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Purpose: Marked extracellular matrix (ECM) remodeling occurs in the human optic nerve head in primary open angle
glaucoma (POAG). The glial fibrillary acid protein (GFAP) negative lamina cribrosa cell may play an important role in
this remodeling process. We report the first study of global and ECM-focused gene transcription differentials between
GFAP-negative lamina cribrosa (LC) cells from normal and POAG human donors.

Methods: GFAP-negative LC cell lines were generated from the optic nerve tissue of four normal (n=4) and four POAG
(n=4) human donors. Using Affymetrix U133 A arrays the transcriptional profile between the normal and diseased groups
were compared. Bioinformatic analysis was performed using robust multichip average (RMA Express) and EASE/David.
Real time TagMan PCR and immunohistochemistry analyses were performed to validate the microarray data.

Results: 183 genes were upregulated by greater than 1.5 fold and 220 were down regulated by greater than 1.5 fold in the
POAG LC cells versus normal controls. Upregulated genes in POAG LC cells included, transforming growth factor beta
1 (TGFp1), secreted acid protein cysteine rich (SPARC), periostin (POSTN), thrombospondin-1 (THBS1), cartilage linking
protein-1 (CRTL-1), and collagen type I (COL1AI), collagen type V (COL5A41), and collagen type XI (COLI1AI).
Downregulated ECM genes in POAG included fibulin 1 (FBLNI), decorin (DCN), and collagen type XVIII (COL18A1).
All TagMan PCR validation assays were significant (*p<0.05) and consistent with the array data. Immunohistochemistry
of one target (periostin) confirmed its differential expression at the protein level in POAG optic nerve head tissue compared
with non-glaucomatous controls. Functional annotation and over-representation analysis identified ECM genes as a
statistically over-represented class of genes in POAG LC cells compared with normal LC cells.

Conclusions: This study reports for the first time that POAG LC cells in-vitro demonstrate upregulated ECM and pro-
fibrotic gene expression compared with normal LC cells. This may be a pathological characteristic of this cell type in
POAG in-vivo. We believe that the LC cell may be a pivotal regulator of optic nerve head ECM remodeling in POAG

© 2009 Molecular Vision

and an attractive target for molecular therapeutic strategies in the future.

Primary open angle glaucoma (POAG) is a sight
threatening progressive optic neuropathy affecting 60 million
people world wide [1]. Raised intraocular pressure (IOP) and
reduced optic nerve head vascular perfusion are proposed risk
factors for the development of this disorder [2,3]. One of the
key pathological characteristics of POAG is fibrotic
extracellular matrix (ECM) remodeling of the optic nerve
head [4]. These ultrastructural changes include increased
deposition of the proteins collagen I, IV and VI in addition to
the synthesis of dysfunctional forms of elastin fiber [5]. This
disturbed ECM metabolism is particularly obvious in the
lamina cribrosa layer, where it is suspected of undermining
the overall structural integrity of the optic nerve head (ONH)
[6]. Mathematical models predict that chronically raised
intraocular pressure above 30 mmHg will markedly compress
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the lamina cribrosa which may account for the characteristic
'cupped’ morphology of the glaucomatous ONH [7].
Similarly, in-vivo primate models of POAG confirm this
compression of the lamina cribrosa with consequent arrest of
axoplasmic flow within its constituent retinal ganglion cell
axons [8].

While the existence of ECM remodeling in the
glaucomatous ONH is well documented, other aspects of the
relevant molecular mechanism are still under study. A major
area of interest centers on identifying the cell (or cells)
responsible for producing this aberrant lamina cribrosa ECM
[9]. One member of the glial cell population of the ONH that
is emerging as a likely candidate is the GFAP-negative lamina
cribrosa (LC) cell [10]. The LC cell is of relevance here
because it bears similarities to myofibroblastic cells known to
be responsible for fibrotic disease development elsewhere in
the human body [11]. These similarities include constitutive
expression of alpha-SMA, elastin, collagen type I, and
fibronectin [12]. In addition, we have previously shown that
the LC cell's capacity for TGF-f driven release of major
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modulators of fibrosis such as connective tissue growth factor
(CTGF) and platelet derived growth factor-alpha (PDFG-
alpha), points to a potentially pivotal role for this cell type in
generalized wound healing in the ONH [13].

Other lines of enquiry have focused on the triggers for
cellular release of fibrotic tissue and remodelling enzymes in
the lamina cribrosa in POAG. In addition to molecular stimuli
such as TGF- B, important roles for mechanical strain and
hypoxia have been proposed in this context [14,15]. However,
significant interplay between these diverse stimuli is a likely
imperative in dictating the final glaucomatous phenotype. In
probing the global gene expression changes in POAG LC cells
we intended to search for genes concerned with fibrotic ECM
changes but also others relevant to a more global pathological
mechanism of POAG where neurodegeneration, hypoxic
stress and cellular mechanical resilience may play a role. In
this study, microarray analysis was used to define for the first
time, a baseline global and ECM gene expression differential
between POAG and normal LC cells. In so doing, a panel of
established and potentially novel modulators of glaucomatous
optic nerve head molecular pathology were identified.

METHODS

In-vitro lamina cribrosa (LC) cell culture: Twelve primary
GFAP-negative lamina cribrosa (LC) cell lines were
generated from human optic nerve head explants as described
previously and supplied by Alcon Research Labs at Fort
Worth, TX [12]. Six normal LC cell lines were from four
donors with no history of eye disease and six POAG LC cell
lines were from four donors with a documented history of
POAG (Figure 1A,B). Cultures were maintained in DMEM
(Sigma, Dorset, UK) supplemented with 10% fetal calf serum,
penicillin (100 U/ml) and streptomycin (100 pg/ml) in a
humidified incubator containing 5% C0O2/95% air at 37 °C.
All cells maintained their broad polygonal morphology during
propagation in vitro and were used between passages 4 and 6.
The normal LC cells and POAG LC cells were cultured until
approximately 90% confluent on 100 mm (p100) plates. The
cells were then serum starved for 24 h before being harvested
for extraction of total cellular RNA.

Oligonucleotide microarray analysis: RNA isolation, cDNA
synthesis, in vitro transcription and microarray analysis were
performed as described previously [16]. Briefly, total RNA
was isolated from all LC cells using the RNeasy minicolumn
protocol (Qiagen, Valencia, CA). cDNA was synthesized
from total RNA using SuperScript Choice Kit (Invitrogen,
Paisley, UK). Biotin labeled cRNA was prepared from
template cDNA followed by fragmentation and hybridization
to Affymetrix HG-U133A arrays as per the Affymetrix
protocol (Affymetrix, Santa Clara, CA). Arrays were then
washed and fluorescently labeled before scanning with a
confocal laser (Affymetrix, CA). Two separate microarray
analyses (n=2) using separate human donors were performed
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for this study. The microarray experimental study design is
illustrated in Figure 1. For microarray analysis 1 (Figure 1A),
RNA from three separate normal and three separate POAG
donors were pooled to one 'normal' and one 'POAG'
microarray respectively. For microarray analysis 2 (Figure
1B), RNA from a fourth normal donor was pooled to a second
‘normal’ micorarray and RNA from a fourth POAG donor was
pooled to a second ‘POAG’ microarray. A total of four
microarrays were used (two normal and two POAG).

Image files were obtained through Affymetrix MAS 5.0
software. Array normalization and pre-processing was
performed using Robust multichip average (RMA) to allow
global comparison of all four LC cell microarrays. RMA is a
function within R statistical software that analyses directly
from the Affymetrix microarray *.cel image file [17]. R v2.2
running on Macintosh v10.4 operating system was used with
the installed component packages Affy v1.8.1, Tools v2.2 and
Biobase v1.8. RMA consists of several steps to background
adjust, quantile normalize, log transform and summarize the
gene expression values. Background adjustment compensates
for non-specific cRNA/probe binding. The average of the
lowest 2% of probe cell values in a region of the microarray
is taken as the background value for that region and subtracted
from all values in that region. There were 16 such regions on
each HG-U133A microarray used. Quantile normalization
unifies perfect match cRNA/target probe distributions across
the arrays. This minimises the effects of variation in the
amounts of RNA wused, the rates of the microarray
hybridization reactions and the conditions of hybridization
within the Affymetrix hybridization oven. The final step,
summarization, median polishes the Log Base2 transformed
probe signal level data. Output from this analysis was
exported in a *.csv file format and filtered using Microsoft
Excel. Probe sets with low level expression intensities of less
than 6.5 were removed from the microarrays and the
remaining highly expressed probe set values in both the
normal LC cell and POAG LC cell arrays were subtracted to
calculate a signal log ratio (SLR). Genes with SLRs greater
than +0.5 or less than —0.5 (+1.5 fold change) were taken to
identify the reliably differentially expressed genes between
normal and POAG LC cells [18].

Bioinformatic analysis of microarray data: The filtered group
of genes with signal log ratios (SLR) of greater than +0.5 or
less than —0.5 were annotated and arranged into biologically
relevant categories using NIH EASE software. The NIH
Expression Analysis and Systematic Explorer (EASE) can
identify themes of gene expression within a data set[19]. More
precisely EASE uses a variation of the Fisher exact probability
(EASE score) to rank functional gene clusters by statistical
over-representation (overexpression) by examining the
number of individual genes in specific categories relative to
all the genes in the same category available for assay on the
HG-U133A microarray. EASE converts Affymetrix probe
IDs to LocusLink numbers, ensuring that a single gene
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Figure 1. Microarray assay
experimental design. For microarray
analysis 1 (A), RNA from three separate
normal (n=3) and three separate POAG
(n=3) donor LC cell lines were pooled
to individual 'mormal' and 'POAG'
microarrays respectively. In microarray
analysis 1 LC cells from the normal and
POAG donors were passaged in a 1:1
ratio. For microarray analysis 2 (B) a
fourth normal and a fourth POAG donor
provided RNA which was pooled to a
second ‘normal’ and a second ‘POAG’
microarray respectively. In microarray
analysis 2 LC cells from the normal and
POAG donors were passaged in a 1:3

RNA extracted and pooled
to one microarray
designated 'normal’

RNA extracted and pooled
to one microarray
designated 'POAG’

ratio. All four arrays were then
/ normalized together and compared
using Robust Multichip Average
\ (RMA) software. The LC cells used

were at passages 5 and 6. NLC=normal
lamina cribrosa, GLC=POAG lamina

cribrosa.
RNA extracted and pooled
to one microarray
designated ‘normal’

RNA extracted and pooled
to one microarray
designated 'POAG’

represented by more than one identifier (as may occur in
GenBank) receives only one vote for each of its ontological
categories. The statistically overexpressed gene categories in
POAG LC cells versus normal LC cells were separated into
three broad components of (1) biologic process (2) molecular
function, and (3) cellular component.

Quantitative real-time PCR validation of microarray data:
The normal versus POAG LC cell array data was validated as
follows. Total RNA (3 pg) was used from three normal (n=3)
and three POAG (n=3) LC cell lines to synthesize first-strand
cDNA using random hexamers and SuperScript II reverse

transcriptase (Invitrogen, Paisley, UK). The experimental
design for these assays is illustrated in Figure 2. The six cDNA
samples (n=3 normal, n=3 POAG) were used for six
individual quantitative real-time PCR amplification assays for
9 gene targets with TagMan™ chemistry (Applied
Biosystems, Foster City, CA; Figure 2). The fluorogenic
probe and sequence specific primers for cartilage linking
protein 1 (CRTL-1), sulfatase 1 (SULFI), bone morphogenetic
protein-1 (BMP-1), dystrophin (DMD), thrombospondin 1
(THBS1), periostin (POSTN), neuritin 1 (NRNI), and
prostaglandin D2 synthase (P7TGDS) with the endogenous
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Figure 2. PCR validation assay
experimental design. Total RNA (3 ug)
was used from three normal and three
POAG LC cell lines to synthesize first-
strand cDNA. The six cDNA samples
(n=3 normal, n=3 POAG) were used for
six individual quantitative real-time
PCR amplification assays (to 9 targets)
with TagMan™ chemistry.

cDNA synthesized for PCR to 9 targets (n=2)

control 18S rRNA were designed and optimized as pre-
formulated assay reagents (Assay-on-Demand, Applied
Biosystems). Duplicate cDNA template samples were
amplified and analyzed in the Prism 7900HT sequence
detection system (Applied Biosystems). Thermal cycler
conditions were 10 min at 95 °C followed by 40 cycles of 30
s at 95 °C to denature the DNA and 30 s at 60 °C to anneal
and extend the template. A standard curve of cycle thresholds
using serial dilutions of cDNA samples were established and
used to calculate the relative abundance of the 9 target genes
between normal LC cell and POAG LC cell samples. Values
were normalized to the relative amounts of 18S mRNA, which
were obtained from a similar standard curve.

Immunoflourescence histochemistry: Eyes from three human
donors were obtained from regional eye banks and placed in
4% neutral buffered formalin within 4 h of death. Two of the
donors had a documented history of glaucoma. The third
donor had no history of ocular disease (normal control). The
posterior segments were embedded in paraffin and 6 um optic
nerve head sections were cut and mounted on glass slides.
After paraffin removal, the tissue was quenched for aldehydes
by treatment in a 0.05 M glycine (Sigma, Dorset, UK) solution
for 15 min. Nonspecific binding sites were then blocked for
15 min with phosphate buffered saline (PBS) solution
containing 1% BSA and 1% serum from the species (rabbit)
in which the secondary antibody was raised. The slides were
washed in PBS before incubation with a mixture of anti-
Periostin antibody (diluted 1:25 in PBS; Abcam, Cambridge,
MA) at4 °C overnight. The sections were then washed 3 times
in PBS. For the detection of periostin (POSTN), the sections
were incubated with Alexa Fluor-488 labeled anti-rabbit IgG
for 1 h at room temperature (RT) (secondary antibody was
obtained from Molecular Probes, Leiden, The Netherlands).
The tissue nuclei were then DAPI stained (300 nM in water)
for 5-10 min. Images were captured with a Nikon Microphot
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FXA (Nikon, Inc., Melville, NY) equipped with a SenSys
CCD camera (Photometrics, Tucson, AZ). Images were
deconvoluted using Scanalytics IPLAB (Scanalytics, Fairfax,
VA) and Vaytek Microtome (Vaytek, Fairfield, [A) software.

Statistical analysis: Data from real time PCR assays were
summarized as the mean from three separate experiments
(n=3). The paired student ¢-test was used to analyze the
statistical significance (*p<0.05) of differences between mean
values.

RESULTS

Global and ECM transcription differential between POAG
and normal LC cells: The pair-wise comparison of RMA
normalized expression values for all 22,283 mRNA
transcripts assayed in the two normal and two POAG
microarrays are shown in Figure 3. Microarray analysis 1 is
shown in Figure 3A and microarray analysis 2 is shown in
Figure 3B. 183 transcripts were upregulated by >+0.5 SLR
and 220 were down regulated by <—0.5 SLR in the POAG LC
cell transcriptome versus the normal. In each gene
comparison, at least one of the probesets had an RMA signal
intensity greater than or equal to 6.5. These data are freely
available for download at the Gene Expression Omnibus
(GEO) database accessions (GSE13534). Appendix 1
summarize the pattern of change within the major gene
categories classified on the basis of known function and
statistically significant over representation. Among the
functional categories most significantly expressed were
extracellular matrtix (ECM) (EASE score <0.0001), collagen
(EASE score <0.05), and extracellular space (EASE score
<0.05).

Table 1 highlights 50 (25 upregulated and 25 down
regulated) of the genes whose mRNA levels differed most
between POAG and normal LC cells. Among the 25 most
upregulated genes in POAG LC cells were periostin
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Figure 3. Scatter plot matrices of the two
biologically  replicated microarray
analyses. Panel A shows microarray
analysis 1. Panel B shows microarray
analysis 2. In each scatterplot the POAG
LC cell versus normal LC cell
microarray expression data following
normalization with RMA is shown. All
22,283 Log base2 transformed probe
(gene) signal intensities (range 0 - 14)
for the normal LC arrays are plotted on
the x-axes and the corresponding value
(range 0 - 14) for the POAG LC arrays
on the y-axes. For each probe (point), its
position relative to the diagonal identity
line (red) directly relates the ratio of
expression in POAG versus normal
control. Probes that appear above the
identity were overexpressed in POAG
LC cells (upregulated); probes that
appear below the diagonal were
overexpressed in the normal LC cells
(down regulated). Probes with identical
expression levels in both POAG and
normal LC cells appear along or on the
identity line.

(POSTN; +3.0 SLR), cartilage linking protein 1 (CRTL-1;
+1.8 SLR), dystrophin (DMD; +2.0 SLR), Rho GDP
dissociation inhibitor beta (ARHGDIB; +1.1 SLR), sulfatase

1 (SULFI;+1.1 SLR), thrombospondin-1 (THBS;0.8 SLR),
and bone morphogenetic protein-1 (BMP-1; +0.7 SLR).
Among the 25 most down regulated genes in POAG were
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TABLE 1. FIFTY OF THE MOST UPREGULATED AND DOWN-REGULATED PROBE SETS (GENES) IN POAG LC CELLS VERSUS NORMAL LC CELLS.

Mean normal LC array Mean POAG LC array SLR
PROBE ID GENE signal (n=2) signal (n=2) (n=2)
210809 _s_at periostin 7.7 10.7 3.0
212951 at G protein-coupled receptor 116 4.5 6.9 2.5
203881 _s_at dystrophin (muscular dystrophy, Duchenne and Becker types) 5.5 7.5 2.0
205523 at cartilage linking protein 1 4.7 6.5 1.8
203441 _s_at cadherin 2, type 1, N-cadherin (neuronal) 6.2 7.8 1.6
201150_s_at tissue inhibitor of metalloproteinase 3 (TIMP-3) 7.3 8.6 1.3
206046 _at a disintegrin and metalloproteinase domain 23 53 6.6 1.3
200974 at actin, alpha 2, smooth muscle, aorta 10.2 11.5 1.2
212572 at serine/threonine kinase 38 like 6.7 7.8 1.2
215646_s_at chondroitin sulfate proteoglycan 2 (versican) 7.3 8.4 1.2
202363 _at sparc/osteonectin, cwev and kazal-like domains proteoglycan (testican) 8.0 9.1 1.1
202620_s_at procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2 6.9 8.0 1.1
201310_s_at chromosome 5 open reading frame 13 8.4 9.5 1.1
212354 at sulfatase 1 7.5 8.6 1.1
201288 at Rho GDP dissociation inhibitor (GDI) beta 5.8 6.9 1.1
203440_at cadherin 2, type 1, N-cadherin (neuronal) 8.0 9.0 1.0
211356 _x_at leptin receptor 5.5 6.5 1.0
221011 _s_at likely ortholog of mouse limb-bud and heart gene 6.8 7.7 0.9
210372 s_at tumor protein D52-like 1 7.8 8.7 0.9
218717 _s_at myxoid liposarcoma associated protein 4 6.8 7.6 0.8
213869 _x_at Thy-1 cell surface antigen 6.7 7.5 0.8
217853 _at tensin-like SH2 domain-containing 1 6.8 7.6 0.8
201110_s_at thrombospondin 1 8.8 9.6 0.8
201109_s_at thrombospondin 1 9.8 10.5 0.8
205574 x_at bone morphogenetic protein 1 72 7.9 0.7
203540_at glial fibrillary acidic protein (GFAP) 4.0 4.0 0.0
212187 x_at prostaglandin D2 synthase 21 kDa (brain) 8.9 7.2 -1.7
213880 _at G protein-coupled receptor 49 6.8 5.5 -1.3
209081 _s_at collagen, type XVIII, alpha 1 7.5 6.1 -1.3
204897 _at prostaglandin E receptor 4 (subtype EP4) 6.7 5.4 -1.3
212279 at hypothetical protein MAC30 7.3 6.0 -1.3
202437 s_at cytochrome P450, family 1, subfamily B, polypeptide 1 8.9 7.6 -1.3
217997 at pleckstrin homology-like domain, family A, member 1 6.6 53 -1.3
212386 _at transcription factor 4 7.5 6.4 -1.1
209160_at aldo-keto reductase family 1, member C3 6.8 5.6 -1.3
215034 s_at transmembrane 4 superfamily member 1 8.8 7.6 -1.3
219064 at inter-alpha trypsin inhibitor heavy chain precursor 5 7.5 6.3 -1.2
206373 _at Zic family member 1 (odd-paired homolog, Drosophila) 6.9 5.7 -1.2
214022 s_at interferon induced transmembrane protein 1 (9-27) 72 6.0 -1.2
201525 at apolipoprotein D 6.9 5.7 -1.1
212730 _at desmuslin 72 6.1 -1.1
204249 s _at LIM domain only 2 (rhombotin-like 1) 6.5 5.1 -14
209466 _x_at pleiotrophin 8.0 6.9 -1.1
202434 s _at cytochrome P450, family 1, subfamily B, polypeptide 1 6.7 5.6 -1.0
213891 _s_at transcription factor 4 72 6.2 -1.0
218625_at neuritin 1 7.1 6.2 -1.0
208791 _at clusterin 8.0 7.1 -0.9
202075 _s_at phospholipid transfer protein 6.9 6.0 -0.9
209335 _at decorin 7.7 6.9 -0.9
204987 _at inter-alpha (globulin) inhibitor, H2 polypeptide 6.2 5.4 -0.9
212992 at chromosome 14 open reading frame 78 7.9 7.2 -0.8

Leftmost column: Affymetrix probe IDs; center column: gene names; right most columns: RMA normalized gene signal
intensities for normal (n=2) and POAG (n=2) and calculated signal log ratio changes for each gene. Probe IDs were annotated
by uploading tab delimited *.txt files of the IDs and signal log ratios to the NIH DAVID software website as described in the
Methods section. Genes in bold were validated by real time PCR. Confirmation of the GFAP-negativity of the normal and POAG

LC cells is shown by low signal levels for GFAP.

neuritin 1 (NRNI; —1.0 SLR) and prostaglandin D2 synthase
(PTGDS; —1.7 SLR). The ECM gene category, which was
significantly overexpressed in POAG versus normal
contained 23 genes. These ECM genes are listed in Table 2.
The proteins of these ECM genes have previously been
documented in POAG in the lamina cribrosa, e.g., collagen
type I (COL1AI;+0.6 SLR), collagen type V (COL5A1; +0.5
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SLR) and collagen type XI (COLI1A41; +0.5 SLR). Notable
also were ECM genes or ECM modulating genes not
classically associated with POAG changes in the optic nerve
head such as tissue inhibitor of matrix metalloproteinase-3
(TIMP-3; +1.3 SLR), decorin (DCN; —0.9 SLR), versican
(VCAN; +1.2 SLR), lysyl oxidase (LOX; +0.7 SLR), and
secreted acid protein cysteine rich (SPARC; +1.1 SLR).
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TABLE 2. EXTRACELLULAR MATRIX (ECM) PROBE SETS (GENES) THAT WERE DIFFERENTIALLY EXPRESSED IN POAG LC CELLS VERSUS NORMAL LC
CELLS.

PROBE ID GENE
210809 s at osteoblast specific factor 2 (periostin)
203881 s at dystrophin
205524 s_at cartilage linking protein 1
201150 s _at tissue inhibitor of metalloproteinase 3 (TIMP-3)
215646 s _at chondroitin sulfate proteoglycan 2 (versican)
sparc/osteonectin, cwcv and kazal-like domains
202363 at proteoglycan
211571 s _at chondroitin sulfate proteoglycan 2 (versican)
201110 _s_at thrombospondin 1
204298 s at lysyl oxidase
EGF-containing fibulin-like extracellular matrix
201842 s at protein 1
201506 at transforming growth factor, beta-induced, 68 kDa
202311 s _at collagen, type I, alpha 1
212667 at secreted protein, acidic, cysteine-rich (osteonectin)
212488 at collagen, type V, alpha 1
209278 _s_at tissue factor pathway inhibitor 2
204320 at collagen, type XI, alpha 1
205200_at tetranectin (plasminogen binding protein)
209081 s at collagen, type XVIII, alpha 1
203886_s_at fibulin 2
211343 s at collagen, type XIII, alpha 1
209335 at decorin
202995 s at fibulin 1
212713 at microfibrillar-associated protein 4

Mean normal LC array Mean POAG LC array SLR
signal (n=2) signal (n=2) (n=2)
7.7 10.7 3.0
5.5 7.5 2.0
4.7 6.5 1.8
7.3 8.6 1.3
7.3 8.4 1.2
8.0 9.1 1.1
7.8 8.8 1.1
8.8 9.6 0.8
9.5 10.2 0.7
9.8 10.4 0.6
11.1 11.7 0.6
8.7 9.2 0.6
10.1 10.6 0.6
9.6 10.1 0.5
6.9 7.4 0.5
6.8 7.3 0.5
9.1 7.6 -1.4
7.5 6.1 -1.3
8.1 7.1 -1.0
5.7 4.8 -1.0
7.7 6.9 -0.9
6.2 5.5 -0.7
7.2 6.5 -0.7

The individual member genes of the functional family of ECM was annotated in the table above using NIH DAVID software
and it lists ECM genes which were up or down regulated by + 0.5 SLR or greater in POAG LC cells versus normal LC cells.

Validation of the characterization of our LC cells as GFAP-
negative was demonstrated by very low signal detection (less
than 6.5) for GFAP in both of the normal (mean signal 4.0)
and POAG (mean signal 4.0) microarrays (see Table 1).

Validation of POAG versus normal LC cell microarray
analysis using quantitative real time PCR: To validate the
normal versus POAG expression patterns obtained from the
microarray analyses we investigated the expression of 9 genes
using quantitative real time PCR. Given that microarray
experiments yield large amounts of data we focused our real
time PCR analyses on a sample of targets that were members
of the most up or down regulated genes or were members of
the ECM category. The validated upregulated targets were:
periostin (POSTN; 35 fold, *p=0.008), Rho GDP dissociation
inhibitor beta (ARHGDIB; 4.5 fold, *p=0.02), cartilage
linking protein 1 (CRTL-1; 240 fold, *p=0.003), dystrophin
(DMD; 3.2 fold, *p=0.0005), sulfatase 1 (SULFI; 8 fold,
*p=0.006), thrombospondin-1 (THBSI; 1.7 fold, *p=0.02)
and bone morphogenetic protein-1 (BMP-1; 2.0 fold,
*p=0.02). The validated down regulated targets were neuritin
1 (NRNI; 60 fold, *p=0.02) and prostaglandin D2 synthase
(PTGDS; 22 fold, *p=0.02). Table 3 illustrates the results of
these analyses with the corresponding microarray fold
expression changes determined for each gene. All targets
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assayed by real time PCR showed a significant change
(*p<0.05) which was consistent with the direction of change
identified by the microarray analysis.

Immunoflourescence histochemistry: Periostin (POSTN,;
green) immunoreactivity was increased in the lamina cribrosa
of glaucomatous optic nerve tissue sections (Figure 4B)
compared with the normal control sections (Figure 4A). A
representative micrograph is shown in Figure 4. No staining
was evident when the primary antibody was omitted (Figure
4C,D).

DISCUSSION

This study investigated the transcriptional differences
between normal and POAG LC cells which we believe
contributes substantially to current understanding of ECM
remodeling mechanisms in the lamina cribrosa in POAG. We
have established for the first time, a baseline transcription
differential between the normal and diseased state GFAP-
negative LC cell, in terms of both genome-wide and ECM
expression. In addition, our objective was to identify whether
this transcription differential between POAG and normal LC
cells was pro-fibrotic, further supporting the paradigm that LC
cells contribute to ECM remodeling in POAG.
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TABLE 3. VALIDATION OF THE MICROARRAY EXPRESSION PATTERNS OF POAG VERSUS NORMAL LC CELLS BY REAL TIME
QUANTITATIVE PCR.

Gene Microarray analysis Real time PCR
Upregulated in POAG Mean fold change (n=2) Mean fold change (n=3)
periostin 8 35 (*p=0.008)

cartilage linking protein-1 3.5 240 (*p=0.003)
dystrophin 4 3.2 (*p=0.0005)
sulfatase-1 2 8 (*p=0.006)

rho GDP dissociation inhibitor beta 2 4.5 (*p=0.02)
thrombospondin-1 1.7 1.7 (*p=0.02)

BMP-1 1.6 2 (*p=0.02)
Downregulated in POAG Mean fold change (n=2) Mean fold change (n=3)
neuritin-1 2 60 (*p=002)
prostaglandin D2 synthase 3.2 22 (*p=0.02)

Columns show the gene name, the fold expression change (converted from signal log ratio (SLR) using the formula: fold
change=2 (ignal logratio)y determined by microarray and the corresponding expression change determined by real time PCR. Results
for real time PCR are shown in bold and are expressed as the mean of three separate experiments (n=3) with the calculated p

value, where *p<0.05 was considered to be statistically significant.

In the global gene expression comparison, we identified
403 genes that were reliably differentially expressed in POAG
LC cells compared to normal LC cells by greater than +0.5
signal log ratios with RMA signal intensities of greater than
6.5. EASE analysis further identified that three functional
gene categories of ECM, extracellular space and collagen
were among the most significantly (¥*p<0.05) overexpressed
categories within this 403-gene data set (Appendix 1). The
disease progression of POAG involves not only fibrotic ECM
remodeling of the lamina cribrosa, but other pathological
phenomena such as reduced optic nerve head blood flow,
retinal ganglion cell axon death and transcriptional
reactivation of developmentally regulated genes [20-22]. The
top 50 most differentially expressed genes in POAG LC cells
compared with normals, reflected this multi-mechanistic
pathology by containing an interesting combination of ECM,
cytoskeletal, angiogenic, neuronal and developmental genes.
These included thrombospondin-1 (THBSI), prostaglandin
D2 synthase (PTGDS), sulfatase 1 (SULFI), pleiotrophin
(NEGF1), neuritin 1 (NRNI), N-cadherin (NCAD), bone
morphogenetic protein-1 (BMP-1), and zic family member 1
(ZICI; Table 1). In addition, by demonstrating low probe
signal levels (below 6.5) for GFAP in both normal and POAG
LC cells (Table 1), our microarray output provides further
evidence that LC cells are distinguishable from the GFAP-
positive optic nerve head astrocyte population of the lamina
cribrosa.

Thrombospondin-1 (THBS!; upregulated in POAG LC
cells) is a major activator of extracellular transforming growth
factor beta 1 (TGFp1) in fibrotic renal disease in the rat and
is closely involved in angiogenesis in hepatocellular
carcinoma [23,24]. Prostaglandin D2 synthase (PTGDS;

&3

down regulated in POAG LC cells) has an antihypoxic effect
in mice [25] which together with thrombospondin-1
upregulation was intriguing in the context of hypoxic insult
and vascular hypoperfusion of the optic nerve head in POAG.
Sulfatase 1 (SULFI) has been shown as an early marker of
glial cell precursors [26] and its upregulation in POAG LC
cells suggests consistency with the hypothesis that wound
formation and healing involves the recapitulation of
embryonic gene expression. Pleiotrophin (NEGFI) down
regulation and neuritin 1 (VRNT) upregulation in POAG LC
cells was also interesting in terms of axon death in POAG as
the primary function of these genes are in neuritogenesis [27,
28]. N-cadherin (NCAD) which was upregulated in POAG LC
cells, is involved in synaptic adhesion in the CNS and is
transcriptionally regulated by TGFB [29,30]. Bone
morphogenetic protein-1 (BMP-1) and zic family member 1
(ZIC1), two other developmental genes, play roles in ECM
synthesis and CNS development, respectively [31,32].

The results of EASE analysis clearly stated that ECM was
a significant gene family difference between normal and
POAG LC cells. A total of 23 ECM genes were differentially
expressed by greater than +/—0.5 SLR in POAG versus normal
LCcells (Table 1). This provided transcriptional evidence that
the LC cell may be a source of fibrotic ECM protein
production in the glaucomatous lamina cribrosa, particularly
as this collection of genes contained the classic fibrotic
marker, collagen type I [33-35]. Others, which included
cartilage linking protein 1 (CRTL-1), periostin (POSTN), and
dystrophin (DMD), are novel in the context of optic nerve head
remodeling in POAG.

Our finding that periostin (POSTN) was upregulated at
the mRNA level in POAG LC cells and at the protein level in
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Figure 4. Representative
immunofluorescence histochemistry of
normal and glaucomatous human optic
nerve head lamina cribrosa tissue.
Normal (A) and glaucomatous (B) optic
nerve head sections were stained for
Periostin ~ (green). Periostin ~ was
increased in the lamina cribrosa of
glaucomatous sections compared to the
normal controls. No immunostaining
was seen in the absence of primary
antibody (C and D shows blue DAPI
staining of nuclei).

optic nerve head tissue was interesting in that this gene is
regulated by hypoxia responsive growth factors (e.g., FGF-1)
and is thought to be one of the main genes involved in ECM
tissue remodeling following mechanical stress in rat
pulmonary arterial smooth muscle cells and human cardiac
myocytes [36-38]. This demonstrates consistency with the
established mechanical and vascular theories of optic nerve
damage in POAG. Furthermore, our data are consistent with
that of a previous animal model study which demonstrated a
linear increase in optic nerve head tissue periostin (POSTN)
mRNA expression in response to elevated IOP [39].
Cartilage linking protein 1 (CRTL-I) which was also
upregulated in POAG LC cells, stabilizes the interaction
between hyaluronan and the ECM [40]. Hyaluronans provide
connective tissues with mechanical resilience and are
important components of the human lamina cribrosa [5].
Upregulation of CRTL-I may represent an attempt to
mechanically re-inforce the lamina cribrosa against rising [OP
or inhibit falling hyaluronan levels which have also been
shown in POAG optic nerve heads [41]. Dystrophin (DMD)
upregulation in POAG LC cells may also bear relevance to
transduction of mechanical stimuli in raised IOP, as the

protein of this gene forms links between the ECM and the
cytoskeleton  [42]. Tissue inhibitor of  matrix
metalloproteinase-3 (7IMP-3) is a member of the tissue
inhibitor of matrix metalloproteinase family (TIMPs). The
protein of this gene specifically inhibits several ECM
degrading enzymes including matrix metalloproteinase-2
(MMP-2) [43]. The substrates for MMP-2 include elastin and
collagen type IV [44]. Upregulated expression of TIMP-3 in
our POAG LC cells is, therefore, consistent with the overall
increase in collagen type IV (COL4A41) and elastin that is
observed in the lamina cribrosa in POAG. Decorin down
regulation in our POAG LC cells may also be of significance
to loss of lamina cribrosa architecture in POAG. It co-
localizes with collagen type I (COLIAI) in the ECM
modulating collagen fiber spacing and assembly [45].

Transforming growth factor beta induced (TGFpI), was
another upregulated ECM gene in our POAG LC cells that
plays a role in collagen metabolism. We have previously
shown that TGFfI is a transforming growth factor beta-1
(TGFp-1) inducible gene in LC cells [13]. The protein of this
gene binds and promotes aggregation of collagen type VI
(COL6A1)and mediates cell-collagen interactions in the ECM
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[46]. Since type VI collagen is a major component of the
lamina cribrosa, TGFpI overexpression in POAG LC cells
may explain the accumulation of type VI collagen in the
glaucomatous lamina cribrosa. Other noteworthy upregulated
ECM genes in POAG LC cells in our study included versican
(VCAN) whose protein is synonymous with the fibroblastic
phenotype [47,48]. In addition, the ECM-related gene lysyl
oxidase (LOX), which initiates the cross linking of collagen
and elastin was also upregulated in our system. Interestingly,
another member of this gene family lysyl oxidase-like 1
(LOXLI) has been found to contain two single nucleotide
polymorphisms (SNPs) in patients who develop
pseudoexfoliation glaucoma [49].

In summary, this work has identified a baseline
transcriptional differential between GFAP-negative LC cells
from normal and POAG human donors in-vitro. This
transcriptional differential is strikingly defined by pro-
fibrotic/ECM genes, which we believe are pathologically
characteristic of POAG LC cells in-vivo. The data, therefore,
underlines the strong potential role for LC cells in
glaucomatous optic nerve head ECM remodeling. POAG LC
cells may also possess an ab-initio inevitability to express
fibrotic/ECM genes following exposure to other pathological
stimuli in POAG such as mechanical strain or hypoxic stress.
In conclusion, this analysis provides a framework upon which
to base further pathway-specific and LC cell-targeted
investigations of the discrete mechanisms that dictate the
evolution of optic nerve head ECM remodeling in POAG.
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Appendix 1. Ontology of up and down regulated genes in POAG LC cells

versus normal LC cells.

Table A lists the ontological categories (biologic process,
cellular component, molecular function) generated from the
upregulated genes in POAG versus normal LC cells. Table B
lists the ontological categories generated from the down
regulated genes in POAG versus normal LC cells. The
significantly overexpressed functional groups are shown.

EASE scores (Pvalue) are indicated next to each functional
group. EASE scores less than 0.05 were considered
statistically significant. To access the data, click or select the
words “Appendix 1.” This will initiate the download of a
compressed (pdf) archive that contains the file.

The print version of this article was created on 10 January 2009. This reflects all typographical corrections and errata to the
article through that date. Details of any changes may be found in the online version of the article.
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