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Abstract

Reverse vaccinology is an evolving approach for improving vaccine effectiveness and mini-

mizing adverse responses by limiting immunizations to critical epitopes. Towards this goal,

we sought to identify immunogenic amino acid motifs and linear epitopes of the SARS-CoV-

2 spike protein that elicit IgG in COVID-19 mRNA vaccine recipients. Paired pre/post vacci-

nation samples from N = 20 healthy adults, and post-vaccine samples from an additional N

= 13 individuals were used to immunoprecipitate IgG targets expressed by a bacterial dis-

play random peptide library, and preferentially recognized peptides were mapped to the

spike primary sequence. The data identify several distinct amino acid motifs recognized by

vaccine-induced IgG, a subset of those targeted by IgG from natural infection, which may

mimic 3-dimensional conformation (mimotopes). Dominant linear epitopes were identified in

the C-terminal domains of the S1 and S2 subunits (aa 558–569, 627–638, and 1148–1159)

which have been previously associated with SARS-CoV-2 neutralization in vitro and demon-

strate identity to bat coronavirus and SARS-CoV, but limited homology to non-pathogenic

human coronavirus. The identified COVID-19 mRNA vaccine epitopes should be consid-

ered in the context of variants, immune escape and vaccine and therapy design moving

forward.

Introduction

The humoral immune response to vaccination is thought to be an important component of

protective immunity [1, 2]. The first mRNA vaccines for COVID-19 have been shown to elicit

antibodies with significant neutralizing capacity in vitro and protect against severe disease in

vivo [3–6]. The SARS-CoV-2 spike protein epitopes that induce specific IgG in COVID-19

mRNA vaccine recipients remain incompletely characterized and could form the basis of

future “epitope vaccines” for SARS-CoV-2 [7–9].

Despite limited knowledge of immunogenic SARS-CoV-2 spike epitopes in vaccinated

individuals, immunodominant epitopes in naturally infected COVID-19 patients have been
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identified based on recognition by serum IgG [10–18]. The receptor binding domain (RBD) is

an important region that contains conformational epitopes encoded by non-contiguous

regions of the spike protein [19]. Dominant linear epitopes are located in the C-terminal

domains (CTDs) of S1 and S2, the S1/S2 cleavage site, and the fusion peptide region of S2 [10–

16]. Importantly, dominant linear epitopes and specific conformational epitopes have been

shown to mediate viral neutralization in vitro [10, 13, 16, 20].

The present study mapped COVID-19 mRNA vaccine epitopes using Serum Epitope Rep-

ertoire Analysis (SERA), a technique based on a high throughput random bacterial peptide dis-

play technology [12]. SERA’s unbiased, whole proteome approach to epitope discovery is ideal

for mapping the targets of humoral responses to vaccination. The primary focus herein is on

de novo responses of naïve individuals, whose immune system’s specificity was not influenced

by prior SARS-CoV-2 exposure. Pre vs. post vaccine serum samples were available for most

participants to help ensure immune specificity was a result of vaccination, not pre-existing

cross-reactivity. Similarities and differences in epitopes induced by mRNA vaccine vs. natural

COVID-19, and their association with viral neutralization are discussed, along with prelimi-

nary findings from vaccinated individuals that previously had COVID-19.

Materials and methods

Blood samples from vaccine recipients

Subjects were working aged adults employed in the health care industry. Blood was obtained

by venipuncture in a serum separator tube (BD Vacutainer1, Franklin Lakes, NJ) and the

serum fraction was separated following centrifugation and stored at -80˚C. Four groups of

samples were studied; (A) N = 20 subjects without prior COVID-19 before immunization, (B)

N = 20 subjects without prior COVID-19 after immunization with the Pfizer-BioNTech

COVID-19 vaccine, (C) N = 8 subjects without prior COVID-19 after immunization with

Moderna vaccine, and (D) 5 subjects with prior COVID-19 immunized with either Pfizer-

BioNTech (N = 2) or Moderna (N = 3). Samples were obtained at time points when anti-spike

IgG levels were significantly elevated, 7–15 days after the 2nd immunization for groups B and

C samples, and 10–17 days after the initial shot for group D, who had prior infection. The

investigation was approved by the Yale University Institutional Review Board (IRB) protocol #

2000027749, and all study subjects provided written informed consent before participating in

the study. Although not actively excluded, none of the subjects reported medical conditions or

taking medications that might influence vaccine responses (e.g. immunosuppressive

biologics).

ELISAs

ELISAs were performed as previously described [21, 22]. Triton X-100 and RNase A were

added to serum samples at final concentrations of 0.5% and 0.5mg/mL respectively and incu-

bated at room temperature (RT) for 30 minutes before use to reduce risk from any potential

virus in serum. 96-well MaxiSorp plates (ThermoFisher Scientific, Waltham, MA) were coated

with 50 μL/well of recombinant SARS Cov-2 spike ectodomain or nucleocapsid protein (Sino

Biological, Wayne, PA) at a concentration of 1 μg/mL in NaCO3 buffer pH 9.6 and incubated

overnight at 4˚C. ELISA plate blocked for 1h at RT with 200 μL of PBS with 3% milk powder.

Serum was diluted 1:100 in PBS with 0.05% Tween20, 1% milk powder and 100 μL was added

for 1 hr at RT. Plates were washed three times with PBS-T (PBS with 0.1% Tween-20) and

incubated with 50 μL of HRP anti-Human IgG Antibody (Pharmingen, 1:2,000) for 1 h at RT.

Plates were developed with 100 μL of TMB Substrate Reagent Set (ThermoFisher) and the

reaction was stopped when an internal pooled serum positive control sample reaches an OD of
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1.0 at 650 nm, by the addition of 2 N sulfuric acid. Plates were then read at a wavelength of 450

nm with 650 nm reference calibration.

Serum Epitope Repertoire Analysis (SERA)

A description of the SERA assay has been previously published [9]. Briefly, serum was incu-

bated with a fully random 12-mer bacterial display peptide library (1×1010 diversity, 10-fold

oversampled) at a 1:25 dilution in a 96-well, deep well plate format. Antibody-bound bacterial

clones were selected with 50 μL Protein A/G Sera-Mag SpeedBeads (GE Life Sciences,

cat#17152104010350) (IgG) final assay dilution 1:100 (ThermoFisher). The selected bacterial

pools were resuspended in growth media and incubated at 37˚C shaking overnight at 300

RPM to propagate the bacteria. Plasmid purification, PCR amplification of peptide encoding

DNA, barcoding with well-specific indices was performed as described. Samples were normal-

ized to a final concentration of 4nM for each pool and run on the Illumina NextSeq500. After

SERA screening, we applied two complementary discovery tools, IMUNE and PIWAS, to

identify antigens and epitopes involved in the SARS-CoV-2 immune response.

PIWAS analysis

We applied the previously published PIWAS method [23] to identify antigen and epitope sig-

nals against the Uniprot reference SARS-CoV-2 proteome (UP000464024) [24]. The PIWAS

analysis was run on the IgG SERA data with a single sample per COVID-19 patient versus 497

discovery pre-pandemic controls, and 1500 validation controls used for normalization. Addi-

tional parameters include: a smoothing window size of 5 5mers and 5 6mers; z-score normali-

zation of kmer enrichments; maximum peak value; and generation of epitope level tiling data.

IMUNE-based motif discovery

Peptide motifs representing epitopes or mimotopes of SARS CoV-2 specific antibodies were

discovered using the IMUNE algorithm as previously described [25]. Peptide patterns identi-

fied by IMUNE were clustered using a PAM30 matrix and combined into motifs. A motif was

classified positive in a given sample if the enrichment was�4 times the standard deviation

above the mean of a training control set. Thirty eight motifs were enriched in 406 unique con-

firmed COVID-19 cases from four separate cohorts of COVID patients compared to 1500 pre-

pandemic controls.

Statistical analysis

GraphPad Prism (v8) and Microsoft Excel for Windows 10 (v16.0.13001.20254) were used for

statistical analyses. Statistical differences were analyzed with Mann-Whitney U-test. Nonpara-

metric Kruskal-Wallis test was used to perform multiple comparisons between groups ana-

lyzed. Correction for multiple comparison was performed with Dunn’s test. Logistic

regression or nonparametric Spearman Spearman’s rank correlation were used to compute

associations between pairs of data.

Results and discussion

Identification of amino acid motifs recognized by vaccine-induced serum

IgG

Amino acid motifs preferentially recognized by serum IgG from individuals after COVID-19

mRNA vaccination were readily identified by SERA analysis as previously described [12]. The

relative increase in amino acid motif-specific IgG vs. pre-pandemic controls is shown in Fig 1
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for (A) N = 20 subjects without prior COVID-19 before Pfizer-BioNTech immunization, (B)

the same N = 20 subjects without prior COVID-19 after immunization with the Pfizer-BioN-

Tech COVID-19 vaccine, (C) N = 8 subjects without prior COVID-19 after immunization

Fig 1. Heat map identifying amino acid motifs preferentially recognized by IgG from vaccinated subjects. Amino

acid motifs were identified among the peptides immunoprecipitated by IgG from vaccine recipients using IMUNE

algorithm and the level of enrichment (fold increase) in serum of individual subjects relative to pre-pandemic control

subjects is depicted in the heat map. Samples 1–20 are pre-vaccine and samples 21–40 are the same subjects after

Pfizer-BioNTech COVID-19 mRNA vaccination. Subjects 41–48 are from subjects that received Moderna vaccine.

Samples 49–53 are vaccinated subjects that previously had COVID-19.

https://doi.org/10.1371/journal.pone.0252849.g001
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with Moderna vaccine, and (D) 5 subjects with prior COVID-19 immunized with either Pfi-

zer-BioNTech (N = 2) or Moderna (N = 3) mRNA vaccines. Additional information on the

study subjects and amino acid motifs are provided in S1 and S2 Tables.

Some preferentially recognized motifs share overlapping sequence and their IgG recogni-

tion show excellent correlation (rs >0.9) with each other (S1 Fig). Preferentially recognized

motifs without overlapping amino acids also showed significant (p< 0.001), but more limited

correlation with one another; the most substantial between K[FY][LM]XFXQ and P[EDT]

WRXY had an rs of 0.66 (S2 Fig). There was significant (p< 0.044) but weak to moderate (rs =

0.35–0.46) correlation of ELISA OD against spike antigen with several amino acid motifs, but

no significant correlation with gender (S1 Correlation matrix). A moderate inverse relation-

ship between age and recognition of several amino acid motifs were observed, the most signifi-

cant (p< 0.012) for overlapping amino acid motifs KWXXFQQ and K[FY][LM]XFXQ (rs =

-0.44 see S2 Fig). The preferentially recognized amino acid motifs do not map to the primary

sequence of SARS-CoV-2 proteome but may mimic 3-dimensional epitopes (mimotopes)

formed by non-continuous regions of the spike antigen and are a subset of those preferentially

recognized by IgG from hospitalized COVID-19 patients as previously reported [12, 26].

Identification of linear SARS-CoV-2 spike epitopes

Linear epitopes of COVID-19 mRNA vaccines were identified by analyzing the specificity of

IgG from available pre/post vaccine serum samples, using a protein-based immunome wide

association study (PIWAS) approach as previously described [12, 23]. The linear epitope (LE)-

1 with the highest PIWAS values was also the most commonly recognized by IgG from >2/3

of the vaccinated subjects (Fig 2). LE-1 (aa 558–569) is located in the CTD of the spike S1 sub-

unit and contains the core amino acids present in dominant linear epitopes of COVID-19

patients (S14P5, S1-93, S1-55, S556-570), independently described by several other research

teams, shown in Fig 3 [10, 11, 14, 16, 18]. Previously described epitopes containing the LE-1

core sequence FLPFQQ mediate neutralization in vitro based on studies with epitope-affinity

purified/depleted COVID-19 patient serum, and through competitive inhibition assays with

clinical isolates [10, 16]. We have previously reported a correlation of LE-1 specific IgG in

COVID-19 patients with serum neutralizing titers in vitro [13]. In the present vaccinated pop-

ulation, we observed a significant (p< 0.0004) association of LE-1 recognition with total spike

IgG (ELISA OD) and several different amino acid motifs, with strongest rs values (>0.6)

against overlapping motifs FXXELXX[WY]F and [FY]XX[QE]LXXWF, which contain por-

tions of the FLPFQQ core of LE-1 (S3 Fig).

The linear epitope (LE-2) with the second highest average PIWAS score was recognized by

IgG from 2/3 of the vaccinated subjects (Fig 2). LE-2 (aa 627–638) is also located in the CTD of

S1 and largely overlaps (10/12 amino acids) epitope S1-105, previously defined by Yi et al. (see

Fig 3), based on recognition by serum from naturally infected subjects [13]. S1-105 mediates a

significant portion of COVID-19 patients’ serum neutralizing capacity against a SARS-CoV-2

clinical isolate in limited testing [13]. Recognition of LE-2 (PIWAS score) was significantly

correlated with that of each of the 10 amino acid motifs defined in Fig 1 and previously pub-

lished [12], but not age, gender or total spike IgG.

A third linear epitope (LE-3) in the S2 CTD, near the 2nd heptad repeat region (HD2), is

shared by a majority of vaccinated individuals. LE-3 (aa 1148–1159) contains the core amino

acids present in dominant linear epitopes S2-78, S2-47, and 1147–1158 independently

described by three other research teams in COVID-19 patients and shown in Fig 3 [10, 11, 13,

14]. These epitopes mediate neutralization in vitro, have been experimentally observed in

SARS-CoV [20], and predicted bioinformatically for SARS-CoV-2 [27–29]. Recognition of
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LE-3 (PIWAS) was significantly (p< 0.0003) associated with that of overlapping motifs P

[EDT]WRXY and PXWR[IV]Y (r> 0.58), but not age, sex or total IgG. An adjacent linear epi-

tope, LE-4, spanning amino acids 1164–1173 is also recognized by IgG from more than ½ of

the vaccinated subjects (Figs 2 and 4).

Additional linear spike epitopes recognized by IgG from multiple post mRNA vaccinated

subjects include 12-mers centered around spike amino acids 580, 610, 665, and surrounding

the S1/S2cleavage loci ~ 685–700 (Fig 4). A complete list of the PIWAS scores for all 12-mer

linear epitopes of the spike protein for each study subjects is provided as S3 Table.

Fig 2. Linear epitope mapping of spike protein in mRNA vaccine recipients. The relative specificty for linear epitopes or PIWAS score (Y-axes, color coded key to

right) are graphed across the spike primary sequence (amino acid numbers on X-axis) for paired samples from subjects# 1–20 in panel A (pre-vaccine) and panel B

(post-vaccine) that received Pfizer-BioNTech vaccine. Panel C shows data from subjects # 21–28, post Moderna vaccine and panel D shows vaccinated subjects# 29–33

that previously had COVID-19.

https://doi.org/10.1371/journal.pone.0252849.g002
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Uniqueness of linear epitopes

Severe outcomes of SARS-CoV-2 infections are thought in part to arise from the novelty of the

virus and the naïve immune status of most humans. The dominant vaccine linear epitopes LE-

1, LE-2, and LE-3 show identity or near identity to bat coronavirus and SARS-CoV, but not

non-pathogenic human coronaviruses (Fig 3). Further homology searches of the linear spike

epitopes identify limited sequence identity outside of organisms to which humans are rarely

exposed, such as thermophilic bacteria (S1 List). The present data support the hypothesis that

humoral immune naivete contributes to SARS-CoV-2’s pathogenicity and identifies specific

deficiencies in the normal adult immune repertoire readily corrected by mRNA vaccination.

IgG responses in mRNA vaccine recipients vs. natural infection

We compared the linear epitope recognition by IgG from the different groups of vaccinated

subjects in the present study and our prior studies of COVID-19 patients [12]. Similar

Fig 3. Alignment of dominant linear vaccine epitopes with those induced by infection and in other coronaviruses. Alignment of vaccine

epitopes with those previously described in natural SARS-CoV-2 infection (A). Alignment of vaccine epitopes with homologous regions in

other coronaviruses (B). � are spaces included to maximize alignment.

https://doi.org/10.1371/journal.pone.0252849.g003
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specificity for dominant linear epitopes were observed in individuals that received mRNA vac-

cine from Pfizer-BioNTech or Moderna (Fig 4), regardless of prior COVID-19 status. How-

ever, vaccinated individuals with prior COVID-19 exhibited significantly (p< 0.001) higher

PIWAS values for dominant epitopes LE-1, LE-2, and LE-3 than those without prior infection.

Vaccine-induced IgG specificity overlaps substantially with that of COVID-19 patients [12]

and can occur de novo, or augment naturally occurring responses (see pre/post vaccine exam-

ples in S4 Fig). The most notable difference in specificity between vaccine vs. infection induced

IgG, is the lack of specificity for linear epitopes in the fusion peptide region of the spike-S2

domain by vaccine-elicited IgG. Despite the induction of specific IgG to the S2 fusion peptide

domain in natural SARS-CoV-2 infection, vaccination does little to boost this response com-

pared to the dominant linear epitopes (Fig 4 and S4 Fig).

Fig 4. Dominant linear epitopes in COVID-19 mRNA vaccine recipients. The relative IgG binding (average PIWAS, Y-axes) to different linear epitopes (spike

amino acid number, X-axis) is highlighted for the C-terminal domains of S1 (A) and S2 (B). Data are from N = 20 Pfizer-BioNTech, N = 8 Moderna vaccine

recipients, and N = 5 prior COVID-19 patients that received either Pfizer or Moderna vaccine as labeled in the key in upper right. The red line corresponds to the

95% quantile PIWAS score for a prior cohort of COVID+ subjects [12]. Note the highest PIWAS scores for LE-1 and LE-2 as labeled and limited vaccine induced

IgG towards fusion peptide region, aa 788–806 [30].

https://doi.org/10.1371/journal.pone.0252849.g004
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RBD epitopes

This study did not identify vaccine epitopes of the spike RBD domain, which is a major target

for neutralizing antibodies in natural infection. The findings are consistent with prior reports

that did not detect spike RBD linear epitopes and may be due to multiple reasons including

limitations in sensitivity and frequency/sample size, as well as the RBD’s complex secondary

structure, which is thought to form immunogenic 3-D conformations, or non-continuous epi-

topes [11, 13, 17, 31]. RBD specific antibodies are a minor proportion of total anti-spike IgG

and linear RBD epitopes are not prominent IgG epitopes in natural SARS-CoV-2 infection

[12, 13, 32]. Nonetheless, the RBD is an important target of neutralizing antibodies that

develop in vivo during natural infection [33], and possibly a driver for the evolution of muta-

tions given its critical role in the virus life cycle [34, 35]. Many of the SARS-CoV-2 variants

that have evolved to date contain mutations that affect the RBD and result in decreased neu-

tralization by RBD-specific antibodies [36], but not mAbs that bind outside the receptor-bind-

ing motif [37, 38]. In this context dominant linear neutralizing epitopes may provide an

increased role in immunity and compensate for loss of neutralization activity due to decreased

IgG recognition of variant RBDs, and perhaps contribute to current mRNA vaccine efficacy in

populations with high prevalence of B.1.1.7 and B.1.351 variants [39]. Mutations that result in

escape from dominant linear epitopes outside the RBD might also adversely affect host immu-

nity and vaccine efficacy, particularly if compounded by RBD escape variants. It is thus impor-

tant to be vigilant in surveillance for immune escape from dominant linear epitopes as well as

conformational RBD affected epitopes in new variants.

Strengths and weaknesses of the study

The study’s strengths and weaknesses should be recognized when considering the significance

of the findings. The strengths include the comprehensive coverage of the peptides used for epi-

tope mapping through bacterial display, and the availability well-defined clinical specimens

including pre vaccine samples as internal controls. The initial focus on pre/post vaccine

responses among the first vaccine recipients locally, who received Pfizer-BioNTech, was ulti-

mately extended to include individuals immunized with Moderna vaccine and to further eval-

uate responses of the subjects in our study who previously had natural SARS-CoV-2 infection.

The primary weakness of the study is the limited sample size, particularly of individuals that

received COVID-19 mRNA vaccination after having had natural SARS-CoV-2 infection. Fur-

ther studies will be necessary to determine if the vaccine induced epitope patterns among the

present group of N = 33 subjects similarly predominates in the general population (including

those of different racial and/or ethnic backgrounds) and if so, the role it plays in immunity.

Summary

Spike protein epitopes of COVID-19 mRNA vaccines were identified through immunomics /

reverse vaccinology. Dominant epitopes included specific amino acid motifs that may reflect

3-D conformations and linear epitopes of the spike protein, particularly in the C-terminal

domain of S1. COVID-19 mRNA vaccine epitopes share identity with bat coronavirus, SARS-

CoV (but not the spike protein of non-pathogenic human coronaviruses), and epitopes that

trigger IgG during natural SARS-CoV-2 infection, which have been previously associated with

SARS-CoV-2 neutralization [10, 13, 16, 20]. The finding of increased IgG response in vacci-

nated individuals with prior infection (vs. naïve individuals) is consistent with previous reports

and highlights the effectiveness of “booster shots” towards robust humoral immunity [40]. In

summary, we identified epitopes of COVID-19 mRNA vaccines that trigger specific IgG

responses previously associated with SARS-CoV-2 neutralizing activity and which may form
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the basis of future diagnostics, therapeutics, and focused vaccine development (e.g., multiva-

lent peptide).
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