi et al. 2001; van Herwaarden et al. 1998).
Remobilized WSC can contribute as much as 30–50% of grain yield
under terminal drought conditions, and around 10–20% under well-
watered conditions (Bidinger et al. 1977; Schnyder 1993; Pheloung and
Siddique 1991; Gebbing and Schnyder 1999).

Selection for increased WSC in cereal breeding programs has been
advocated for some time (Blum1998), andmay be an alternative to direct
selection for grain yield under water deficit conditions (Asseng and van
Herwaarden 2003). Previous studies indicate higher broad-sense herita-
bility forWSCconcentration (WSCC) compared to grain yield, andmore
stable genotype rankings within a target population of environments
(Ruuska et al. 2006; Dreccer et al. 2013; Piaskowski et al. 2016). Indirect
selection for WSCC by breeders has already occurred in some environ-
ments. For example, Rebetzke et al. (2009) reviewed the trend for
increasing WSCC with year of variety release observed for Western
Australian and the International Maize andWheat Improvement Center
(CIMMYT) wheat breeding programs. Shearman et al. (2005) also re-
ported that UK wheat cultivars showed increased WSCC with progres-
sive year of release. However, WSCC is not predicted to be a useful
indirect selection criterion for yield improvement in some cases
(Ovenden et al. 2017); furthermore, phenotyping for abiotic stress char-
acteristics such as WSCC is resource intensive and phenotypic selection
may not always be feasible in a breeding program. The practical utility of
WSCC for breeding appears to be context-dependent and requires em-
pirical investigation for specific populations and environments.

New genomic approaches may be more efficient to select for abiotic
stress traits thanconventionalphenotypic selection,asgenomic selection
can leverage the information obtained from difficult and expensive
phenotyping (Lin et al. 2014; Cooper et al. 2014; Leplat et al. 2016), to
enable more rapid and inexpensive selection for many loci that may be
involved in the inheritance of these complex traits (Vivek et al. 2016; de
los Campos et al. 2013). Comprehensive phenotyping is still an impor-
tant part of the breeding process when genomic selection is applied, as it
is essential to build accurate prediction models. However, early gener-
ation nursery screens can be replaced with genomic screens (Sallam
et al. 2015), and expensive field trials can be augmented by genetic
material ‘enriched’ through genomic selection (Heffner et al. 2009).

Genomic selection methods use marker-based measures of realized
relatedness from whole-genome marker profiles to predict genomic
estimated breeding values (GEBVs) of progeny (Habier et al. 2013;
Meuwissen et al. 2001; de los Campos et al. 2013). For lines that have
both genotype and phenotype data, GEBVs can be combined with the
residual line effect estimates to produce Genomic Best Linear Unbiased
Predictors (G-BLUPs) for the total genotypic value, hereafter referred
to as the genotypic value (GV) as described in Oakey et al. (2016). As
reviewed by Hill (2012); Nakaya and Isobe (2012) and de los Campos

et al. (2013), a key difference between genomic and phenotypic selec-
tion is the potential reduction in breeding cycle time. Although geno-
mic predictions of untested individuals are typically less accurate than
well-replicated phenotypic evaluations, genomic selectionmay bemore
effective over time because of the opportunity to implement selection in
additional generations per unit of time. If breeding cycles can be short-
ened, then relative accuracy can also decrease while still achieving
greater genetic gain than phenotypic selection (Desta and Ortiz 2014).

Developing suitable genomic selection models for abiotic stress tol-
erance characteristics requires the consideration of complex genotype ·
environment interactions (hereafter G · E interactions) within and
across a target population of environments because expression of these
traits is often environmentally-dependent. Complex patterns of G · E
interactions can be incorporated into genomic prediction models, and
although G · E interactions will necessarily limit gains from selection for
wide adaptation, models that incorporate G · E effects can help breeders
select sets of lines optimally adapted to different subsets of environments.
One such approach is to use parsimonious mixed models, such as factor
analytic (FA) models, that attempt to capture most of the G · E signal
with a reduced number of parameters compared to a full unstructured
covariance model (Guo et al. 2013; Burgueño et al. 2012; Oakey et al.
2016).

The objective of this study was to evaluate the ability of genomic
selectionmodels topredictacomplexphysiological trait (WSCC) inboth
untested lines and in new environments using a mixed-model that
accounts for variation in the pairwise correlations of performance in
different pairs of environments.

MATERIALS AND METHODS

Genotypes
The set of 358 lines used in this study was selected from a multi-site,
multi-year irrigated winter cereals evaluation trial with a total of 1,314
genotypes. The genetic entries included both elite breeding lines and
contemporary commercial varieties from Australian wheat breeding
companies and CIMMYT representing a range of maturity types.

As WSC accumulation varies according to development stage
(Ehdaie et al. 2008), this study aimed to assess genotypes as close as
practicable to a common anthesis date. At the Yanco irrigated exper-
iment in 2009, a total of 358 breeding lines and varieties out of the
990 grown in the experiment were selected based on common Zadoks’
development score (Zadoks et al. 1974) taken at approximately mid-
anthesis. Lines selected were between Z49 (early head emergence) and
Z56 (60% heading) which corresponds to a range of approximately
3-5 days difference in anthesis date in south-eastern Australia. For
the second year of this study in 2010, the same breeding lines were
selected forWSCCmeasurement except for 11 breeding lines that were
excluded from the overall experiment in that year.

Lines were genotyped using the Illumina 9k Infinium iSelect bead-
chip array (Cavanagh et al. 2013) resulting in 4,883 polymorphic SNPs
across the population (File S1). Missing values were imputed using
Beagle (Browning and Browning 2009) implemented in the R package
Synbreed (Wimmer et al. 2012). The resulting 4,162 SNP markers
(excluding markers that were duplicated, monomorphic, and those
with minor allele frequency of less than 5%) were used to compute a
scaled identity by descent relationship matrix (K) after Endelman and
Jannink (2012) (File S2). There was little evidence of population struc-
ture in the set of lines used in this study, with the first two eigenvectors
of the K matrix accounting for approximately 15% of the observed
variation in genomic relationships. A principal components plot of
these eigenvectors showed no obvious clustering of lines (File S3).
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Experimental design
Experiments in this study were grown in south-eastern Australia at
Coleambally and Yanco in 2009 and 2010. A split-plot design was used,
in which the main-plot factor was irrigation treatment (irrigated or
rainfed), and the 990 genotype entries (including the subset of genotypes
for WSCC phenotyping) were the sub-plot factor. There were two
replicates of each treatment at each site. The placement of genotypes
within field experiment layouts was optimized with the spatial design
package DiGGer (Coombes 2002). For the laboratory phase measuring
WSCC using near-infrared spectroscopy (NIRS), an experimental de-
sign structured by day of measurement and NIRS instrument carousel
and well was implemented to account for laboratory as well as field
sources of experimental error. Samples from both field sites were
pooled into one experimental design for each year, and the placement
of genotypes within the laboratory experimental phase was also opti-
mized with DiGGer (Coombes 2002), with partial replication of 20% of
experiment field plots sampled (i.e., a replication level of 1.20), follow-
ing the methods in Cullis et al. (2006) and Smith et al. (2006).

Experimentswere sownona full profile ofmoisture, achievedbyflood
irrigating each site four to six weeks before sowing, so that the focus on
waterdeficit conditionswouldbe in the later stagesofcropgrowth.Sowing
dates were targeted for the first two weeks of May. Pre-sowing nitrogen
was targeted to be approximately 120 kg N ha-1. Irrigated experi-
ments were fertilized further to a total of approximately 300 kg N ha-1,
consistent with the estimated nitrogen demand by the crops. Experi-
ments were subject to a strict weed, pest and disease control regime to
maximize yield potential. Irrigation scheduling for the irrigated treat-
ments was intended to maintain soil water potentials above -100 kPa
during the growing season, with irrigations commencing as soil water
potential fell below -75 kPa.

Water-soluble carbohydrate measurement
Tissue for WSCC analysis was sampled from a 50 cm long section of
row (0.09m2) in each plot when the irrigated treatments at each site were
approximately 180� d post-anthesis, following the methods of Rebetzke
et al. (2008). Approximately 5-10 stalks (including leaves, leaf sheaths
and heads, but not senesced plant material) from each sample were
ground to pass through a 2 mm sieve. Ground biomass samples were
homogenized and subsampled for scanning by NIRS with a Bruker
Multi-purpose Analyzer (Bruker Optik GmbH, Ettlingen, Germany)
and OPUS software (version 5.1), and WSCC for the NIRS calibration
samples (10% of the full set) was determined using the alkaline ferricy-
anide method (Piltz and Law 2007). For the 2009 experiment, the co-
efficient of determination for the calibration linear model was r2 = 0.92
and the root-mean-square error of cross-validation (RMSECV) was 15.4.
For the 2010 experiment, the calibration linear model r2 = 0.92 and the
RMSECV = 16.0. The WSCC phenotype data are provided in File S4.

Statistical methods
A single-stage, multiplicative linear mixed model was used to analyze the
multi-experiment data with the molecular marker data following the
approaches of Beeck et al. (2010) andOakey et al. (2016). The linearmixed
model was:

y ¼ Xt þ Zgua þ Zgu�a þ Zuuþ h

where y is the n · 1 data vector of the response variable across p ex-
periments with Nj plots per experiment j. Each combination of year
(2009, 2010), site (YANA, COLE) and irrigation treatment (IRR, RFD)
was treated as a separate experiment so that p ¼ 8: t is a t · 1 vector of
fixed effects for the corresponding n · t design matrix (X), including

experiment main and design-based effects. The term u is a random
component with associated design matrix Zu and contains experi-
ment-specific terms used to capture extraneous variation (after
Gilmour et al. 1997), including the blocking structure of the field
(row, range, replicate and irrigation bay), and laboratory (day of mea-
surement, instrument carousel and carousel well) phases of the design.
The n · 1 residual vector h was modeled within each year of the lab-
oratory phase design. The m · 1 vector of genetic line within environ-
ment effects g;with corresponding designmatrix Zg , is partitioned into
a vector of additive line within environment effects ua and residual line
within environment effects u�a such that g ¼ ua þ u�a, following the
approach of Oakey et al. (2006). The difference between the ‘additive’
and ‘residual’ genetic effects is that the additive effects have a covariance
structure proportional to the realized additive genetic relationship ma-
trix, whereas the residual genetic effects are independent among lines.
When we arrange the vectors of additive and residual genetic-within-
environment effects ordered as m genotypes within each of p environ-
ments matrices, their covariance structures are:

varðuaÞ ¼ Gea 5 K

varðu�aÞ ¼ Ge�a 5 Im

where K is the m ·m realized genomic relationship matrix estimated
from the marker data described above and Im is an m ·m identity
matrix. For each variance model above, Gea and Ge�a are the p · p
matrices of variances and covariances of additive and residual genetic
effects across environments, respectively. Factor analytic models of
different orders (different k) can be used to model the two genetic
components (Smith et al. 2001). For a factor analytic model, these
matrices are decomposed as

Gea ¼
�
Lp·ka

ea L’
ea   þ  cea

�

Ge�a ¼
�
Le�a
p·k�a

L’
e�a   þ  ce�a

�
:

Here, L is a p · k matrix of p environment loadings for k factors
retained in the factor analytic model, and c is a diagonal matrix of
the p environment specific variances.

A series ofmixedmodels of increasing complexity of theGea andGe�a

terms were fitted to the data. First, we fitted diagonal covariance struc-
tures, in which the genetic variance was allowed to vary among exper-
iments, but genetic effects were uncorrelated between experiments.
Then a sequence of factor analytic models in which the covariances
of genotype effects were allowed to vary within and among experiments
were fitted to the data. Factor analytic models for each combination of
k = 1 or 2 factors for each of the two genetic effects were used (Table 1).
Selection of the final model was performed on the basis of Akaike’s
Information Criterion (AIC); (Akaike 1974), and log likelihood ratio
tests comparing the nested FA models (Stram and Lee 1994). All data
were analyzed using the software package ASReml-R (Butler et al.
2009), in the R environment (R Development Core Team 2012).

Experiment-specific GVs incorporating both additive and residual
genetic effectswere obtained from thefinalmodel for each line following
Beeck et al. (2010). The GV for line i at environment j was estimated
from the random effect solutions in the final model as:

GVij ¼ ûaij þ û�aij (1)

These GVs were used later in cross-validation analyses as the best
estimates of ‘true’ genotypic values at each experiment.
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Additive genomic estimated breeding values (GEBVs) were also
obtained using the samemethods but based only on the additive genetic
component of the model. The GEBV for line i at environment j was
estimated from the random effect solutions in the final model as:

GEBVij ¼ ûaij (2)

Experiments were clustered based on thematrix of genetic correlations
among experiments, using the agglomerative hierarchical clustering
method given in Cullis et al. (2010).

Broad and narrow-sense heritability estimates were calculated from
the final FAmodel (Table 1). Broad-sense heritability (H) for each trait
at each experiment j was calculated following the generalized formula
for unbalanced data in Cullis et al. (2006):

Hj ¼ 12
APPEVGVj

2s2
aj þ 2s�aj2

where APPEVGTj is the average pairwise prediction error variance of
GVs at experiment j (the variance of pairwise GV differences), and s2

aj
ands�aj2 are the additive and residual genetic variance components for
experiment j, respectively. Narrow-sense heritability was calculated
for each trait at each experiment using:

h2j ¼ 12
APPEVGEBVj

2s2
aj

where APPEVGEBVj is the average variance of comparisons between
GEBVs at experiment j, and s2

aj is the additive genetic variance compo-
nent at experiment j. The broad-sense heritabilities for total genotypic
values of lines across all experiments and for genotypic values across
experiments within each of the water deficit and well-watered environ-
ment clusters were also calculated using similar formulae. In these cases,
however, we estimated the additive and residual genetic variances across
experiments from the average of the additive and residual pairwise co-
variance estimates respectively between experiments for the experiments
within each environment cluster (Zila et al. 2013; Isik et al. 2017).

Cross validation of genomic estimated breeding values
Fivefold cross-validation (Ogut et al. 2015; Crossa et al. 2014;
Burgueño et al. 2012; Lorenz et al. 2011) was used to measure
accuracy of breeding value predictions across environments. Lines
were randomly assigned to five subsets for a ‘fivefold’ cross valida-
tion scheme across separate experiments in the model. The final FA
model (Table 1) was fitted to four of the five�80% subsets (‘training
set’) to estimate model parameters and to predict GEBVs for the
remaining subset (‘validation set’) (Equation 2). This procedure was
repeated, holding out a different subset as the validation set each

time. The entire process of allocating lines to folds, estimating
model parameters, and predicting GEBVs was replicated ten times.

The GVs from the full model including all the data (Equation 1) were
considered the best estimates of the true values of total genotypic value for
eachline-experimentcombination.ThecorrelationbetweentheGVswithin
an experiment and the GEBVs for each validation set was estimated. We
refer to these as within-experiment prediction accuracies. In addition, the
ability of experiment-specific GEBVs to predict genotypic values at other
experimentswasestimatedforeachvalidationsetas thecorrelationbetween
theGEBVs for experiment i and theGVs from the fullmodel at experiment
j. We refer to these as across-experiment prediction accuracies.

Relative accuracy of phenotypic value prediction (RAPV) at exper-
iment j measures the relative accuracy of GEBVs for untested lines
compared to the best estimates of their total genetic value within each
experiment using both genomic and phenotypic data:

RAPVj ¼
corrðGEBVij;GVijÞffiffiffiffiffi

Hj
p

In this case, the correlation value is divided by the square root of the
broad-sense heritability estimate to estimate the accuracy of GEBVs
relative to total genotypic value estimation with complete phenotypic
data (Legarra et al. 2008). We also estimated relative accuracy of
breeding value prediction at experiment j (RABV):

RABVj ¼
corrðGEBVij;GVijÞffiffiffiffiffi

h2
p

TheRABV compares the accuracy of GEBVs for untested lines relative
toGEBVsbased on complete data. TheGEBVs aremore informative to
predict gain fromselection after intermating selected lines to generate a
new population of breeding lines.

Data and reagent availability
The supplementary files contain the data used in this study. File S1
contains theSNPgenotype information,File S2contains the relationship
matrix andFile S3 contains aPCAplot of thefirst two eigenvectorsof the
relationship matrix. File S4 contains the phenotype dataset for WSCC.
File S5 is script for the models used for genomic selection and cross-
validation and File S6 contains the cross-validation sets. Supplemental
material available at Figshare: https://doi.org/10.25387/g3.6143243.

RESULTS

Model selection and genotype 3
environment interactions
The 2-factor FAmodel for both additive and residual variance matrices
was selected as the best model using the AIC (Table 1) and used for

n Table 1 Factor analytic models fitted to the dataset for genomic prediction. Increasing order factor models were assessed using AIC
and log likelihood ratio tests comparing nested models. The model with additive: FA2 and residual genetic: FA2 covariance structure
shows a significant improvement in fit from both additive: FA1 / residual genetic: FA1 and additive: FA1 / residual genetic: FA2 models and
is referred to as the final model. Higher order models were not possible to fit with the computing resources available

Covariance
structure -
Additive

Covariance
structure - Residual

genetic
REML Log
Likelihood AIC Parameters

Full / reduced
model parameters

difference

Log likelihood
ratio test model
comparison:

Critical
value P value

DIAG DIAG 4037.480 28042.956 16 — — — —

FA1 FA1 4405.638 28747.276 32 16 to DIAG/DIAG 736.32 2.389·102146

FA1 FA2 4465.921 28853.842 39 7 to FA1/FA1 120.57 5.840·10223

FA2 FA1 4453.568 28829.136 39 7 to FA1/FA1 95.86 7.708·10218

FA2 FA2 4473.418 28854.836 46 7 to FA1/FA2 14.99 0.0361
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genomic prediction. The proportion of within-experiment total geno-
typic variance that was due to additive polygenic variance in this model
ranged from 15 to 50% across experiments (Table 2). In the selected
model, environments clustered into two distinct environmental groups
based on the correlations between total genetic effects (GV) across
experiments (Figure 1). The groups consisted of a well-watered envi-
ronment cluster, including the 2009 irrigated experiments and all
2010 experiments, and a water deficit environment represented by
the two 2009 rainfed experiments. This corresponded with environ-
mental conditions encountered in this study. In 2009, both sites expe-
rienced below average rainfall, and warmer air temperatures,
particularly during the later stages of grain-filling. Weather conditions
throughout 2010 were cooler than average, with substantially above
average rainfall during late spring (coinciding with the crop grain-
filling period). Thus the non-irrigated experiments in 2010 did not
suffer water deficit.

Averaged across experiments in each environment cluster, the pro-
portion of total genetic variance that was additive was 36% for the well-
watered environment cluster, and 23% for thewater deficit environment
cluster (Table 2). Very similar patterns of relationships and clustering
among environments were observed based on the correlations of ad-
ditive-only genetic effects between environments (Figure 1), although
the 09YANA_RFD experiment was less distinct from the well-watered
cluster in this case than when the total genotypic correlations were
considered. Correlations between the residual genetic effects of differ-
ent environments also revealed a similar pattern, but with a slightly
weaker correlation between 09COLE_IRR and the other well-watered
environment experiments (Figure 1). The 09COLE_IRR experiment
was the only experiment to be grown on raised beds with all other
irrigated experiments utilizing a flat field layout.

Cross-validation of genomic estimated breeding values
The predictive ability (Sallam et al. 2015) of experiment-specific GEBVs
was measured as the average correlation between experiment-specific
GEBVs in the test sets and experiment-specific GVs estimated for the
same lines when all trait data are used. Within-experiment prediction
abilities ranged from r = 0.474 to 0.535 for the well-watered experi-
ments and from r = 0.445 to r = 0.481 for the water deficit experiments
(Table 2 and diagonal elements in Figure 2). The predictive ability
across experiments within the well-watered environment cluster aver-
aged r = 0.502, and across experiments within the water deficit cluster
was r = 0.455 (Table 2 and diagonal elements of Figure 2). In contrast,
GEBVs specific to an experiment within one cluster had much poorer
predictive ability of GVs in the other cluster. We also estimated the
ability of test set GEBVs specific to one experiment or cluster to predict
GVs based on complete phenotype data in a different experiment or
cluster (the off-diagonal elements of Figure 2). GEBVs for water-deficit
experiments had only a weak correlation with the GVs in the well-
watered environments (average r = 0.196). Similarly, GEBVs for the
well-watered environments had an average correlation of r = 0.211 with
GVs in the water deficit environments. Average GEBVs across all ex-
periments also had low correlation with GVs within the water deficit
environments (r = 0.287).Within each environment cluster, the GEBVs
for individual experiments had moderate correlations with GVs at
other experiments (r = 0.442 to r = 0.536 for the well-watered exper-
iments, and r = 0.400 to r = 0.447 for the water deficit experiments).

The relative accuracy statistics were computedwith both broad-sense
and narrow-sense heritabilities as RAPV andRABV, respectively, so that
ameasureof accuracy relative tophenotypic selectioncanbecompared to
the accuracy relative tobreedingvalueprediction (Table 2).As thebroad-
sense heritability estimates were much higher than narrow-sense, then
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relative accuracy statistics indicate that the efficiency of genotype value
prediction was poor (RAPV ranged from 0.471 to 0.602 at individual
experiments, with a mean of 0.544, Table 2), whereas the relative accu-
racy of breeding value prediction with marker information only com-
pared to complete phenotype data were much higher (RABV ranged
from 0.627 to 0.958 at individual experiments, with a mean of 0.797,
Table 2). The RABV for the water deficit experiment cluster was 1.07, a
surprising but valid result analogous to relative efficiency of selection on
a correlated trait, which can be .1 relative to direct selection.

DISCUSSION

Integration of genomic selection with genotype 3
environment effects
Ourapproach in this studycombines theconceptofaTargetPopulationof
Environments (TPE) in regard to selection (Comstock 1977; Cooper et al.
1997; Basford and Cooper 1998) with genomic prediction methods, and

extends the work of Oakey et al. (2016) to a large field-based multi-
environment trial. The TPE concept applies equally to genomic selection
as phenotypic selection in the face of genotype-by-environment interac-
tions. Our results show that predictive ability depends on the extent and
nature of the genetic correlation between the training and the validation
populations. Heslot et al. (2013) also demonstrated empirically in wheat
that G · E patterns impact genomic selection in the same way that they
impact phenotypic selection. Heslot et al. (2013) also observed that the
main driver of prediction accuracy between environments were G · E
effects and that genomic predictions are specific to the TPE they are
predicted for – conclusions also supported by Lado et al. (2013) and
Oakey et al. (2016), who also showed that multi-year models could give
better prediction accuracy when environmental influence is large.

Genomic predictionmodels based onmulti-environment trials may
involve considerable complexity to allow heterogeneity of genetic
correlations and genetic variances among environments, variable sour-
ces of extraneous non-genetic variation among environments, in

Figure 1 Correlations between total additive and residual genetic GV values in different experiments based on the full data set (above the
diagonal) and correlations between additive GEBVs in different experiments, based on the full data set (below the diagonal). Experiment codes
are given as year-site-irrigation treatment.
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addition tothehighdimensionalityofmarkerdata.Researchersare faced
withmaking choices about modeling greater complexity in the patterns
of genetic correlations among environments vs. greater complexity in
the genetic architecture modeled by marker data, based on tradeoffs
between capturing more signal vs. overfitting and increasing computa-
tional demands as model complexity increases. A variety of modeling
approaches have been proposed, reflecting different choices about
which aspects of model complexity to emphasize. For example,
Sallam et al. (2015) utilized an across-experiments model for TPE
identified as having low G · E so the term in the model was minimized,
whereas Crossa et al. (2010) modeled genetic effects within each envi-
ronment separately. Lopez-Cruz et al. (2015) introduced a model with
common G · E variance for all sets, but allowed variable marker effects
through a Bayesian model. Heslot et al. (2014) and Jarquín et al. (2014)

introduced models that accounted for marker interactions with specific
climate variables, adding another layer of complexity to themodeling of
G · E patterns.

Our focus in this study was to emphasize the modeling of complex
patterns of heterogeneity in the genetic variation expressed within
environments and the pairwise genetic correlations between environ-
ments, alongwith extraneous non-genetic effects.We chose a FAmodel
(Cullis et al. 2010; Smith et al. 2001) that can capture such heteroge-
neity more parsimoniously than fully unstructured models. The pat-
terns of genetic correlations between environments observed in
training data sets and patterns of the accuracy of GEBVs for one site
to predict genetic values at other sites in test sets from the FA model
provide a way of characterizing target environments, still following
the ideas on exploiting G · E to make genetic gains outlined by Byth

Figure 2 Predictive ability of GEBVs average across all experiments, averaged across experiments within each environment cluster (well-watered
or water-deficit), or predicted for each specific experiment. The training set of environments is given by the X axis, and the validation set of
environments is given by the Y axis. Experiment codes are given as year-site-irrigation treatment. Diagonal values represent ability of GEBVs
within a given environment to predict GVs in the same environment. Off-diagonal values represent the ability of GEBVs in a given environment to
predict GVs in a different environment.
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(1981). The environment clusters in this study show that year effects are
more important than location for WSCC (Figure 1), and this observa-
tion is borne out by other G · E studies with similar findings, partic-
ularly for traits where expression is significantly affected by seasonal
conditions (Smith et al. 2015; Chenu et al. 2011; Milgate et al. 2015).

Using factor analytic models for genomic predictions
Heslot et al. (2014) demonstrate a method to predict genotype perfor-
mance in untested environments based on climatic variables. In contrast,
the FA model approach helps breeders to understand the groupings of
environments within the TPE based on their genetic correlations, and
breeders canpredict average performance in subsets of these environments.
Both Burgueño et al. (2012) and Rutkoski et al. (2015) utilized similar FA
models for genomic prediction, however this study shows that the power of
an FAmodel lies in the ability to identify environment subsets based on the
loadings and predict genotype performance more accurately within those
TPE rather than the across-experiments average. Since we predicted values
for untested lines within tested environments, our estimated prediction
abilities are biased upward compared to prediction of untested lines within
untested environments. Our results, which reflect upper bounds on pre-
diction abilities across environments, demonstrate that GEBVs have rea-
sonable accuracy only within a clearly defined cluster of environments, and
have substantially worse prediction accuracy of performance in environ-
ments outside of the group of related environments for which they were
predicted. The FA model permits prediction of genetic values for untested
lines within each site based on the genomic relationships between the
untested and tested lines and also based on the genetic correlations ob-
served among the tested set of environments. The FA model can improve
prediction accuracy within a single site over what is possible from a single-
environment analysis by information sharing among environments with
high genetic correlations (Guo et al. 2013; Cullis et al. 2010; Kelly et al.
2007). In this study, GEBVs averaged across all environments were less
accurate for environment-specific prediction than GEBVs averaged across
subsets of sites within the same environmental cluster (Figure 2).

A drawback to the FA model is that the emphasis on including more
complexity in the modeling of extraneous genetic variation and the
heterogeneity of genetic covariation among environments may limit the
complexity of genetic architecture models that can be tested. The total
genotypic value of each linewasmodeledas the sumof apolygenic additive
effect and a residual genetic effect (after Oakey et al. 2016). Our results
demonstrated that the residual genetic effects were more important than
the additive effects in this case, which greatly limits the effectiveness of
prediction of untested varieties, as those predictions depend only on the
additive effects. The residual genetic effects were modeled as independent
among varieties, such that they cannot contribute to prediction of untested
varieties. Alternative strategies include explicitly modeling epistatic geno-
mic relationships; we attempted this but could not achieve model conver-
gence. Oakey et al. (2016) discuss the implications of including additional
relationship matrices to account for a proportion of non-additive genetic
effects, however they also note the difficulty of fitting several relationship
matrices to a MET. Bayesian models could be fitted to the genomic
relationships, to capture residual genetic relationships and variation
among marker effects, but this approach would be even more computa-
tionally difficult; future research could focus on integrating heterogeneity
of genetic covariances among sites into such models.

Practical application of genomic selection for water
soluble carbohydrate improvement
Breeders focusing on varietal development for target populations of
environments thatmayexperienceabiotic stressesoftenseek to incorporate
resistance to abiotic stresses, sometimes to contribute to grain yield per se,

but also to select for stable grain yield performance in the presence of
variable levels of abiotic stress. Thus, abiotic stress resistance traits can be a
selection target in their own right, especially in situations where G · E
variation is driven by abiotic stresses and resistance to these stresses can
ensure grain yield stability across years. Genomic selectionmay be a good
way to select for abiotic stress traits such as WSCC, especially as a sub-
stitute for resource-intensive phenotypic selection. Levels of WSCC in-
crease and decrease with crop development and growing conditions,
meaning that full expression of the phenotype is not easily captured,
and both wet chemistry and NIRS methods for measuring water soluble
carbohydrates are time consuming and expensive (Gebbing and Schnyder
1999; Ruuska et al. 2006).

We estimated that most of the genotypic variance forWSCCdid not
fit a polygenic additive polygenic model, a surprising result considering
numerous results showing that wheat grain yield is often adequately
described with an additive genetic model (Heslot et al. 2012; Pérez-
Rodríguez et al. 2012; Burgueño et al. 2012). However, other studies of
wheat yield across diverse environments indicate that residual genetic
variation may explain substantial fraction of the total genetic variation
(Cuevas et al. 2017). Because of the prevalence of residual genetic
variance, the GEBVs for WSCC were not very accurate estimates of
total genotypic value, regardless of the information used to compute
them (markers, phenotype records, or both). In this study, residual
genetic effects were modeled by fitting a separate independent random
term for residual genetic effects in addition to the additive effects whose
covariance is proportional to the additive realized relationship matrix
(after Oakey et al. 2016). Total genotypic prediction, which includes
additive and residual genetic effects, is optimal for identifying the best
available lines in a population, but this requires phenotypic records on
each line to be predicted. Potentially, predictions can be improved by
explicit modeling of non-additive as well as additive genetic relation-
ships, with either parametric models including dominance and epistasis
(Muñoz et al. 2014; Su et al. 2012; Da et al. 2014) or non-linear kernel
methods (Gianola and van Kaam 2008). These models would allow
total genotypic values to be predicted on lines in the absence of any
phenotypic records.

If the total genotypic values are not closely correlated with the true
breeding values, they will not be the best predictions to use for parental
selection to generate a new population from intermating, as dominance,
epistatic, andmost other non-additive effects that may contribute to the
residual genetic effects do not contribute to long-term genetic gain over
meiotic outcrossing generations (Hill et al. 2008; Holland 2001; Oakey
et al. 2016; Cockerham 1983; Cockerham and Matzinger 1985).
GEBVs, on the other hand, while they may not be optimal for predict-
ing the best existing lines, should be better estimators of the utility of
lines as parents of new breeding populations. To distinguish the differ-
ent uses of GEBVs in a breeding program, we computed two relative
accuracy statistics that refer to the use of GEBVs to identify optimal
extant lines or to identify lines with better breeding values for use as
parents for intermating to create a new breeding population. Compared
to phenotypic selection the RAPV for the well-watered environment
cluster was 57%, and 51% for the water deficit environment cluster,
indicating our GEBVs are marginal at predicting phenotypic perfor-
mance in these environments for new genotypes (Table 2), and that
genomic selection is unlikely to be a substitute for phenotypic selection
of the best performing lines. In contrast, when compared with true
breeding values for the purpose of selecting new parents and maximiz-
ing genetic gain over time, the relative accuracy (RABV) was higher.
The RABV measures can be coupled with the assumptions of Desta
and Ortiz (2014); Heffner et al. (2010); and Lorenz et al. (2011) suggest-
ing genomic selection is predicted to facilitate a reduction in the breeding
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cycle time of the average wheat breeding program of at least half due to
the ability to select at earlier generations and also in off-season genera-
tions. Therefore, relative to selection using the true breeding values, and
making the assumption of a decrease in the breeding cycle time of 50%,
genetic gain per unit of time from genomic selection in this study is
estimated to be 2 · 78% ¼ 158% for the well-watered environment
cluster and 2 · 107% ¼ 214% for the water deficit environment cluster.
This indicates that genomic selection methods can increase the rate of
genetic gain for WSCC. The challenge in practical terms, as noted by
Cooper et al. (2014), may be in implementing the enabling technologies
needed to make genomic selection work and readily integrated into a
commercial breeding program. Finally, if the ultimate goal of selection is
to improve yield performance within or across abiotic stress environ-
ments, the genotypic and additive genetic correlations of WSCC with
yield and other agronomic traits must be considered. Ovenden et al.
(2017) previously demonstrated significant but relatively low genotypic
correlations between WSCC and yield in this germplasm sample, sug-
gesting that its utility as an indirect selection criterion needs to be
assessed on a case by case basis.

Conclusions
This study provides empirical evidence that genomic selection
methods could improve the rate of genetic gain for carbohydrate
accumulation, provided that the TPE are carefully characterized and
understood, and predictions are restricted to environment subsets of
interest.

With additive variance being low in the models under study, the
importanceof relative accuracy fordifferent genomic selection strategies
becomes apparent. Compared to phenotypic selection, the relative
accuracy of the GEBVs modeled here is low, however the GEBVs more
accuratelymodel the true breeding values. Therefore, genomic selection
couldwell result inhighergeneticgainperunitof timethroughtheability
to better select parents for intermating, and genomic selection may
be a useful tool for making genetic gains in complex abiotic stress
characteristics.
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