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Introduction: For pathogens such as influenza that cause many subclinical cases, sero-
logic data can be used to estimate attack rates and the severity of an epidemic in near 
real time. Current methods for analysing serologic data tend to rely on use of a simple 
threshold or comparison of titres between pre-  and post- epidemic, which may not ac-
curately reflect actual infection rates.
Methods: We propose a method for quantifying infection rates using paired sera and 
bivariate probit models to evaluate the accuracy of thresholds currently used for influ-
enza epidemics with low and high existing herd immunity levels, and a subsequent 
non- influenza period. Pre-  and post- epidemic sera were taken from a cohort of adults 
in Singapore (n=838). Bivariate probit models with latent titre levels were fit to the 
joint distribution of haemagglutination- inhibition assay- determined antibody titres 
using Markov chain Monte Carlo simulation.
Results: Estimated attack rates were 15% (95% credible interval: 12%- 19%) for the 
first H1N1 pandemic wave. For a large outbreak due to a new strain, a threshold of 
1:20 and a twofold rise (if pared sera is available) would result in a more accurate esti-
mate of incidence.
Conclusion: The approach presented here offers the basis for a reconsideration of 
methods used to assess diagnostic tests by both reconsidering the thresholds used 
and by analysing serological data with a novel statistical model.
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1.  | INTRODUCTION

Estimates of infection rates are crucial to decision- making and com-
munication during an epidemic, for long- term public health planning, 
and to assess past responses. Without an accurate gauge of the size 
and severity of an epidemic, it is challenging to prioritize interventions 
and services to mitigate impact.1,2 In the 2009 H1N1 pandemic, lim-
ited data inflated predictions of severity in the early stages, leading in 
turn to what in hindsight was overreaction in many quarters.3 Lessons 
learned from the 2009 epidemic and its aftermath can be applied to 
influenza epidemics of strains both old and new.

Serological assessments can play a key role in assessing influenza 
outbreaks because they allow diagnosis of subclinical or misdiagnosed 
cases, and as a result, they provide the basis for estimates of an ep-
idemic’s impact, including, for example, estimates of hospitalization 
and mortality rates.2 Common assays, such as haemagglutination in-
hibition, typically bracket the antibody level to an interval between 
two dilutions, for instance positive at 1:20 but negative at 1:40. Two 
study designs are frequently used: cross- sectional, in which a posi-
tive measurement beyond a specific threshold—which for influenza is 
usually set to 1:40 or 1:32—is taken to indicate recent infection,4 and 
longitudinal, in which a rise in the highest positive reading between 
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successive serum collections of four or more times (often called a 
“fourfold rise,” although the interval censoring means the rise could ac-
tually be more modest) is typically assumed to reflect infection during 
that time interval. Cross- sectional designs can utilize residual samples 
of serology collected for other purposes and are logistically much sim-
pler to implement than longitudinal serum collections. They can allow, 
in principle, real- time estimates of attack rates,2 but have documented 
weaknesses, such as potentially leading to negative estimates of at-
tack rates,5 and while single cross sections may be accurate for a novel 
pathogen, repeated sampling is necessary if there is existing immunity 
in the population, or to track changes in incidence necessary for sup-
porting real- time estimates of severity.2

Traditionally, an HAI titre of 1:40 or more was chosen to indicate 
infection in cross- sectional studies, and it was found to be associated 
with a reduction in attack rates that varies between 20% and 80% de-
pending on age group and setting in influenza vaccination studies.6-9 
This choice is somewhat arbitrary. On the other hand, a fourfold rise 
is the currently used threshold in longitudinal studies and has been 
found to have sensitivity of ~80% relative to a basket of other diagnos-
tics.10 Neither justification relates to overall diagnostic accuracy per 
se, however, which is the primary goal of analyses to determine attack 
rates, for surveillance or for intervention trials.

More robust analysis is made interesting by several complicat-
ing factors: (i) titres are interval- censored, with intervals that are too 
broad to justifiably ignore; (ii) longitudinal studies require accounting 
for repeated measurements; (iii) titre distributions are typically too 
skewed to assume normality.

This study proposes a new statistical approach to estimate attack 
rates for paired sera. In this, multinomial ordinal probit models account 
for censoring and non- normality by invoking a latent “titre propensity” 
and nonlinear threshold variables, while the titre propensity is made 
bivariate to account for within- individual correlations in time. In addi-
tion, using this to estimate attack rates directly, we assess the sensitiv-
ity, specificity and overall accuracy of alternative versions of traditional 
thresholds, using three scenarios: (i) a new strain of influenza against 
which there is little pre- existing immunity, (ii) an outbreak of seasonal 
influenza and (iii) a period with little influenza activity, using data from 
a community cohort established in equatorial Singapore.

2  | METHODS

2.1 | Data

Repeated serological samples were drawn from a cohort of adults 
(aged 21- 75) participating in the Multi- Ethnic Cohort (MEC) of the 
Singapore Consortium of Cohort Studies, a long- term prospective 
cohort study, as described in detail elsewhere.1,11,12 Blood samples 
were collected at six different time points in 2009 and 2010, and this 
study uses sera collected at four of those points: (i) baseline samples 
collected before July 2009, thus predating unlinked community trans-
mission of the pandemic, (ii) a sample around October 2009, after the 
first but before the second wave, (iii) a sample in July 2010, which 
followed the subsequent two epidemic waves of influenza A(H1N1)

pdm09 and (iv) a sample in September 2010, 10- 12 weeks after the 
July 2010 sample. By the end of the study period, a total of 757, 690, 
624 and 556 samples were obtained at the four time points, that is be-
fore July 2009, around October 2009, in July 2010 and in September 
2010, respectively. The remaining two blood samples which were col-
lected in the middle of period 1 and period 2 were not included in 
the analysis because they fell in the middle of outbreaks, and thus, 
it is hard to interpret attack rates involving them. A total of 38 sub-
jects reported being vaccinated against influenza A(H1N1)pdm09 dur-
ing the study period and were thus excluded from the analysis. This 
study focuses on three time windows: period 1 (spanning samples 1- 2) 
which bracketed the first wave and in which the population had low 
initial immunity levels; period 2 (samples 2- 3) which bracketed the 
second and third waves and in which the population had high initial 
immunity levels; and period 3 (samples 3- 4) which had little influenza 
activity (Figure 1A). A total of 758 participants who provided at least 
one blood sample at time points 1 and 2 (690 provided at both), 691 
who provided at least one at time points 2 and 3 (544 provided at 
both) and 610 who provided at least one at time points at time points 
3 and 4 (498 provided at both) were included in analysis. Participants 
gave informed consent, and the study was approved by the National 
University of Singapore Institutional Review Board.

All blood samples were titrated in twofold dilutions of phosphate- 
buffered saline from 1:10 to 1:2560 and analysed to determine the 
antibody titre, which is the reciprocal of the highest dilution of serum 
where haemagglutination was inhibited.11 Titre values below the limit 
of detection were coded as <1:10, and a change in titre values from 
<1:10 to 1:10 was considered to be a twofold rise. Laboratory meth-
ods are detailed elsewhere.11

2.2 | Statistical model

We developed a longitudinal multinomial ordinal probit model for 
HAI titres that incorporated latent variables for infection status and 
antibody propensity for each individual at both sample points (the 
slight modifications needed for those with a single observation are 
described later). A schematic diagram appears in Figure 1B. A latent 
variable, zit, represents a continuous measure of antibody levels of 
individual i at time point t and is modelled as being normally dis-
tributed. At time point 1, zi1~N(μi,σ2), where the mean μi varies be-
tween individuals, to account for correlations between time points, 
as μi~N(a,w), and the variance σ2 accounts specifically for observation 
error. At time point 2, zi2~N(μi+δi,σ

2), where the change in mean, δi, 
is N(b+c, ν) if i was infected and N(b, ν) if not. Infection between the 
two time points happens with probability p, the primary estimand of 
interest.

The latent model is linked to the observations by an increasing 
sequence of threshold parameters, τk, that control the mapping from 
latent space to titre space. Titre intervals are coded 1 for <1:10, 2 
for 1:10 to 1:20, 3 for 1:20 to 1:40, etc., and the observed titre Tit 
for individual i at time point t is equal to k if τk-1≤zit<τk (Table 1). This 
model formulation provides the convenience of working with normally 
distributed variables while providing the flexibility to characterize the 
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skewed and often bimodal distribution of HAI titres observed in many 
studies,6,13 and although it requires estimating an additional parameter 
per observable HAI titre level, these can be modelled as constant in 
time. To ensure statistical identifiability, the two most extreme thresh-
olds are set to τ1=0 and τ8=1, with intermediate threshold- free pa-
rameters. Threshold parameters, τk, are fixed to be same for the three 
time windows.

Standard probability theory dictates that the joint distribution of 
the two latent variables is bivariate normal, conditional on infection 
status14: 

This is then mapped to an observed titre Tit=k, if τk-1≤zit<τk and 
t=1, 2. Note that the transformation from the latent variable’s space 
to the observed titre allows the distribution to be distorted away from 
a normal distribution to reflect the empirical shape of the titre distri-
bution. This is described in more detail in the Supporting Information.

As a consequence, the likelihood contribution from individual 
i given his or her infection status follows from the two- dimensional 
cumulative distribution function of a bivariate normal distribution. 
Unconditional on infection status, the likelihood is instead a weighted 
average with weights p and 1−p for infected and uninfected distribu-
tions, respectively. For computational efficiency, we count the number 
of individuals with each combination of titres at the two time points 
and refer these to a multinomial distribution with probabilities deter-
mined by the foregoing description.

For individuals with observations at one time point only, the 
likelihood follows from the appropriate marginal distribution, ei-
ther zi1~N(a, w+σ2) for time point 1 and a weighted average of 
zi2~N(a+b, w+ν+σ2) and N(a+b+c, w+ν+σ2) at time point 2. Again, we 
calculate these probabilities for each possible titre and refer them to a 
multinomial to obtain the likelihood function.

2.3 | Sensitivity analysis

An important assumption in the above model is that the risk of in-
fection is taken to be independent of baseline titres, which allows 
the infection probability parameter to represent average risk without 
knowing the titre distribution. An alternative formulation in which 
the probability is individualized to have a linear relationship to the 
titre category (on the logit scale), that is where logit(pi)=α+βTi1 and 
Ti1, is the observed titre for individual i at time point 1, was also 
developed and used to assess the sensitivity of our findings to this 
assumption. The sensitivity model is much more computationally in-
tensive because it requires the individual- level serological data as 
the input.
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F IGURE  1 Schematic diagrams of data collection (A) and the developed longitudinal multinomial ordinal probit model (B). In panel A, 
the shaded grey areas indicate the period of serum sample collection, and the numbers indicate the number of samples collected. The black 
line represents the weekly relative proportions of influenza A(H1N1)pdm09 infections obtained from routine primary care surveillance. The 
top coloured panel indicates how we define the three periods, where period 1 refers to the first pandemic wave, period 2 refers to the two 
subsequent epidemic waves, and period 3 refers to the non- influenza period. For panel B, in the pre- epidemic phase, the continuous measure of 
antibody levels of each individual is represented by a latent variable which is bounded by the observed titre interval and is normally distributed 
(black normal curve). In the post- epidemic phase, the latent variable for antibody levels of each individual still follows a normal distribution with 
the same variance, but there is a change in the normal mean that depends on the infection status (red curve for infected and blue curve for 
uninfected). Estimated threshold parameters, τk, are the same for all time points

TABLE  1 Summary of the terminology of titres used in the study

zit Yit Censored titre Conventional terminology

zit≤τ1 1 <1:10 <1:10

τ1≤zit<τ2 2 1:10 to 1:20 1:10

τ2≤zit<τ3 3 1:20 to 1:40 1:20

τ3≤zit<τ4 4 1:40 to 1:80 1:40

τ4≤zit<τ5 5 1:80 to 1:160 1:80

τ5≤zit<τ6 6 1:160 to 1:320 1:160

τ6≤zit<τ7 7 1:320 to 1:640 1:320

τ7≤zit<τ8 8 1:640 to 1:1280 1:640

τ8≤zit 9 >1:1280 1:1280

Conventional terminology typically refers to the maximum tested titre at 
which there is a positive reaction. This corresponds to a bracket that inter-
val censors the “true” titre, if more dilutions were tested. Yit is a coded 
version of the data; zit is a latent variable that, together with the thresholds 
τk, conceptually determines the censored titre observed.
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2.4 | Algorithm

All parameters were estimated via a Markov chain Monte Carlo 
routine, coded in R version 3.0.3 (R Foundation for Statistical 
Computing, Vienna, Austria)15 using 50 000 iterations with a thin-
ning of five iterations. Uniform prior distributions for all parameters 

over their support were taken and subject to the constraint τi<τj 
for i<j. We used a multinomial proposal distribution to update all 
parameters jointly. Convergence was assessed using trace plots 
of parameters and using the Geweke diagnostic.16 Point estimates 
are posterior means, and uncertainty intervals are 95% equal- tailed 
credible intervals (CrI).

F IGURE  2 Distribution of observed 
haemagglutination- inhibition (HAI) titres 
(A- C), modelled titres (D- F) and the 
proportion of uninfected (G-I) and infected 
(J- L) for HAI titres in periods 1- 3. A colour 
bar is placed at the bottom of each panel, 
with darker colour representing higher 
probabilities

F IGURE  3  Infection probability by 
haemagglutination- inhibition (HAI) titre 
in period 1 (A) and by fold increase in HAI 
titres in periods 1- 3 (B- D). Points with 
whiskers, which indicate the 95% credible 
intervals, represent the posterior means



206  |     ZHAO et Al.

The posterior probability of infection for an individual with a 
specific post- seasonal titre (for the first wave, i.e. in the absence of 
pre- existing immunity), or for a specific risk in observed titre intervals 
(for either wave), was calculated directly from the fitted model using 
Bayes’ rule. For the former, p(Ii|Ti2)=p(Ti2|Ii)p(Ii)/p(Ti2), where Ii is the in-
fection status for individual i and Ti2 is the observed titre for individual 
i at time point 2, which can be derived from the marginal distribution 
of titres at time 2 in the presence or absence of infection. For the lat-
ter, a similar expression is used.

2.5 | Diagnostic accuracy of existing thresholds

Sensitivity, specificity, positive and negative predictive values (PPVs 
and NPVs, respectively) and overall accuracy were calculated to as-
sess the performance of diagnostic tests for various titre thresholds, 
the latter two based on the prevalence estimated from the MEC 
data. We derived sensitivity/specificity by calculating the probability 
of a positive/negative test in the presence/absence of infection. To 
assess accuracy of different thresholds in future, plausible epidem-
ics, PPVs, NPVs and accuracies were calculated directly from the 
sensitivity and specificity as the hypothetical true prevalence was 
increased from 0 to 1. Sensitivity, specificity, PPV and NPV were 
all calculated from simulations from the developed model instead 
of using an objective measure, such as PCR- confirmed infections. 
Bias between the modelled prevalence and the hypothetical true 
prevalence was also calculated to compare the accuracy of the cur-
rently used thresholds (1:40 or a fourfold rise) with the model we 
developed.

3  | RESULTS

3.1 | Titre dynamics

Figure 2 illustrates the aggregate actual and modelled titre distribu-
tions as well as modelled titre distributions in the presence or absence 
of infection during the three time periods. The concordance between 
modelled and observed joint distributions was close for all periods. 
During the first wave (period 1), the majority of participants (79%) had 
no change in titre scores at the two time points, while the interval- 
censored titres rose for 17% of participants and fell for the remaining 
5% (Figure 2A). During the subsequent two epidemic waves (period 
2), 62% participants had the same titre scores at the two time points, 
while 17% had higher and 21% had lower titre scores at the post- 
season sampling (Figure 2B). During the non- influenza period followed 
epidemic waves (period 3), 88% of participants had same titre scores at 
the two time points and 4% had higher and 8% had lower titre scores 
at the post- season sampling (Figure 2C). In the absence of infection, 
88%, 75% and 78% of participants had titre scores unchanged during 
the first pandemic wave, the subsequent two epidemic waves and the 
non- influenza period, respectively (Figure 2G- I). Most of the partici-
pants who were infected had pre- season titres of less than 1:10 (86% 
for period 1, 73% for period 2, 74% for period 3) (Figure 2J- L).

3.2 | Attack rates over three periods

Our primary estimand is the attack rate from pre- season to post- season. 
This was estimated to be 15% (95% credible interval (CrI): 12%- 19%) 

F IGURE  4 Estimated prevalence (A), 
positive predictive value (B), negative 
predictive value (C) and accuracy (D) 
by various titre thresholds in period 1. 
Different thresholds shown on each panel 
are plotted in different colours. On panel 
(A), the black 45- degree equality dotted 
line describes an ideal scenario that the 
probability of a positive test equals to the 
probability of being infected. A colour bar is 
placed at the bottom of the panel (A) which 
shows the preferred titre threshold that 
should be used given the true prevalence. It 
is more preferred to use the threshold titre 
of 1:10 if the true prevalence is more than 
0.31 as denoted by the dark blue polygon. 
The threshold titre of 1:20 should be used 
if the true prevalence falls between 0.12 
and 0.32 as denoted by the red polygon. 
The threshold titre of 1:40 is preferred if 
the true prevalence falls between 0.04 and 
0.12 as denoted by the green polygon
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during the pandemic first wave (period 1), 16% (95% CrI: 12%- 21%) in 
period 2 and 1.2% (95% CrI: 0.3%- 2.4%) during the non- influenza pe-
riod (period 3). In a sensitivity analysis, these results were broadly con-
sistent with those using the more sophisticated model in which the risk 
of infection was related to initial titre levels (being 19% [95% CrI: 17%- 
20%], 12% [95% CrI: 10%- 14%] and 0.6% [95% CrI: 0- 1.7%], respec-
tively) with regard to the total number of infections across the three 
time periods, but with a slightly different distribution of when the infec-
tions occurred. Standard approaches, in contrast, gave estimates for the 
attack rate during the first wave (period 1) of 12% (95% CI: 9%- 14%) 
using a 1:40 threshold and of 12% (95% CI: 10%- 15%) using a fourfold 
rise, and of 10% (95% CI: 8%- 13%) and 2% (95% CI: 1%- 3%) for period 
2 and 3, respectively, using fourfold rise as a proxy for infection.

3.3 | Threshold positive predictive values and 
sensitivity

The estimated PPVs for cross- sectional titres, that is the proportion of 
people with a titre of that level who were infected, were substantial 
even for low thresholds (Figure 3; Table S1): 0.43 (95% CrI: 0.31- 0.54) 

for a titre between 1:20 and 1:40, and 0.24 (95% CrI: 0.15- 0.34) for 
one between 1:10 and 1:20. In contrast, the PPV for a threshold of 
1:40 and above was 0.81 (95% CrI: 0.73- 0.88). For a fourfold rise in titre 
scores, which is commonly used to reflect infection in longitudinal stud-
ies, the PPVs were 0.76 (95% CrI: 0.60- 0.88) and 0.92 (95% CrI: 0.77- 
0.99) for periods 1 and 2, respectively, while it was only 0.03 (95% CrI: 
0.01- 0.08) for the non- influenza period (Figure 3; Table S2). Even for a 
rise of at least twofold in titre scores, the PPVs were high: 0.31 (95% 
CrI: 0.19- 0.45) and 0.68 (95% CrI: 0.43- 0.85) for the first and second 
periods, respectively, indicating that many infections are missed using 
the standard definition during the influenza epidemic waves. The differ-
ence in PPVs in different periods depends on the incidence of infection 
and the population herd immunity level, but the sensitivity estimates 
are quite consistent across the time periods, and thus epidemic sce-
narios, considered. The sensitivities of the traditional thresholds were 
as follows: period 1, 1:40: 0.60 (95% CrI: 0.49- 0.71); fourfold rise: 0.74 
(95% CrI: 0.63- 0.83); period 2, fourfold rise: 0.64 (95% CrI: 0.55- 0.73); 
period 3, fourfold rise: 0.78 (95% CrI: 0.49- 0.96). The sensitivities for 
different HAI titre thresholds in different periods were summarized in 
Tables S3 and S4.

F IGURE  5 Estimated prevalence (A- C), 
positive predictive value (D- F), negative 
predictive value (G- I) and accuracy (J- L) by 
fold increase in titre scores in periods 1- 3. 
Different thresholds shown on each panel 
are plotted in different colours. On panel 
(A- C), the black 45- degree equality dotted 
line describes the ideal scenario that the 
probability of a positive test equals to the 
probability of being infected. A colour bar 
is placed at the bottom of the panel (A- C) 
which shows the preferred fold increase 
threshold that should be used given the 
true prevalence
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3.4 | Threshold accuracy

For straight- forward prevalence estimates to be unbiased, the pro-
portion of participants testing positive should equal the proportion 
infected, but for imperfect tests, this depends on the balance be-
tween sensitivity and specificity as well as the true prevalence. As 
depicted in Figure 4A, for cross- sectional studies in an influenza pan-
demic first wave, based on our estimated sensitivity and specificity, 
the most accurate threshold would be the standard 1:40 only for 
small pandemics with an attack rate between 4% and 12%; for larger 
pandemics, this threshold leads to estimates that are biased down-
wards. This bias could be reduced using a lower threshold of 1:20 
(for attack rates of 12%- 31%) or of 1:10 for a pandemic infecting 
a third or more of the population, as predicted by many simulation 
models4 and in line with the 1918 pandemic.17 Similarly, use of a 
fourfold rise as evidence of infection minimizes bias for small pan-
demics (of 2%- 14% attack rates) but underestimates the impact of 
larger pandemic first waves, while a twofold rise would be more ac-
curate for pandemics infecting more than 14% of the study popula-
tion (Figure 5A). These findings are similar when using the estimates 
from Singapore’s subsequent two epidemic waves after the first pan-
demic wave (Figure 5B,C).

Figure 6 suggests the bias from standard thresholds in estimates 
of attack rates could be substantial. For a small new influenza pan-
demic infecting 15% of the population or a larger 1918- like pandemic 
infecting 30% of the population, using the 1:40 threshold for a cross- 
sectional study or a fourfold rise for a longitudinal study would sub-
stantially underestimate the numbers infected. On the other hand, 
using the model we developed would give much smaller bias regard-
less of overall prevalence variations in the community.

4  | DISCUSSION

Many studies using cross- sectional serologic data for a newly circulat-
ing influenza strain use a haemagglutination- inhibition (HAI) antibody 
titre of 1:40 or 1:32 as the standard threshold level, as studies have 
shown there to be ~50% decrease in the risk of infection with sea-
sonal influenza viruses associated with a titre of 1:40.18-20 However, 
infected individuals may have HAI antibody titres of less than these 
levels.5 Similarly, many infected individuals do not experience the 
fourfold rise taken as evidence of seroconversion: the estimated 
sensitivity of this outcome versus a basket of other tests is ~80%.10 
Our findings corroborates previous work by Cauchamez et al.21 who 
identified the importance of using a twofold rise for estimating attack 
rates, and that a fourfold rise might substantially underestimate at-
tack rates. While either threshold is, depending on the study design, 
an unequivocal endpoint at the individual level for studies of risk of 
infection, for instance in vaccine trials13,22 or risk factor studies,23 their 
imperfect sensitivity and specificity mean they may not adequately 
describe overall infection rates at a population level. As a result, es-
timates of severity may be similarly, and potentially substantially, 
biased.

We argue that there are three approaches to remedying this 
situation. One would be to use a statistical method that explicitly 
accounts for the structure of serological data—in particular, their 
censored nature, the distinct forms of statistical error (assay error 
and between individual variability) and the differential response over 
time of those infected and uninfected. The model presented in this 
study is an example of such, that can readily be fit using modern, if 
computationally intensive, statistical techniques. A second, simpler, 
approach would be to retain the use of a threshold but revise the 
level in response to the anticipated size of the outbreak. The re-
sults of the current analysis suggest that for a cross- sectional study, 
the threshold should be set to 1:20 for outbreaks expected to in-
fect >12% of the population and 1:10 for >32%, while for pre-  and 
post- outbreak sera, use of a twofold rise as a marker for infection 
would be more accurate for outbreaks >14%. Adapting this into a 
simple rule of thumb suggests that the existing thresholds should 
be retained for seasonal epidemics but lowered for all influenza out-
breaks widespread enough to be classified as a pandemic. A third, 
simpler approach would be to use the traditional thresholds, that is 
≥1:40 for a cross- sectional study and ≥4- fold rise for a longitudinal 
study, and adjust for the imperfect sensitivity of the assay. However, 
this approach would not be practical when the sensitivity is unknown 
without additional data.1

This recommendation warrants further investigation in other set-
tings. However, taking our findings at face value suggests that sub-
stantially more people were infected during the 2009 pandemic than 
has been estimated24 and that severity metrics should be scaled up 
accordingly.

Previous research by Chen et al.12 using the same data set has 
shown that the new pandemic virus mostly affected the younger age 
group in Singapore (20- 29 years old). A stratified analysis by age group 
(<30 years old vs ≥30 years old) using the developed model has been 

F IGURE  6 Degree of bias conditional on attack rate by threshold 
used for defining influenza infection. The black, orange and blue lines 
with shaded area, which indicates the 95% credible intervals, show 
the bias produced by the developed model, an haemagglutination- 
inhibition (HAI) titre threshold of >1:40 and a fourfold rise in HAI 
titres, respectively



     |  209ZHAO et Al.

carried out, and consistent results were obtained that younger age 
group showed higher attack rate during the first pandemic wave (19%; 
95% credible interval: 11%- 30%) compared with the older age group 
(16%; 95% credible interval: 11%- 21%).

Limitations

As the data analysed in this study were taken from a cohort study, it is 
not randomly selected and may not be representative of Singapore’s 
population. This is a limitation common to most serological stud-
ies we have seen for influenza, with few exceptions (such as a large 
study in China25). The method we developed in this study depended 
upon the availability of serial serum sampling that begins prior to an 
outbreak, which can be costly and logistically complex, but which ac-
counts for baseline antibodies present due to cross- reactivity from dif-
ferent strains of a virus.1 The main analysis assumed the infection risk 
to be independent of baseline titre levels, albeit that this assumption 
is known to be untenable.26 Results from the sensitivity analysis that 
accounted for infection risk being influenced by initial titre were simi-
lar to those in the main analysis, but the alternative method was more 
computationally intensive. The developed model in this analysis only 
implicitly accounts for the waning effects in antibody titres over time, 
via a systematic reduction (or in principle increase) in mean latent titres 
between the time points. Cross- reactivity is another potential limitation 
when analysing serologic tests to estimate the prevalence of seasonal 
influenza. For example, in the 2009 pandemic, there was a high level of 
pre- existing seropositivity in older age groups due to cross- reactivity, 
because the virus subtype had been endemic in the population prior to 
the 1957 influenza A(H2N2) pandemic.2 The approach further requires 
that the post- pandemic sera are collected sufficiently soon after the 
end of epidemic activity such that titres have not decayed too substan-
tially over time.15 There might be potential measurement errors in the 
titration of antibodies against A(H1N1)pdm09 infections; however, it 
cannot be assessed without duplicated assays at the same time point. 
Thresholds suggested from the current analysis in response to the an-
ticipated size of the outbreak are specific to the context of the influenza 
A(H1N1)pdm09 outbreak, and further work is needed to demonstrate 
their validity for other epidemic scenarios.

Despite these limitations, these results challenge the predominant 
threshold of a 1:40 HAI titre or a fourfold rise in HAI titres and, in turn, the 
accuracy of many prior estimates of H1N1 attack rates. Precise estimates 
are important to public health planning and risk mitigation, and, there-
fore, a reconsideration of the standard paradigm should be considered.
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