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ABSTRACT

The MOF (males absent on the first)-containing NSL
(non-specific lethal) complex binds to a subset of
active promoters in Drosophila melanogaster and
is thought to contribute to proper gene expression.
The determinants that target NSL to specific pro-
moters and the circumstances in which the complex
engages in regulating transcription are currently
unknown. Here, we show that the NSL complex pri-
marily targets active promoters and in particular
housekeeping genes, at which it colocalizes with
the chromatin remodeler NURF (nucleosome re-
modeling factor) and the histone methyltransferase
Trithorax. However, only a subset of housekeeping
genes associated with NSL are actually activated by
it. Our analyses reveal that these NSL-activated pro-
moters are depleted of certain insulator binding pro-
teins and are enriched for the core promoter motif
‘Ohler 5’. Based on these results, it is possible to
predict whether the NSL complex is likely to regulate
a particular promoter. We conclude that the regula-
tory capacity of the NSL complex is highly context-
dependent. Activation by the NSL complex requires
a particular promoter architecture defined by com-
binations of chromatin regulators and core promoter
motifs.

INTRODUCTION

Eukaryotic organisms consist of a diversified set of highly
specialized cells. Their individual identities are determined
by the appropriate expression of cell-specific genes while a
battery of genes that are expressed in all cells maintain
general (‘housekeeping’) functions. Gene expression at

the transcriptional level is governed by an intricate inter-
play between transcription regulators and local chromatin
organization. In general, the packaging of genomes into
chromatin brings about a default state of repression, as
nucleosome assembly constantly competes with transcrip-
tion factors for promoter binding sites. Overcoming
this repression requires a concerted action of various
chromatin-modifying principles. These include ATP-
dependent nucleosome remodeling factors, which are
targeted to specific loci by DNA-bound proteins and
post-translational histone marks where they reorganize
nucleosomes to facilitate transcription (1). An example
for such an activity in Drosophila melanogaster is NURF
(nucleosome remodeling factor), whose large regulatory
subunit, NURF301, interacts with a diversity of transcrip-
tion factors and methyl marks on lysine 4 of histone H3
(H3K4me3) (2,3) (and references therein). NURF has also
been reported to bind to acetylated lysine 16 of histone H4
(H4K16ac) (2), a nucleosome modification that prevents
nucleosome–nucleosome interactions that promote the
folding of the nucleosomal fiber into more compact struc-
tures. The acetyltransferase MOF (males absent on the
first) is a major enzyme responsible for this modification
in both, Drosophila and mammalian cells (4,5).
MOF is best known for its key role in the Drosophila

dosage compensation process. It is a subunit of the dosage
compensation complex [DCC, also known as male-specific
lethal (MSL) complex], which brings about the 2-fold
transcriptional activation of genes on the single male X
chromosome to equalize expression with the correspond-
ing genes transcribed from the two female X chromosomes
(6). The DCC is constituted only in male flies and the
five protein components, MSL1, MSL2, MSL3, maleless
(MLE) and MOF, as well as the non-coding roX RNAs
are essential for male viability. According to the current
model, the DCC recruits MOF to the transcribed regions
of X-chromosomal genes. Subsequent acetylation of
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H4K16 renders chromatin more accessible and potentially
facilitates transcriptional elongation (7,8).
With the exception of MSL2, all DCC protein sub-

units are also expressed in female flies, and therefore
also serve more general, yet barely understood functions
(9). For example, the acetyltransferase MOF appears to be
involved in more global transcription regulation as it has
recently been found in an alternative complex together
with MCRS2, the WD40-repeat protein WDS (will-die-
slowly), NSL1, NSL2, NSL3 and the plant homeo
domain (PHD) protein MBD-R2 (10–12). With reference
to the dosage compensation ‘MSL complex’, this alterna-
tive MOF-containing assembly was termed ‘NSL
complex’ (for ‘non-specific lethal’), as its subunits are
essential in both sexes (10). The incorporation of MOF
into either the DCC or the NSL complex is determined
by association of MOF with the PEHE domains of the
respective MSL1 or NSL1 subunits (10). Genome-wide
mapping by chromatin immunoprecipitation (ChIP)
coupled to DNA microarrays (ChIP-chip) identified
MOF binding sites at many, but not all active promoters
in male and female cells (13). Subsequent studies revealed
that MBD-R2 colocalizes with MOF at many active pro-
moters in both sexes, suggesting that the NSL complex
recruits MOF to these sites (12). This is compatible with
a recent ChIP-Seq study (ChIP DNA analyzed by massive
parallel sequencing), which found MCRS2 and NSL1
peaks at promoters in mixed-sex 3rd instar larval
salivary glands (11).
In male cells the association of MOF with NSL subunits

is in competition with its incorporation into the DCC,
which redirects it to the transcribed regions of X chromo-
somal genes (12). However, key aspects of MOF’s target-
ing in the context of the NSL complex are unclear. What
determines the binding of the NSL complex to only a
subset of the active promoters? The available data also
are ambiguous when it comes to the role of the NSL
complex; does it activate or repress target genes, or
perhaps both? Ablating the NSL subunit MBD-R2 in
male embryonic cells resulted in a reduced expression of
many MBD-R2 target genes (12). In contrast, a similar
fraction of genes was found up- and downregulated
when MBD-R2 and NSL3 were depleted in 3rd instar
salivary glands (11).
In this study, we created novel data sets and analyzed

existing ones to compare functional interactions of NSL
subunits in different developmental tissues to better define
the targets of the NSL complex. We systematically
explored the common properties of the NSL target

genes, searching for colocalizing chromatin factors and
prevalent sequence motifs in target promoters. We
traced the NSL complex through monitoring the NSL1
subunit and found that it preferentially binds to pro-
moters of housekeeping genes, which are also approached
by the chromatin remodeler NURF and the
methyltransferase Trithorax. There, NSL1 binding correl-
ates best with the core promoter element DNA
replication-related element (DRE). However, only a
defined fraction of NSL1-bound genes are actually
regulated by the complex. Those promoters are depleted
for insulator proteins and are enriched for the
E-box-derived promoter motif ‘Ohler 5’. Our analysis pro-
vides a functional classification of housekeeping genes ac-
cording to their NSL coregulator requirements.

MATERIALS AND METHODS

Generation of the NSL1 antibody

A cDNA fragment corresponding to NSL1 amino acids
1271–1550 was Polymerase Chain Reaction (PCR)
amplified from cDNA clone #LP09056 (Drosophila
Genomics Resource Center; see Table 1) and cloned
into the pGEX2TKN. The N-terminally glutathion-S-
transferase (GST)-tagged NSL1 fragment was expressed
in Escherichia coli BL21, purified on glutathione beads
and used to raise antibodies in rabbit by a commercial
supplier.

RNA interference in S2 cells, immunoblotting and indirect
immunofluorescence

Male Drosophila S2 cell cultivation and RNA interference
(RNAi) were carried out as described before (12). Briefly,
1.5� 10 e6 cells were incubated with 10 mg dsRNA
targeted against NSL1 or GST as a control. Primer
sequences used for dsRNA production are listed in
Table 1. Cells were harvested after 6 or 7 days and pro-
cessed for RNA (see below) and protein. For every 10 e6

cells, cells were lysed for 10min in 100 ml of N-buffer
[15mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid) pH 7.5, 60mM KCl, 15mM NaCl, 0.5mM
ethylene glycol tetraacetic acid pH 8, 0.25% Triton-X,
10mM sodium butyrate, 1mM phenylmethanesulfo-
nylfluoride, 0.1mM Dithiothreitol protease inhibitor
cocktail (Roche)] on ice and the chromatin fraction was
pelleted by centrifugation. RNA for Affymetrix expres-
sion profiling was prepared as described (12). RNA
labeling and cDNA hybdridization to a Drosophila

Table 1. Primer table

Construct Forward primer sequence Reverse primer sequence

NSL1 RNAi amplicon 1 TTAATACGACTCACTATAGGGA
GCGTC CGAGCTCAAC CTTC

TTAATACGACTCACTATAGGGA
CACATGGGTGTGTTCATTAGTC

NSL1 RNAi amplicon 2 TTAATACGACTCACTATAGGGA
GATGTCGCATCAAAGTCAGAGG

TTAATACGACTCACTATAGGGA
GACTCGAGAAGAGCTCGCTGAT

GST RNAi amplicon TTAATACGACTCACTATAGGGAG
AATGTCCCCTATACTAG GTTA

TTAATACGACTCACTATAGGGAGA
ACGCAT CCAGGCACATTG

NSL1 antibody cloning CGCTCCATGGCTTTCATT
AAGTTCCCCTGGAGCACC

ATTTCTAGATTAGATGC
GTCTGCTGCGAACACCCTC
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Genome GeneChip 2.0 was performed at the Gene Center
Affymetrix Microarray Platform (Munich, Germany).
Immunoblot analysis and immunofluorescence micros-
copy (IFM) analysis was performed as described previous-
ly (14). The lamin antibody was obtained from H.
Saumweber (Berlin) and the MSL1 antibody was
described previously (15).

Reporter gene ChIP assay and luciferase reporter assay

The reporter gene ChIP assay and luciferase reporter
assay have been described before (12).

Chromatin extraction and immunoprecipitation

Chromatin extraction and immunoprecipitation were pre-
viously described (12). Briefly, chromatin extracts from
sex-sorted adult flies were prepared and the DNA concen-
tration of the extract was determined. DNA (7.5–15 mg)
were used for a single ChIP experiment. Five microliters of
anti-NSL1 serum was used in a single IP reaction. After
the precipitation and extensive washing, DNA was ex-
tracted with phenol/chloroform, ethanol precipitated and
further cleaned using the GenElute PCR clean-up kit
(SIGMA). DNA was amplified using the whole-genome
amplification kit (WGA, SIGMA). Labeling, hybridiza-
tion to customized high-resolution NimbleGen tiling
arrays (comprising the euchromatic part of the entire X
chromosome, 5 Mb of 2L, 2R and 3L, respectively, as
well as 10 Mb of 3R) (12), scanning and feature extraction
was performed by imaGenes (Berlin).

ChIP-chip data processing

ChIP-chip data analysis was performed using
R/Bioconductor (www.r-project.org; www.bioconductor
.org). Raw signals of the NimbleGen NSL1 ChIP-chip
were normalized and log2-transformed using the ‘vsn’
package (16). IP/input ratios of the modENCODE data
were scaled to a mean of zero and a standard deviation of
one. Promoter enrichments were calculated by
summarizing the probe level signals in a window of
600 bp centered at the transcriptional start site (TSS)
(FlyBase release 5.22). Promoter binding was classified
based on the bimodal distribution of binding values,
where genes within the population of lower values were
considered ‘unbound’ and genes within the population of
higher values were considered ‘bound’. Alternatively,
‘bound’ were selected based on the fdr values from the
‘locfdr’ package applied on the promoter binding values
with a fdr cutoff of <0.2. The results are robust to several
normalization methods and promoter window definitions.

Genes were classified ‘active’ when (i) their Affymetrix
expression value exceeded four (see below) and (ii) RNA
polymerase II [modENCODE profile (17)] was classified
as ‘bound’ on their promoters. A similar result was
obtained using genes which are ‘bound’ (modeled on the
bimodal distribution of the averaged binding along the
transcribed region) by the elongating polymerase [serine
2 phosphorylated RNA polymerase II, data from (18)].

Promoters were classified as ‘peaked’, ‘broad’ and ‘weak
peak’ promoters according to Hoskins et al. (19) and Ni
et al. (20). Hierarchical cluster analysis of the promoter

binding pattern was carried out using the R package
‘hclust’ and the ‘complete’ or ‘ward’ clustering approach
as indicated in the figure legends.
All available modENCODE chromatin ChIP-chip data

sets were screened for factors, which are enriched at
promoter locations (by March 2011). After initial data
quality assessment probe level binding was assessed for
promoter probes (broad: ±300 bp centered at TSS;
narrow: ±100 bp centered at TSS; upstream-biased:
�300 - TSS- +100 bp), transcriptional termination (TT)
sites (broad: ±300 bp centered at TT; narrow: ±100 bp
centered at TT; downstream-biased: -100 – TT+ 300 bp),
gene probes (probes corresponding to annotated genes
without promoter and termination probes) and intergenic
probes (defined as probes not found in previous groups).
Only ChIP-chip data sets with a clear enrichment for
promoter probes relative to gene, intergenic and termin-
ation probes were selected for this study.

Transcriptome data analysis

Transcriptome data analysis was conducted as described
previously (12). Briefly, raw signals were normalized,
summarized and log2-transformed using the ‘gcrma’
package. Significant change of gene expression was
calculated applying the ‘locfdr’ package on a ‘sam’ statis-
tics using a cutoff of fdr <0.35. Alternatively, genes with
log2 (NSL1 RNAi–GST RNAi)< (�1) were considered
‘down-regulated’. The results are robust to various par-
ameters in data analysis, as assessed by choosing varying
thresholds. All expression data set values are
log2-normalized with a theoretical dynamic range of
2exp16 (Affymetrix.com).

Housekeeping gene definition

Affymetrix expression data sets of 40 different Drosophila
tissues [GSE7763, (21)] were processed as described above
for the NSL1 transcriptome data set. For every gene, the
standard deviation was calculated across all 40 samples
(gene variation index). Filtering for active genes, the dis-
tribution of standard deviations resulted in two major
populations with the best discrimination at a standard
deviation of �1.5 (Supplementary Figure S9A and B).
Consequently, genes with a gene variation index <1.5
were considered housekeeping genes and genes with a
gene variation index >1.5 were considered differentially
regulated genes. The results are robust to different applied
thresholds. In an alternative analysis (presented in
Supplementary Figure S2E), we took the more stringent
call for housekeeping gene function according to the clas-
sification of Weber and Hurst (22). Here, active genes
which belong to either the ‘tau’ class or to the ‘breadth’
class were considered housekeeping genes.

ChIP-Seq data analysis

NSL1 ChIP-Seq and corresponding input data sets (11)
were obtained from the ArrayExpress repository
(E-MTAB-214). Sequence reads were mapped to the
Drosophila melanogaster genome (dm3) using bowtie
(23). Uninformative reads and read anomalies were filtered
out using the R package ‘SPP’ (24), resulting in 7840131
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unique NSL1 ChIP reads and 6094163 unique input reads.
Peaks were identified using SPP with the following param-
eters: ‘tag-wtd’ method, fdr=0.01, minimal distance
between detected peaks=100 bp. The input data was
used to determine statistical significance of NSL1 peaks,
resulting in the ‘peak score’.

Core promoter motif analysis

We used the 10 promoter motifs described by Ohler and
colleagues (25) to analyze promoter motif occurrences.
For every motif a log-odds weight matrix description
P of the binding sites is given, which was used to calculate
a motif score for a specific sequence. It ranges between
zero and one and measures how similar a binding site is
to the consensus. In a first step, the log-odds score for the
consensus site LC is determined by

LC ¼
Xw

i¼1
maxfPib : b 2 fA,C,G,Tgg,

where w is the motif length. The motif score given a
specific binding site starting at position k in sequence X
is calculated by

motif score ðX,kÞ ¼
1

LC

Xw

i¼1
PiXk+i�1

The motif score is the ratio of the log-odds score of the
site at position k to the log-odds score of the consensus
site. The motif score for the entire sequence X is given by
the highest motif score in the sequence:

motif score ðXÞ ¼ maxkfmotif score ðX, kÞg

For the analyses, we used a threshold of motif score
>0.3 to consider a binding site as functional. The
de novo sequence analysis algorithm will be reported else-
where (Hartmann and Soeding, manuscript in
preparation).

RESULTS

NSL1 colocalizes with MBD-R2 at many active promoters

The genomic interaction profile of MOF differs in adult
male and female flies, reflecting its incorporation into the
male-specific DCC and the general NSL complex (11,12).
We previously monitored the MBD-R2 distribution in
adult male and female flies but could not detect any sig-
nificant difference (12). Since MBD-R2 is the only NSL
complex protein which may interact with DCC members
(10) we sought to compare the genome-wide binding
pattern of the NSL complex with the potential core
subunit of the complex, NSL1. In order to compare the
NSL1 interactions in the genomes of adult male and
female flies, an antibody was raised against NSL1 and

its specificity confirmed combining RNAi with subsequent
detection by indirect immunofluorescence microscopy
(IFM) and immunoblotting (Supplementary Figure S1
and see below). The antibody was then used for
ChIP-chip experiments, where NSL1 was precipitated
from chromatin preparations from hand-sorted adult
male and female flies and the associated DNA was
amplified and hybridized to high-resolution DNA tiling
microarrays representing the X chromosome and an
equivalent amount of the autosomes. The binding profile
in male and female flies did not show any significant dif-
ferences (Supplementary Figure S2A). In addition, NSL1
was found at the same loci as MBD-R2 (Supplementary
Figure S2B), in agreement with the results of the biochem-
ical definition of both proteins as ‘NSL’ complex subunits
(10–12). The ChIP-chip profiling suggested that NSL1
globally binds target loci independent of the fly sex, con-
firming previous ChIP-qPCR analyses at selected loci (11).

Re-examination of the previously published NSL1
ChIP-Seq profiles, which had been generated from salivary
glands of mixed-sex third instar larvae (11), revealed a
systematic enrichment of NSL1 peaks at RNA polymerase
II—promoters relative to genes transcribed by RNA poly-
merases I and III (Table 2). Applying a superior peak
calling algorithm (24) to these data identified the majority
of NSL1 binding events within a window of 200 base pairs
(bp) around the annotated TSS (Figure 1A), implicating
the NSL complex in transcriptional initiation.

In order to avoid the heterogeneous salivary gland tis-
sue, which impedes a comparison of NSL binding with the
transcriptional activity and with other known promoter
binding factors, an NSL1 ChIP-chip profile was generated
from Drosophila S2 cells. These cells are commonly used in
the chromatin community because they provide a homo-
geneous biological material, a fact that allows comparing
our data to other published genomic data sets, such as the
comprehensive collection of chromatin factors and histone
modifications generated by the modENCODE consortium
with a similar ChIP-chip strategy (17).

The newly generated NSL1 ChIP-chip profile correlated
well with our previously published MBD-R2 profile (12)
as well as with the MBD-R2 profile generated by the
modENCODE consortium using a different antibody
(Supplementary Figure S2C). Therefore, in the following
we subsume the individual NSL1 and MBD-R2 profiles as
the ‘NSL complex’ binding, unless stated otherwise. We
related the NSL complex binding at promoters with the
transcriptional activity of the corresponding genes, using
the ChIP-chip profile of the elongating polymerase as a
direct readout for active transcription (18). The NSL
complex binds active genes with high preference, but
only a subset of �60–70% (depending on the threshold)
(Figure 1B, left). A similar result was obtained when

Table 2. NSL1 ChIP-Seq peaks mapped to transcript type

Transcript type MiRNA mRNA ncRNA rRNA snoRNA snRNA tRNA

Number annoted transcripts 194 22 765 189 160 249 47 314
Number NSL1 peaks mapped to transcript TSS 0 4302 14 0 1 1 5
Fraction NSL1-bound transcripts rel. to all transcripts 0 18.9 7.4 0 0.4 2.1 1.6
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elongating polymerase II gene signal (18)], respectively. (C) The NSL complex preferentially associates with housekeeping genes (Welch two sample
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Methods’ section). A similar result is gained using the available MBD-R2 ChIP-chip data sets (12). An alternative, more stringent categorization for
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binding at genes, which were grouped according their transcriptional start site usage in ‘peaked’ promoters, ‘broad with peaked’ promoters and ‘weak
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displaying gene activity as a function of polymerase pro-
moter binding (Figure 1B, right) or Affymetrix RNA ex-
pression profiling (data not shown), in agreement with
previous studies examining other markers of the NSL
complex (11,12).

The NSL complex specifically binds promoters of most
housekeeping genes

As noted above, the NSL1 profile is very similar in nuclei
of different sex and developmental stage despite significant
expression differences (Supplementary Figure S2A and D).
This indicates that the NSL complex may associate
with’housekeeping’ genes, which are equally expressed in
these diverse tissues. To test this hypothesis, we classified
genes as ‘housekeeping’ or ‘differentially regulated’ ac-
cording to their expression variation index, i.e. the stand-
ard deviation of expression, when compared between
several Drosophila tissues (21). According to this classifi-
cation the NSL complex showed a significant preference
for ‘housekeeping’ over ‘differentially regulated’ genes
(Figure 1C). The same conclusion was reached when
‘housekeeping’ genes were classified according to the
more exclusive definition of Hurst and colleagues (22)
(Supplementary Figure S2E). This conclusion is further
illustrated by a gene ontology (GO) analysis of bound
and unbound genes, which revealed that active NSL-
bound genes are enriched in housekeeping functions such
as ‘cofactor biosynthetic processes’, ‘microtubule-based
processes’, ‘protein complex biogenesis’ (Supplementary
Figure S3), whereas active genes which are not bound by
the NSL complex are enriched in categories such as ‘sen-
sory perception’, ‘cell adhesion’ and ‘tissue developmental
genes’ (Supplementary Figure S4).
Recent improvements in high-throughput RNA

profiling techniques facilitated quantitative mapping of
TSSs at base pair resolution (19,20). Whereas some pro-
moters possess well-defined TSS, where transcription reli-
ably initiates within a few base pairs (‘focused’ or ‘peaked’
promoters), many promoters show a dispersed zone of

transcription initiation of up to a few hundred base
pairs, which may be dominated by a major TSS (‘broad
promoters’) or not (‘weak peak promoter’) (20). Notably,
differentially regulated genes tend to have peaked pro-
moters whereas housekeeping genes are enriched for
broad or weak promoters (19). Concordantly, we found
that the NSL complex is strongly overrepresented at pro-
moters of the latter classes (Figure 1D).

The NSL complex activates only a specific subset of
bound genes

It has remained controversial whether NSL target genes
are activated or repressed after RNAi ablation of NSL
complex components (11–13). Akthar and coworkers
observed that similar fractions of NSL target genes were
up- or downregulated following RNAi against MOF,
NSL3 and MBD-R2 and subsequent microarray-based
transcriptome profiling (11,13). By contrast, we found
that the transcription of genes that had the NSL subunit
MBD-R2 bound was mostly reduced when MBD-R2
levels were lowered (12). However, since MBD-R2 is the
only NSL complex subunit that was suggested to interact
with components of the DCC (10), it was necessary to
exclude indirect effects. We therefore examined the expres-
sion of NSL target genes after depletion of the core
subunit of the NSL complex, NSL1.

RNAi against NSL1 in S2 cells efficiently depleted
the protein as examined by immunoblotting and IFM
(Supplementary Figure S1). Genome-wide transcriptome
profiling of the NSL1-depleted cells led to the down-
regulation of a considerable fraction of genes (Figure 2A),
most of which had been classified as ‘NSL-bound’ before
(Figure 2B). This is consistent with reporter gene assays
where the transcription brought about by tethering MOF
to a model promoter was diminished upon NSL1 deple-
tion (for details, see Supplementary Figure S5).
Importantly, the expression of the majority of NSL1
target genes was unchanged (Figure 2A), such that only
20–30% of them (depending on the threshold) required
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NSL1 for proper expression. The same trend had been
observed earlier in the context with MBD-R2 (12) (and
data not shown). The MBD-R2 ChIP-chip profile and the
MBD-R2 RNAi transcriptome data are indeed very
similar to the NSL1 data (Supplementary Figures S2C
and S5C), arguing that they form a functional complex
bound to chromatin.

We next asked whether the genes that were activated by
the NSL complex coded for related housekeeping func-
tions. The GO classification revealed that the genes
whose expression was diminished upon NSL1 depletion
were enriched in genes involved in nucleic acid metabol-
ism, such as genes involved in transcription, RNA pro-
cessing, translation, DNA replication and DNA repair
(Supplementary Figure S6). Evidently, the NSL complex
only activates a specific subset of the many housekeeping
genes. In order to explore whether the promoters of
NSL-responsive genes could be recognized by a combin-
ation of cis-elements and trans-factors, we set out to iden-
tify chromatin proteins with genome binding profiles
related to the NSL complex and to investigate whether
the promoters regulated by NSL shared particular core
promoter motifs.

The NSL complex co-occupies target promoters
together with the chromatin remodeler NURF
and the histone methyltransferase Trithorax

The NSL1 ChIP-chip profile in S2 cells allowed a direct
comparison with the chromatin profiles recorded by the
modENCODE consortium (17), which used the same cell
line and the same profiling technique. We mined the
modENCODE data for profiles of general chromatin fac-
tors (excluding sequence-specific transcription factors)
and histone modifications, which are preferentially en-
riched at promoters (see ‘Materials and Methods’ section
for a detailed discussion on selection algorithm). We
created a pairwise correlation matrix for 23 selected pro-
tein and histone modification profiles and performed an
unsupervised hierarchical clustering to reveal the extent of
correlation with the NSL complex. We found the profiles
of the interband protein Chromator, the WD40-repeat
protein WDS, the NURF complex subunit NURF301
and the methyltransferase Trithorax highly correlated
with the NSL complex profile (Figure 3A and B;
Supplementary Figure S7). Chromator had been found
in an early NSL complex purification (10) but could not
been recovered in more recent experiments (11,12),
possibly due to more transient or indirect interaction.
Notably, 5–15% of promoters which contain NSL1,
MBD-R2, WDS, NURF301 and Trithorax lack
Chromator. The WD40-repeat protein WDS consistently
copurifies with NSL complex members (10–12) and other
chromatin complexes including the Drosophila ATAC
acetyltransferase complex (26) and mammalian MLL
methyltransferase complexes (27,28). NURF301 is the
diagnostic marker subunit of the Imitation Switch
(ISWI)-containing nucleosome remodeling factor
NURF, which stimulates transcription by remodeling
promoter nucleosomes (29,30). Trithorax was originally
described to counteract the repression of homeotic genes

by the polycomb group proteins (31–33). More recently,
genome-wide ChIP-chip studies have indicated a wide-
spread binding of Trithorax to many promoters (34,35).
The pairwise relationships between the tested factors

are further illustrated by the scatter plots depicted in
Figure 3C, which emphasize that the NSL complex,
WDS, Chromator, NURF301 and Trithorax co-occupy
target promoters at linearly proportional levels
(Figure 3C). Promoters which are strongly bound by the
NSL complex are also highly enriched for NURF301,
Chromator and Trithorax. The same strong correlation
can be seen in an unbiased analysis using all microarray
probe signals, confirming the promoter-focused analysis
described above (Supplementary Figure S7B).
Searching for factors enriched at promoters we found

the heterochromatin protein 1c (HP1c) and, consistent
with previous results (36), the insulator proteins BEAF32
and CP190 (37) enriched at housekeeping promoters
(Supplementary Figure S8). These factors localize to
minor subsets of the NSL/Chromator/NURF301/
Trithorax target promoters (Figures 3 and 5;
Supplementary Figures S7B and 11). Importantly, the
presence of BEAF32, CP190 and HP1c determines
whether the bound NSL complex functions as an activa-
tor or not (see below).

Quantitative NSL1 binding correlates best with the
DNA replication-related element

Conceivably, the association of the NSL complex and its
colocalized chromatin modifiers may be determined by a
particular core promoter architecture. Different pro-
moters are characterized by the presence and combination
of a range of sequence motifs that provide contact surfaces
for general transcription factors and, therefore, modulate
the formation of the transcription pre-initiation complex
(38–40). The core promoter sequence motifs can be clas-
sified as canonical core promoter motifs which have fixed
positions with regard to the TSS, such as the TATA box,
the MTE (motif ten element), the DPE (downstream core
promoter element) and the INR (initiator), or as motifs
with weaker positional information (Ohler 1, Ohler 5,
Ohler 6, Ohler 7, Ohler 8 and DRE) (25,41). Canonical
core promoter motifs are enriched in peaked promoters,
whereas weakly positioned motifs are characteristic of
dispersed promoters. The mechanisms of action of most
dispersed elements are unknown [with the exception of the
DRE (39)].
Since NSL1 peaks within the core promoters of genes

with dispersed transcriptional start sites (Figure 1A and
D) we investigated whether the NSL complex is associated
with a specific set of core promoter motifs. We first
characterized the core promoter motifs with regard to
their distribution at active housekeeping and differentially
regulated genes (Supplementary Figure S9). As the motifs
deviate from their defined consensus sequences in many
cases, a similarity score (motif score) was calculated for
each promoter reflecting the similarity of the sequence to
any of the ten promoter consensus motifs described by
Ohler and colleagues (25) (see ‘Materials and Methods’
section). We found that over 70% of all active promoters
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Figure 3. The NSL complex cooccupies target promoters together with the chromatin remodeler NURF and the histone methyltransferase
Trithorax. (A) Heat map visualized correlation matrix of promoter-enriched chromatin factors and histone modifications at active genes. Pairwise
Spearman correlations were calculated using only active autosomal genes. The dendrogram shows the hierarchical clustering after which the matrix
was sorted. (B) ChIP-chip profile of the indicated proteins along a representative region of the chromosome arm 2L. The gene structure is indicated
below (active genes are red). (C) Pairwise scatter plot of promoter binding for each indicated factor using only active autosomal genes. Spearman
non-parametric correlation coefficients are provided for each pair.
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can be described by these ten motifs, indicating that our
analysis is representative (Supplementary Figure S9). In
agreement with previous analyses (41–43), the promoter
motifs INR, MTE and DPE were clearly overrepresented
in differentially regulated genes, which fits their enrich-
ment at peaked promoters (Supplementary Figures S8
and S9). Accordingly, housekeeping genes are enriched
for the motifs DRE, Ohler1, Ohler 5, Ohler 6 and Ohler 7.

Being able to characterize the core promoter motifs
allowed us to examine whether there is a differential asso-
ciation of NSL with any of them. Active genes were
categorized either as NSL targets or as non-targets based
on their NSL complex promoter occupancy. As expected,
the NSL1 target genes are enriched for the housekeeping
promoter motifs DRE, Ohler 1, Ohler 5, Ohler 6 and
Ohler 7 and depleted for TATA, INR, MTE and DPE.
Consistently, when we performed de novo motif analysis
of the sequences covered by the NSL1 ChIP-Seq peaks
(11), we again obtained the same motifs (Supplementary
Figure S10). This confirms that the NSL1 peaks at core
promoter motifs are diagnostic for housekeeping genes.

Is there any correlation between the ‘strength’ of NSL1
binding and how well an underlying motif matches its
consensus sequence? In order to address this question we
used the NSL1 ChIP-Seq data set (11), which due to its
good dynamic range allowed to categorize the ChIP-Seq
peak score as a surrogate for binding ‘strength’. We
binned the ChIP-Seq peaks in equally sized groups accord-
ing to their peak score [determined by SPP, (24)] and
displayed the fraction of promoters bound by a specific
group at a given motif score (Figure 4A, left). Among the
ten tested core promoter motifs the DRE motif, and to a
lesser extent motif Ohler 7, are the only motifs with scores
that correlate with the NSL1 ChIP-Seq peak score. This
suggests that DRE-containing promoters (and those con-
taining the less abundant Ohler 7 motif) primarily contain
NSL complex targeting clues (Figure 4B).

The combination of chromatin factors and core promoter
motifs enhance the prediction of NSL-regulated promoters

Whether or not a promoter-bound transcription factor
engages in active regulation often depends on the context
of close-by cis elements and interacting factors (44). This
appears to be the case for the NSL complex, as we showed
that the complex only activates a subset of the promoters
it associates with. NSL binds with high preference to a set
of housekeeping promoter motifs and its binding
‘strength’ correlates best with the presence of the DRE
motif. Can the subset of these NSL targets whose tran-
scription is diminished after depletion of NSL (i.e. those
promoters at which the complex is functional as an acti-
vator) be distinguished at the sequence level? We grouped
active genes according to their core promoter motif class
(see ‘Materials and Methods’ section) and monitored the
transcriptome changes after NSL depletion for each
group. Strikingly, only promoters containing the core
promoter motif ‘Ohler 5’ were strongly enriched for
NSL complex functional sites (Figure 5A). We note that
‘Ohler 5’-containing promoters do not show the strongest
correlation to NSL binding strength (Figure 4B)

suggesting that quantitative differences in factor binding
are not directly translated into a functional output.
We had observed that most promoters bound by HP1c,

BEAF32 and CP190 are among those also occupied by the
NSL complex (Figure 3 and Supplementary Figure S11).
Most of the HP1c, BEAF32 and CP190 binding occur
at distinct subsets as the three factors only colocalize
at a minority of sites (Supplementary Figure S11).
Intriguingly, promoters bound by any of the three factors
HP1c, BEAF32 or CP190 are obviously underrepresented
among the genes, whose transcription is activated by the
NSL complex (Figure 5B and Supplementary Figure S11).
In summary, the data suggest that the functionality of a

promoter-associated NSL complex is modulated by posi-
tive effectors (e.g. unidentified interactors of the ‘Ohler 5’
element) and negative regulators (HP1c and the insulator
proteins BEAF32 and CP190).

DISCUSSION

In this study, we show that the NSL complex is a potential
coactivator, which binds to many active genes, but regu-
lates only a specific subset of them. In our efforts to
describe the circumstances that define complex association
and function, we considered the contributions of two
major parameters: the diverse DNA sequences around
the core promoters, which are characterized by combin-
ations of recurring sequence motifs, and the association of
chromatin regulators that have recently been mapped by
the modENCODE consortium. Combining these diverse
data sets, we were able to improve the prediction toward
whether the transcription of an NSL-bound gene is
modulated by the NSL complex. To our knowledge, this
is the first systematic study demonstrating the usefulness
of this type of data integration.

The NSL complex is a transcription cofactor dedicated to
housekeeping genes

Following our observation that the NSL complex binds to
only a subset of all active promoters, we discovered that
the target genes were mostly housekeeping genes. This was
surprising as to our knowledge so far no transcription
coregulator dedicated to housekeeping genes is known.
This may simply reflect the fact that historically the mech-
anisms underlying differential transcription regulation
received more attention. Several lines of evidence support
the conclusion that the NSL complex preferentially local-
izes to the majority of housekeeping promoters. (i) We do
not detect significant differences in the global chromatin
binding profile of NSL complex members in cells of dif-
ferent sex or developmental stage. (ii) Genes that have
NSL bound at their promoters show little expression vari-
ation among different tissues as compared to active genes
that lack the NSL complex. (iii) NSL-bound promoters
are depleted of sequence motifs known to be enriched in
genes differentially regulated during development and in
tissue homeostasis (38). (iv) GO analysis of the active
NSL-bound genes revealed an overrepresentation of
categories for housekeeping functions, whereas the
converse data set of active genes not bound by NSL
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Figure 4. NSL1 binding correlates best with the DRE motif score. (A) Promoters containing motifs Ohler 1, Ohler 5, DRE and Ohler 7 are
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present diverse categories including ‘developmental pro-
grams’ and ‘acute signaling’. Other chromatin constitu-
ents, like HP1c and the insulator proteins BEAF32 and
CP190 also interact preferentially with housekeeping gene
promoters, as previously shown by Ohler and colleagues
(36), but these factors bind to a much more limited
number of genes in this class. Our analysis supports the
concept of global coregulation of functionally related gene
classes by common cofactors.

The developmental regulators NURF and Trithorax
colocalize with NSL at housekeeping promoters

The extensive colocalization of the NSL complex with the
methyltransferase Trithorax and the chromatin remodeler
NURF is puzzling since those factors are best known as
regulators of transcription of very restricted sets of genes
(developmental and highly inducible genes) (30,32), and
only recently has their extensive genome-wide localization
at many active gene promoters been noticed (34,35,45,46).
Conceivably, these three complexes cooperate to regulate
the transcription of housekeeping genes at the level of
chromatin organization and/or transcription initiation.
This hypothesis is supported by previous reports of bio-
chemical or genetic interactions between components
of the three factors. A genetic interaction between the
Xenopus BPTF (the NURF301 homolog) and Xenopus
WDR5 (a homolog of the NSL subunit WDS) has been
reported (47). Furthermore, Dou et al. (27) described a
‘supercomplex’ containing the human NSL as well as the
MLL1 complexes [MLL1 is homologous to Drosophila
Trithorax].

At present it is not clear whether NURF and Trithorax-
containing complexes contribute to the targeting of the
NSL complex (or vice versa), or whether all three regula-
tors are attracted by an additional common denominator
of target promoters. None of the three complexes contains
any specific DNA-binding subunit. NURF can be re-
cruited to inducible genes via direct interactions between
the large NURF301 subunit and transcription factors,
such as the GAGA factor (29) or the ecdysone receptor
(48). However, these interactions certainly do not explain
the widespread targeting of NURF to housekeeping genes
in vivo reported here. We noted a good quantitative cor-
relation between the NSL1 binding levels and the DRE
core promoter motif score, which opens the possibility that
a DRE—recognizing factor may stimulate NSL recruit-
ment. One candidate for such a factor is DREF, which
has been isolated as a DRE binding factor (49). DREF
may also contribute to the recruitment of NURF, since an
association of DREF with NURF has been observed in a
much larger complex based on the immunoaffinity purifi-
cation of the TATA box binding protein (TBP)-related
factor TRF2 (39).
In addition to direct recruitment by DNA-binding

proteins, transcription cofactors may be tethered by spe-
cific local histone modifications through recognition
domains (50). It is likely that this principle will also con-
tribute to the observed colocalization of NSL, NURF and
Trithorax complexes. Trithorax (the Drosophila MLL1
homolog) is an enzyme that methylates histone H3 at
lysine 4 (H3K4me3), a mark that characterizes active pro-
moters (46). Interestingly, WDS, which copurifies with
NSL complexes from Drosophila and mammalian cells
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(27) has been shown to preferentially interact with
methylated H3K4 (28). The mammalian homolog of
NURF301 (BPTF) also recognizes mononucleosomes
marked with methylated H3K4 and acetylated H4K16ac
through its PHD finger and bromodomain, respectively
(51). Acetylation of H4K16 by MOF in the NSL
complex may, therefore, contribute to the local enrich-
ment of NURF at target promoters. Our study gives rise
to numerous testable hypotheses as to the nature of the
interaction network that leads to the observed selective
targeting of the NSL complex.

The NSL complex only regulates a subset of target
promoters

The detailed analysis of the transcriptional effects of the
NSL complex revealed that the NSL complex regulates
only a subset of bound genes. Such a situation is not
without precedent as it has been shown for a number
of transcription factors that many binding events appear
to be non-functional (44). In fact, it is a major challenge to
predict the functional sites from the interaction profiles of
single factors as functionality is frequently determined by
the local clustering of binding sites, synergism between
colocalized proteins, and recently, chromatin accessibility
(52,53). Accordingly, we favor the idea that a combination
of chromatin factors and core promoter elements deter-
mines the activity of the NSL complex at any target
promoter. An even more immediate influence of
promoter DNA on interacting proteins may be imagined
as a direct effect of a DNA sequence on the conformation
and, therefore, the activity of a bound transcription factor
has been described (54).
Alternatively, it is possible that the default state of every

chromatin-bound NSL complex is functional, but that the
realization of this potential is restricted by negative
factors. We found that the presence of either one of the
three proteins HP1c, BEAF32 or CP190 correlated with
lack of NSL1 regulation. Insulator binding proteins like
BEAF32 and CP190 are known to decrease enhancer-
promoter interactions, which may lead to decreased tran-
scriptional output. Interestingly, antagonistic roles for
BEAF32 and DREF have been suggested for some over-
lapping in vivo binding sites (55). Resolving the mechan-
istic intricacies of complex promoter regulation remains a
challenging task for future endeavors.
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