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Abstract Biological age measurements (BAs) assess aging-related physiological change and

predict health risks among individuals of the same chronological age (CA). Multiple BAs have been

proposed and are well studied individually but not jointly. We included 845 individuals and 3973

repeated measurements from a Swedish population-based cohort and examined longitudinal

trajectories, correlations, and mortality associations of nine BAs across 20 years follow-up. We

found the longitudinal growth of functional BAs accelerated around age 70; average levels of BA

curves differed by sex across the age span (50–90 years). All BAs were correlated to varying

degrees; correlations were mostly explained by CA. Individually, all BAs except for telomere length

were associated with mortality risk independently of CA. The largest effects were seen for

methylation age estimators (GrimAge) and the frailty index (FI). In joint models, two methylation

age estimators (Horvath and GrimAge) and FI remained predictive, suggesting they are

complementary in predicting mortality.

Introduction
Biological aging is a process characterized by progressive deteriorations occurring simultaneously at

multiple levels, that is molecular, cellular, tissue- and organ-specific, in an organism (Hayflick, 2002).

Due to its complex nature, quantifying this process has long been a challenge. Chronological age

(CA) records the passage of time and serves as a convenient metric of aging; however, people of

the same CA manifest diverse aging-related phenotypes. Hence, biological age measurements

(BAs), attempt to capture physiological changes along the aging course. Therefore, they can be

used to assess health risks in individuals of the same age. Multiple BAs have been proposed, includ-

ing omics-based clocks, clinical biomarkers, and assessments of functioning (Jylhävä et al., 2017;

Xia et al., 2017). One of the potential BAs, telomere length, is the length of a nucleotide sequence

at the chromosomal ends, and represents the capacity for cell division (Mather et al., 2011). Epige-

netic clocks comprise aging-related DNA methylation information from various genomic loci (i.e.,

CpG dinucleotides) (Hannum et al., 2013; Horvath, 2013). Another composite score derived from

clinical measurements and blood biomarkers can be viewed as a physiological age measure (Lev-

ine, 2013). Furthermore, organismal functioning status could reflect the biological aging process

from various aspects, such as cognitive performance, physical functioning, and overall frailty

(Reynolds et al., 2005; Finkel et al., 2019; Searle et al., 2008).
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Previous studies found low to moderate correlations among different types of BAs, for example

telomeres, epigenetic clocks, clinical biomarkers, and frailty (Belsky et al., 2018; Kim et al., 2017;

Vetter et al., 2019; Zhang et al., 2018). However, few studies comparing BAs have taken mortality

risk into consideration, and none of them have included more than three types of BAs (Kim et al.,

2017; Zhang et al., 2018; Murabito et al., 2018). Thus, to grasp more of the complex aging pro-

cess, different types of BAs should be studied jointly in the same cohort. In addition, to capture

changes over time, as in aging, it is imperative to study the same individuals longitudinally, yet there

is a lack of studies comparing longitudinal profiles of multiple BAs in the same population.

Therefore, the present study aims to add to this knowledge gap in the field by examining longitu-

dinal trajectories, correlations and associations to all-cause mortality using nine BAs in the Swedish

Adoption/Twin Study of Aging (SATSA) (Finkel and Pedersen, 2004). Here, telomere length, four

types of DNA methylation age estimators (DNAmAges), physiological age, cognitive function, func-

tional aging index (FAI), and frailty index (FI) have been measured repeatedly across 20 years follow

up.

Results
In the present study, 845 individuals in SATSA (Finkel and Pedersen, 2004), with at least one BA

assessment at one In-Person Testing (IPT) occasion, were included. In total, there were nine IPTs con-

ducted between 1986 and 2014, that is IPT1-3 and IPT5-10 (IPT4 was a telephone interview). At

each IPT, a maximum of nine BAs were collected, resulting in 3973 BA measurements overall. A

number of 288 persons had at least one IPT with complete BA information on all nine measurements

(referred to as ‘complete measurement’ hereafter); in total, 612 complete measurements were

included. (Table 1 and Supplementary file 1A).

eLife digest Everyone ages, but how aging affects health varies from person to person. This

means that how old someone seems or feels does not always match the number of years they have

been alive; in other words, someone’s “biological age” can often differ from their “chronological

age”.

Scientists are now looking at the physiological changes related to aging to better predict who is

at the greatest risk of age-related health problems. Several measurements of biological age have

been put forward to capture information about various age-related changes. For example, some

measurements look at changes to DNA molecules, while others measure signs of frailty, or

deterioration in cognitive or physical abilities. However, to date, most studies into measures of

biological age have looked at them individually and less is known about how these physiological

changes interact, which is likely to be important.

Now, Li et al. have looked at data on nine different measures of biological age in a group of 845

Swedish adults, aged between 50 and 90, that was collected several times over a follow-up period

of about 20 years. The dataset also gave details of the individuals’ birth year, sex, height, weight,

smoking status, and education. The year of death was also collected from national registers for all

individual in the group who had since died.

Li et al. found that all nine biological age measures could be used to explain the risk of

individuals in the group dying during the follow-up period. In other words, when comparing

individuals with the same chronological age in the group under study, the person with a higher

biological age measure was more likely to die earlier. The analysis also revealed that biological

aging appears to accelerate as individuals approach 70 years old, and that there are noticeable

differences in the aging process between men and women.

Lastly, when combining all nine biological age measures, some of them worked better than

others. Measurements of methylation groups added to DNA (known as DNA methylation age) and

frailty (the frailty index) led to improved predictions for an individual’s risk of death. Ultimately, if

future studies confirm these results for measures from single individuals, DNA methylation and the

frailty index may be used to help identify people who may benefit the most from interventions to

prevent age-related health conditions.
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SATSA was initially designed to study individual differences in aging within twin pairs reared

apart. The present study, however, did not focus on twin-oriented aspects, such as quantifying the

magnitude of familial effect in exploring the BA-mortality associations. Instead, we made statistical

inferences for the general population, in which relatedness within twin pairs was accounted for by

introducing random effects in the mixed models and estimating robust errors in Cox regressions.

Overview of the development of BAs and BA residuals
Nine BAs were included in the present study based on data availability in SATSA. Leukocyte telo-

mere length was measured by quantitative polymerase chain reaction (qPCR) and presented as a rel-

ative telomere length (Berglund et al., 2016). Genome-wide methylation levels in whole blood were

assessed by Infinium HumanMethylation 450K BeadChip, and four types of DNAmAge (Horvath,

Hannum, PhenoAge, and GrimAge) were then calculated using established algorithms based on the

methylation levels of 353, 71, 513, and 1030 CpG sites, respectively (Hannum et al., 2013; Hor-

vath, 2013; Levine et al., 2018; Lu et al., 2019). Physiological age was derived from a list of age-

correlated biomarkers (Pearson correlation coefficient with CA > 0.10) measured by blood tests and

physical examinations (see Materials and methods and Supplementary file 1B). Biomarkers were

transformed into a calibrated BA value using principal component analysis and the Klemera and

Doubal (2006) methods. Cognitive function measured performance in verbal (crystallized) ability,

spatial (fluid) ability, memory, and perceptual speed using a cognitive testing battery. The four spe-

cific domains were combined into an overall score by principal component analysis (Reynolds et al.,

2005). FAI incorporated four functional aspects from self-reported information and physical exami-

nations, that is sensory (vision and hearing), pulmonary, strength (grip strength), and movement/bal-

ance (gait speed). The four indicators were standardized separately and summed to create a

composite score (Finkel et al., 2019). Lastly, a set of 42 self-reported deficits, covering a range of

health domains, were taken into account in the development of the FI (Jiang et al., 2017). (Table 2

and Supplementary file 1B– C).

For each BA, we calculated a corresponding BA residual by regressing out CA and sex effects as

well as individual- and twin-pair related components from the BA using a linear mixed model (see

Materials and methods and Figure 1). The BA residuals in the present study are commonly referred

to as age acceleration in the DNAmAge-related literature.

Baseline characteristics of BAs
Of the 845 study participants, 59.5% were women, 42.2% attained above primary education, and

25.0% were current or former smokers; the average body mass index (BMI) was 25.7 kg/m2, and

mean chronological age was 63.6 years at baseline. On average, the levels of BAs were 0.73 for telo-

mere length (T/S ratio), 60.4 years for Horvath DNAmAge, 65.2 years for Hannum DNAmAge, 63.8

years for DNAmPhenoAge, 69.4 years for DNAmGrimAge, 64.7 years for physiological age, 51.5 for

Table 1. Number of individuals and measurements with information on BAs.

Individuals Measurements Included IPTs

Telomere length 636 1599 3, 5, 6, 8, 9

DNAmAge (four types) 387 1028 3, 5, 6, 8, 9

Physiological age 802 3175 1, 2, 3, 5, 6, 7, 8, 9, 10

Cognitive function 829 3045 1, 2, 3, 5, 6, 7, 8, 9

FAI 739 2922 2, 3, 5, 6, 7, 8, 9, 10

FI 756 3162 2, 3, 5, 6, 7, 8, 9, 10

At least one BA 845 3973 1, 2, 3, 5, 6, 7, 8, 9, 10

Complete nine BAs 288 612 3, 5, 6, 8, 9

One measurement refers to one in-person testing occasion with at least one BA assessed in a given individual.

DNAmAges include four different types: Horvath, Hannum, PhenoAge, GrimAge.

BA, biological age; IPT, in-person testing; DNAmAge, DNA methylation age estimator; FAI, functional aging index;

FI, frailty index.
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cognitive function, 48.3 for FAI, and 0.10 for FI. The baseline characteristics in individuals with com-

plete measurements were similar to those in all individuals. (Table 3 and Supplementary file 1D).

Longitudinal trajectories of BAs
On average, BAs were assessed between 2.5 times (telomere length) to 4.2 times (FI) in each partici-

pant with information on the respective BAs. (Table 3) Longitudinal changes in BAs were modeled

as functions of CA (as a natural spline with three degrees of freedom) and sex, with random effects

introduced at the individual and twin-pair levels (mixed models, see Materials and methods). Both

individual-level BAs and population BA means over CA in men and women are presented in Figure 1.

We found that with increasing age, average telomere length and cognitive function declined, while

all types of DNAmAges, physiological age, FAI, and FI increased. The profiles for the three func-

tional BAs (cognitive function, FAI, and FI) show clear curvature, indicating an accelerated rate of

change around the age of 70, whereas the other BAs exhibit minimal or no curvature, corresponding

to a constant change (linear growth) over the age span. In addition, we observed small to moderate

sex differences in the mean levels of BAs. Women exhibited longer telomere length (p=0.001) and

lower DNAmAge (p=0.013 for Horvath, p=0.001 for Hannum, and p<0.001 for GrimAge) compared

to men, but also worse functioning (p<0.001 for FAI and p=0.001 for FI). (Figure 1).

To examine the possible effect modification, we next introduced an interaction term between CA

and sex in the mixed models. We found no evidence that the shape of the BA curves differed

between men and women, except for in physiological age (p<0.001 for sex interaction). However,

Table 2. The construction of BAs.

Component elements Measurement Statistical methods

Telomere length
(Berglund et al.,
2016)

Leukocyte telomere length qPCR Ratio of measured telomere length to a reference
length

DNAmAges: Leukocyte DNA Methylation levels of: Infinium
HumanMethylation
450K BeadChip

Established clock algorithms, developed by:

Horvath
(Horvath, 2013)

353 age-associated CpGs Elastic net regression (regressing CA on CpGs)

Hannum
(Hannum et al.,
2013)

71 age-associated CpGs Elastic net regression (regressing CA on CpGs)

PhenoAge
(Levine et al.,
2018)

513 PhenoAge-associated CpGs Step 1: Penalized proportional hazard regression
(regressing time-to-death on clinical markers and CA to
create PhenoAge); Step 2: Elastic net regression
(regressing PhenoAge on CpGs)

GrimAge
(Lu et al., 2019)

Smoking pack-years- and seven plasma proteins-
associated CpGs (1030 unique sites)

Step 1: Elastic net regression (regressing biomarkers on
CpGs to develop DNAm-based biomarkers); Step 2:
Elastic net Cox regression (regressing time-to-death on
DNAm-based biomarkers and CA)

Physiological age Age-related biomarkers, including:
Blood biomarkers: hemoglobin, glucose, cholesterol,
Apolipoprotein B, triglyceride; Clinical markers: BMI,
waist hip rate, weight, waist circumference, hip
circumference, systolic BP, diastolic BP

Blood test and
physical
examination

Principal component analysis and the Klemera and
Doubal methods (Klemera and Doubal, 2006)

Cognitive
function
(Reynolds et al.,
2005)

Verbal (crystallized) ability, spatial (fluid) ability,
memory, and perceptual speed

In-person cognitive
testing

Principal component analysis

FAI (Finkel et al.,
2019)

Sensory (vision and hearing), pulmonary, strength (grip
strength), and movement/balance (gait speed)

Self-reported
questionnaire and
physical
examination

Sum of standardized scores

FI (Jiang et al.,
2017)

42 health deficits Self-reported
questionnaire

Ratio of the number of deficit presented to the total
number of deficit considered

BA, biological age; IPT, in-person testing; DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index; BMI, body mass index;

qPCR, quantitative polymerase chain reaction; CpG, cytosine nucleotide being followed by a guanine nucleotide; BP, blood pressure.
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Figure 1. Longitudinal trajectories of BAs in 845 individuals (3973 measurements) with information on at least one BA. A total of 3973 repeated

measurements assessed from 845 individuals were included to estimate the longitudinal trajectories of BAs. For each BA estimation, the numbers of

available individuals and measurements varied and were specified in the heading of each panel. Longitudinal changes in BAs were modeled as

functions of CA (as a natural spline with three degrees of freedom) and sex, with random effects at the individual and twin-pair levels (mixed models).

Both individual-level BAs and population BA means over CA in men and women are presented in Panel (A-I). BA measurements were presented as

orange dots, lines or broken lines when one, two, or more than two measurements were assessed for a given individual. Average changes of BAs with

age in the study population were indicated by smooth lines (blue for men and pink for women). The longitudinal growth of the three functional BAs

(cognitive function, FAI, and FI) show an accelerated rate of change around the age of 70 (Panel J-I), whereas the other BAs exhibit relatively linear

trajecotries over the age span (Panel A-F). BA, biological age; DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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the difference was mainly observed at the end of the CA spectrum (i.e., before the age of 50 and

after the age of 85). (Figure 1—figure supplement 1).

Correlations of BAs
BAs were broadly categorized into four groups according to the main biological structural levels

where the BA measurements were implemented, that is telomere length, DNAmAges, physiological

age, and functional BAs (Panel A in Figure 2). We estimated correlation coefficients between BAs

and BA residuals and adjusted for repeated measurements using the rmcorr function in R (Figure 2

and Supplementary file 1E) (Bakdash and Marusich, 2017). Using all complete measurements, we

estimated repeated measures correlation (rmcorr, 22) between age and all nine BAs, which accounts

for non-independence among observations and captures the common intra-individual association

between age and each of the BAs in turn. Telomere length showed low correlations with both CA

and BAs (absolute correlation coefficients � 0.16); the other BAs were correlated with CA and each

other to varying degrees, with absolute correlation coefficients ranging from 0.24 to 0.87. As indi-

cated by the correlation matrices of BAs and BA residuals (Panel B and C in Figure 2), after regress-

ing out CA from BAs, most of the original correlations were attenuated and moderate correlations

remained only between Horvath and Hannum DNAmAges (r = 0.35), cognitive function and FAI

(r = �0.32), and FAI and FI (r = 0.31). Correlation patterns of BAs and BA residuals in men and

women were similar to those in the whole population. (Data not shown).

Next, we transformed correlation coefficients into Euclidean distances and then performed hierar-

chical cluster analysis. The same types of BAs, that is methylation BAs and functional BAs, tended to

be more closely related. GrimAge and PhenoAge, however, were somewhat separated from the

other two DNAmAges, especially using BA residuals. (Figure 2—figure supplement 1).

BAs and the risk of all-cause mortality
To study the association between BAs and all-cause mortality, we used Cox regression models with

attained age being time scale and accounted for left truncation and right censoring. To make the

Figure 1 continued

Figure supplement 1. Longitudinal trajectory of physiological age with sex interaction term introduced to the mixed model.

Table 3. Characteristics of baseline (first available) measurements in 845 individuals with information on at least one BA.

Baseline measurements in all
individuals

Baseline measurements in individuals with corresponding BAs

Telomere
length
(T/S ratio)

DNAmAge
(year)

Physiological
age
(year)

Cognitive
function FAI FI

Number of participants 845 636 387 802 829 739 756

Women (%) 59.5 58.5 59.9 58.9 59.6 59 59.4

Above primary education
(%)

42.2 45.4 45.5 41.8 42.6 43.7 43.3

BMI (kg/m2) 25.7 (3.9) 26.3 (4.1) 26.3 (4.3) 25.6 (3.9) 25.7 (3.9) 25.8 (4) 25.8 (4.1)

Current and ex-smokers
(%)

25.0 22.2 21.7 24.1 25.5 24.1 23.7

Age (year) 63.6 (8.6) 68.8 (9.6) 69 (9.6) 64.5 (8.9) 63.7 (8.3) 65.3 (9.2) 65.5 (9.4)

BA 0.73 (0.17) 60.4 (11.0)
65.2 (10.1)
63.8 (13.61)
69.4 (8.5)

64.7 (10.3) 51.5 (10.4) 48.3
(11.4)

0.10
(0.08)

Number of
measurements

2.5 (1.3) 2.7 (1.3) 4.0 (2.2) 3.7 (2.1) 4.0 (2.4) 4.2 (2.5)

Values are means (standard deviations; SDs) unless stated otherwise.

Values of ‘BA’ in the ‘DNAmAge’ column refer to four different types of DNAmAge: Horvath, Hannum, PhenoAge, and GrimAge, respectively.

BA, biological age; IPT, In-person testing; DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index; BMI, body mass index.
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hazard ratios (HR) comparable, we rescaled all BAs and BA residuals by their standard deviation

(SD), so that HRs express changes in mortality risk due to a one-SD increment of the respective BA

or BA residual. Fully adjusted models controlled for sex, educational attainment, smoking status,

and BMI. All models were stratified by participants’ birth year (categorized in 10 year intervals into

five groups) and implicitly adjusted for CA through the choice of attained age as the underlying time

scale. When repeated measurements were available, only the first BA assessment was included in

the survival analysis and referred to as the baseline BA.

First, we looked at the effect of baseline BAs separately (i.e., one-BA models). During a median

follow-up time of more than 15 years, we observed statistically significant BA-mortality associations

for DNAmAges (GrimAge, PhenoAge, and Horvath) and functional BAs (FI, FAI, and cognitive

Figure 2. Correlations of BAs in 288 individuals (612 complete measurements). A total of 612 complete measurements assessed from 288 individuals

were included to estimate the correlations of BAs. BAs were broadly categorized into four groups according to the main biological structural levels

where the BA measurements were implemented (Panel A). We estimated the repeated-measure correlation coefficients between BAs and between BA

residuals and illustrated the correlation coefficients in heat maps (Panel B-C). Red and blue tiles represented positive and negative correlations,

respectively; color density indicated the magnitude of correlation coefficients. All BAs were correlated to varying degrees (Panel B). After regressing out

CA from BAs, most of the original correlations were attenuated (Panel C). BA, biological age; DNAmAge, DNA methylation age estimator; FAI,

functional aging index; FI, frailty index; CA, chronological age.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Hierarchical clustering of BA in 288 individuals (612 complete measurements).
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function), where a one-SD increase of BAcorresponded to a change in mortality risk by 39, 26, 17,

32, 27, and 15%, respectively. Increased mortality risks were also found with changes in Hannum

DNAmAges and physiological age, although the effects were generally weaker and came with a

slightly higher level of imprecision, with HRs (95% CI) being 1.17 (0.98, 1.40) and 1.13 (0.97, 1.31).

We found no evidence for telomere length as associated with mortality risk. (Table 4) The corre-

sponding HRs for the BA residuals were comparable to BAs (Supplementary file 1F).

Second, we explored the baseline BAs in relation to mortality risk by taking all BAs into consider-

ation simultaneously in 288 individuals with complete measurements (i.e., nine-BA models). To avoid

biased estimation due to collinearity (as all nine BAs were correlated to varying extents), BA resid-

uals instead of BAs were used. During a median follow-up time of 16.5 years, we observed that three

BA residuals, Horvath DNAmAge, DNAmGrimAge, and FI, out of nine were associated with the risk

of all-cause mortality independently of all other BAs. A one-SD increment of Horvath DNAmAge,

DNAmGrimAge and FI residuals was associated with a 31%, 43% and, 58% higher risk of death,

respectively, independent of the level of CA, all other BA residuals and common risk factors. The

HRs for the other DNAmAges (Hannum and PhenoAge), physiological age, and the other functional

ages (cognitive function and FAI) were attenuated towards one after controlling for all BAs in the

same model (Table 5).

Sensitivity analyses
We replicated the first part of the survival analyses (i.e., one-BA models) in subgroups classified by

sex, age group, and smoking status, as well as in the sub-cohort of individuals with complete meas-

urements. In the subgroup analyses, we observed evidence for potential effect modification. The

associations of BAs with mortality risk were generally stronger in women (except for Horvath DNA-

mAge, and physiological age), more pronounced in the younger individuals (except for Horvath

DNAmAge, physiological age and cognitive function), and a bit stronger in current or ex-smokers

(for Horvath DNAmAge and DNAmGrimAge) compared to those in men, older individuals, and non-

smokers, respectively. (Figure 3 and Supplementary file 1G–I) Furthermore, as with the results

observed in the whole population, we found the same general pattern of BA associations with mor-

tality in the sub-cohort with complete measurements. (Supplementary file 1J) We also adjusted for

the presence of the previous diseases, including heart failure, stroke, diabetes, and cancer in the sur-

vival model and the observed results were largely unchanged. (Supplementary file 1K).

Table 4. Survival analyses of baseline (first available) BAs with the risk of all-cause mortality in 845 individuals (one-BA models).

BAs Number of individuals Number of deaths Median follow-up time (year) Model 1 Model 2

Telomere length 636 389 15.8 0.96 (0.87, 1.06) 1.01 (0.92, 1.11)

DNAmAge (Horvath) 387 240 16.1 1.14 (1.00, 1.32) 1.17 (1.01, 1.36)

DNAmAge (Hannum) 387 240 16.1 1.24 (1.05, 1.46) 1.17 (0.98, 1.40)

DNAmPhenoAge 387 240 16.1 1.22 (1.06, 1.40) 1.26 (1.08, 1.47)

DNAmGrimAge 387 240 16.1 1.49 (1.18, 1.89) 1.39 (1.11, 1.75)

Physiological age 802 543 18.7 1.12 (0.98, 1.29) 1.13 (0.97, 1.31)

Cognitive function 829 570 19.2 0.83 (0.75, 0.91) 0.85 (0.76, 0.94)

FAI 739 481 17.9 1.21 (1.06, 1.38) 1.27 (1.10, 1.47)

FI 756 498 17.7 1.28 (1.15, 1.43) 1.32 (1.18, 1.48)

Values are Hazard Ratios (95% Confidence Interval) [HR (95% CI)] unless stated otherwise.

HRs (95%CIs) in each column refer to the relative risks associated with one-SD increase in the level of BA of nine different models with one corresponding

BA being the predictor of the mortality risk. Model 1 is the uni-variate survival model with only one BA taken into account. Model 2 is the multi-variate sur-

vival model, in which common risk factors (sex, education attainment, smoking status, and BMI) were additionally adjusted for on the basis of Model 1. All

models were stratified by participants’ birth year (in 10-year interval). Attained age was used as the time-scale and thus age was inherently adjusted for.

BA, biological age; DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index.
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Discussion
The present study investigated nine different BAs in a middle and old-aged Swedish population-

based cohort. We observed longitudinal growth of functional BAs accelerated around age 70 and

sex differences in the average levels of BAs across the age spectrum. All BAs were correlated to

varying degrees and the correlation coefficients were attenuated after adjusting for CA. Of nine

BAs, four DNAmAges, physiological age, and three functional BAs were associated with the risk of

mortality individually, with the strongest effect size observed for DNAmGrimAge and FI. In particu-

lar, Horvath DNAmAge, DNAmGrimAge, and FI remained predictive of mortality in a multivariable

model including all BAs.

Longitudinal trajectories of BAs
As biological aging does not proceed at a constant pace across time, monitoring longitudinal trajec-

tories of BAs using repeated assessments to depict the characteristics of the aging course is of great

importance. We observed an accelerated change in the aging pace in functional BAs, which are in

parallel with previous studies focused on trajectories of cognition, physical function, and frailty

(Harris et al., 2016; Stow et al., 2018; Zaninotto et al., 2018). This result indicates that an aged

population may expect deteriorations of their functional performance to speed up as their age

approach 70 years. In particular, we observed that the aging acceleration of cognition (cognitive

function) and physical function (FAI) seemed to take place before age 70, while frailty (FI) went up at

an increased rate after age 75. This evidence suggests that accelerated cognitive and physical dys-

functions are likely to arise prior to frailty’s, and corresponding interventions and screenings could

aim at people of different ages accordingly.

In contrast to functional BAs, DNAmAges and physiological age accrued at a relatively constant

rate. Due to their mode of construction, DNAmAges and physiological age were transformed into

an age-calibrated scale in the unit of year. Thus, these BAs allow individuals to perceive an intuitive

impression on their biological aging status by comparing BA with CA and have the potential to serve

as a straightforward-to-use metric in the geriatric practice. However, in order to be clinically mean-

ingful, they need to be validated on the individual level data as well. In addition, a drawback of this

mode of construction is that it largely explains the linear shapes of the BA trajectories, making longi-

tudinal BA characteristics less informative as the changes are constant. Another feature of physiolog-

ical age is the strong correlation with CA; hence, it allows limited biology perception in prediction

Table 5. Survival analyses of baseline (first available) BA residuals with the risk of all-cause mortality

in 288 individuals with complete measurements (nine-BA models).

BA residuals Model 1 Model 2

Telomere length 0.98 (0.86, 1.12) 1.03 (0.89, 1.19)

DNAmAge (Horvath) 1.22 (1.01, 1.48) 1.31 (1.08, 1.58)

DNAmAge (Hannum) 1.05 (0.88, 1.26) 1.03 (0.83, 1.28)

DNAmPhenoAge 1.08 (0.87, 1.33) 1.13 (0.91, 1.40)

DNAmGrimAge 1.44 (1.19, 1.74) 1.43 (1.11, 1.84)

Physiological age 0.99 (0.88, 1.12) 1.01 (0.87, 1.18)

Cognitive function 0.92 (0.76, 1.12) 1.01 (0.85, 1.20)

FAI 1.08 (0.90, 1.29) 1.04 (0.86, 1.27)

FI 1.46 (1.24, 1.72) 1.58 (1.32, 1.89)

During a median follow-up time of 16.5 years, 151 deaths were documented among 288 individuals.

Values are Hazard Ratios (95% Confidence Interval) [HR (95% CI)] unless stated otherwise.

HRs (95%CIs) in each column refer to relative risks associated with one-SD increase in the level of BA residual from

one multi-variate model with all BA residuals being the predictors of the risk of mortality simultaneously. Model one

took eight BA residuals into account. Model two additionally adjusted for common risk factors (sex, education attain-

ment, smoking status, and BMI) on the basis of Model 1. All models were stratified by participants’ birth year (in 10

year interval). Attained age was used as the time-scale and thus age was inherently adjusted for.

BA, biological age; DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index.
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models on top of CA. This is again due to its mode of construction using a composite score of sev-

eral biomarkers where each one, by definition, strongly correlates with CA. To improve construction

models for BA, composite scores should balance the reliance on biological aspects and weight on

CA.

Sex differences in aging are observed at multiple biological levels (Oksuzyan et al., 2008;

Ostan et al., 2016). Most notably, women tend to present lower mortality but higher morbidity

rates, especially at advanced ages, compared to men of the same age. We found that, compared to

men, women presented lower molecular ages (telomere length and methylation age estimators) but

higher functional ages (FAI and FI) across the age spectrum, indicating different medical needs are

likely to be encountered for men and women. Meanwhile, we observed no evidence for shape differ-

ences in the BA trajectories (except for physiological age) by sex. This suggests that aging pro-

ceeded at a similar rate in men and women since midlife onwards. For physiological age, the shape

difference was mainly observed at the end of the age spectrum and could be influenced by method-

ological issues as the construction of physiological age was done differently in men and women. Put-

ting our results in the perspective of previous studies, we confirm earlier findings in women, such as

better telomere status and worse frailty (Mu et al., 2014; Bartley et al., 2016). One possible

Figure 3. Survival analyses of baseline BAs with the risk of all-cause mortality in subgroups classified by sex, baseline smoking status, and baseline age

(one-BA models). A total of 845 individuals were included to estimate the mortality associations of BAs in subgroups. The numbers of individuals in

each subgroups were specified in the Supplementary file 1G–I. We used Cox regression models to estimate the change in mortality risk associated

with a one-SD increment of the respective BA at baseline assessment (one-BA models). All models controlled for sex, educational attainment, smoking

status, and BMI, stratified by participants’ birth year, and accounted for left truncation and right censoring. Attained age was used as the time-scale and

thus age was inherently adjusted for. BA-mortality associations by were illustrated in the forest plot (Panel A-C), in which points and horizontal lines

denoted HRs (95%CIs) and point shapes and colors represented subgroups. The associations of BAs with mortality risk were generally stronger in

women (except for Horvath DNAmAge and physiological age), more pronounced in the younger individuals (except for Horvath DNAmAge,

physiological age and cognitive function), and a bit stronger in current or ex- smokers (for Horvath DNAmAge and DNAmGrimAge). BA, biological age;

DNAmAge, DNA methylation age estimator; FAI, functional aging index; FI, frailty index; CA, chronological age; HRs (95%CIs), hazard Ratio (95%

Confidence Interval).
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explanation for the sex difference in FI is that men and women tend to present different self-percep-

tion on aging-related performances due to social and cultural considerations when self-reported

data are used (Ostan et al., 2016). However, cognitive function and FAI incorporate objective meas-

urements tested by trained nurses and both of them exhibited sex differences in the same direction.

Hence, sex differences in the functional BA spectrum are not, or at least not exclusively, driven by

social and cultural factors. Therefore, we suggest that sex differences should always be accounted

for in studies of aging and, if possible, presenting stratified analyses should be encouraged.

Correlations of BAs
Aging is a complex process proceeding through interconnected biological mechanisms. BAs, in

essence, are underlain by different sets of these mechanisms. Correlations of BAs could provide an

idea of how one BA changes in accordance with another. We observed moderate to strong correla-

tions between CA and all BAs, with the exception of telomere length, which was only weakly corre-

lated with CA and the other BAs. These results are in line with previous research observing similar

correlation pattern for 11 BAs, as well as low correlations between telomere length and other types

of BA (Belsky et al., 2018). As some degree of correlation between BAs is expected simply due to

their relation with CA, we also investigated correlations between BA residuals, which by construction

minimize correlation with CA. We found clear attenuation of the correlations between different types

of BA residuals, that is methylation BAs and functional BAs as well as physiological age and telomere

length. In other words, among individuals with the same CA, molecular BAs and functional BAs are

only weakly associated. We interpret this as an indication that these categories largely reflect differ-

ent aspects of the aging process.

After regressing out the effect of CA, we still observed weak to moderate correlations between

DNAmAges. These DNAmAges were initially trained to capture methylome differences associated

with various aging-related phenotypes, namely CA for Horvath and Hannum, Phenotypic Age for

PhenoAge, and mortality risk for GrimAge (Hannum et al., 2013; Horvath, 2013; Levine et al.,

2018; Lu et al., 2019). Employing correlated surrogates and measuring the same aging hallmark of

epigenetic alteration in the development of these DNAmAges could partly explain the correlations

observed among these residuals. Hierarchical clustering suggested GrimAge and PhenoAge were

somewhat separated from the other two DNAmAges, which is expected as GrimAge and PhenoAge

incorporate additional information on top of CA in the development of their BA algorithms. In addi-

tion, Horvath and GrimAge were the least correlated DNAmAge residuals, indicating that these two

BAs captured uncorrelated methylome information to a larger degree than other DNAmAges did

and might have the potential to inform aging-related outcomes independently (as illustrated in the

results of nine-BA survival analyses).

Functional BA indicators included cognitive function, FAI, and FI, which quantify cognitive, physi-

cal, and frailty-related functioning. Intriguingly, the present analysis found comparable levels of cor-

relation for these BAs as well as for their residuals, suggesting that most of these correlations were

not simply driven by CA. Previous studies have also reported correlations between physical function,

cognitive function, and health-related quality of life (Kim, 2016). As functional BAs measure complex

phenotypes resulting from intricate biological mechanisms, further investigations are needed to dis-

entangle the mechanisms underlying both the age-dependent and, in particular, the age-indepen-

dent correlations.

BA-mortality associations
A majority of the included BAs are well-established aging indicators and were found to be associ-

ated with mortality in previous studies (Hannum et al., 2013; Levine, 2013; Shamliyan et al., 2013;

Wang et al., 2018a). Our results were comparable to the current evidence. We first examined the

baseline value of individual BAs in relation to the risk of death and found associations for all BAs

except for telomere length, with DNAmGrimAge and FI demonstrating the strongest relationship.

We next examined BA-mortality associations with all BAs included in the same model and observed

significant evidence for Horvath DNAmAge, DNAmGrimAge, and FI, suggesting they were comple-

mentary in the prediction of mortality. In other words, Horvath DNAmAge, GrimAge and FI were

likely to capture aging-related information that was both informative in the prediction of mortality

risk and independent of other BAs. DNAmAges (Hannum and PhenoAge) and functional BAs
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(cognitive function and FAI) were likely to reflect some mortality-associated aging aspects that were

shared and/or correlated with other BAs, as the corresponding HRs were attenuated to almost one

when all BAs were included in the model.

Few studies have focused on the comparison of the predictive aspect of BAs. Kim et al. (2017)

found FI to outperform methylation age estimators in survival models by comparing only two types

of BAs, frailty, and DNAmAge (Horvath). Zhang et al. (2017) developed a methylation-based mor-

tality score and observed a stronger mortality association than the FI-mortality relationship. Further-

more, Murabito and colleagues compared clinical age, inflammatory age, and DNAmAge (Horvath

and Hannum) and concluded that they were complementary in predicting risk for mortality

(Murabito et al., 2018). Our study thus supports these findings, both in the way that mortality-ori-

ented DNAmAges and FI were strongly associated with mortality, and in that certain types of BAs

could reflect mortality risk independently. In particular, we add information by including other BAs,

especially physiological age, a newly trained DNAmAge (GrimAge) and functional BAs.

Physiological age is a composite biomarker of aging, developed from 10 blood and clinical

markers. Levine et al. applied a similar method to develop a BA indicator and found it associated

with mortality beyond CA in a large US population (Levine, 2013; Klemera and Doubal, 2006). We

also observed that physiological age predicted mortality risk independently of age, albeit weaker

and at a moderate significance level. Despite its weak mortality association, physiological age

presents some benefits with respect to the physiological interpretation and the search for biological

mechanism in future explorations, as the component biomarkers contributed to the development of

physiological age were explicitly specified.

DNAmGrimAge is derived via a two-step development method, in which methylation data were

first used to predict a set of biomarkers (plasma proteins and smoking pack-year), and the methyla-

tion-based biomarkers were then used in the prediction of mortality risk. As a result, the DNAmGr-

imAge is explicitly trained to be a mortality predictor; it also includes the largest number of genomic

sites compared with the other three DNAmAges, and allows the methylation level of a single CpG

site to contribute to mortality risk via different intermediate biomarkers, as the methylation-based

biomarkers used somewhat overlapping CpG sites in the two-step training phase. Lu et al. (2019)

reported the advantage of predicting mortality over other existing DNAmAges in a US population.

These results point to the potential of utilizing methylation information to reflect complex aging

phenotypes.

The FI is developed using clinical information and is likely to capture an organismal perspective

on aging that is closer to the clinical end-point of death compared to molecular-based BAs. In addi-

tion, the FI incorporates information in multiple health domains, in contrast to the other two func-

tional BAs, cognitive function, and FAI, which exclusively measure cognitive or physical performance.

The comprehensive nature of the FI could partly explain the strong and robust mortality association

observed here and in previous studies (Kojima et al., 2018). Functional BAs, especially FI, measure

not only the biological aging process, but also social and psychological wellbeing. Consequently,

disentangling the underlying biological mechanisms from the functional measures would be chal-

lenging, which impairs the ability of functional BAs to explain the innate biological aging process.

Specifically, it is difficult to implement functional BA measurements in animal models, whereas

molecular BAs can be easily investigated in animal studies. Additionally, functional BAs in humans

tend to show less heterogeneity among the young, making them less ideal instruments to assess the

aging process among young adults, compared to using molecular BAs. This is especially true when it

comes to FAI as it only takes four functioning indicators into account. However, FI considers a wide

range of health deficits (42 in our case) and provides relatively precise scales to differentiate individ-

uals with lower functioning scores. Furthermore, since biological, psychological, and social factors all

contribute to the health status of human beings, the comprehensive nature of functional BAs also

comes with important advantages for predicting aging-related outcomes, underlining the comple-

mentary nature of molecular and functional BAs.

Sensitivity analysis
In the subgroup analysis, we found moderate effect modification from age and smoking status. A

previous study in a large Swedish cohort from our research group also observed that the effect size

of FI with mortality was attenuated with increasing age (Li et al., 2019). DNAmGrimAge includes

smoking (pack-year) associated CpG sites in its establishment (Lu et al., 2019), which could partly
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explain a stronger association observed in smokers than non-smokers as it may capture smoking-

based deterioration at the molecular level. In addition, the present results found a majority of the

BA-mortality associations to be stronger in women compared to men, suggesting sex differences

should be acknowledged in making use of BAs to inform clinically relevant decisions.

It is noteworthy that in comparing the strength of relative risk of mortality related to each BA, we

were not aiming to propose any superior BA, as mortality association alone is by no means the gold

standard for a qualified BA in aging research. Evidence exists that some BAs have advantages in pre-

dicting other aging-related outcomes such as entry into care (e.g., FAI) (Finkel et al., 2019), which

may be more relevant for developing policies and interventions.

Strengths and limitations
The present study has several strengths. First, we measured nine BAs in the same population from

the molecular to the organismal level, which provided us an opportunity to examine BA characteris-

tics from several molecular and functional aspects. Second, the BAs were assessed in a longitudinal

manner to allow for descriptive and correlational analyses considering changes over time. Third,

through the linkage to the Swedish national registers, we were able to keep track of study partici-

pants’ vital status for nearly 20 years, thus being able to predict the risk of death in relation to BA

status prior to the occurrence of most aging-related outcomes.

Several limitations should be taken into consideration when interpreting the present findings.

First, only individuals with complete measurements were included in the nine-BA survival models.

Complete observations may not be a representative subgroup of the entire study population and

lead to selection bias. However, IPT occasions with incomplete BAs were mostly due to administra-

tive reasons, such as methylation data were only assessed in five waves since IPT3, and these factors

are likely not related to subject-specific features. In addition, we replicated the one-BA survival mod-

els in individuals with complete measurements, and the results did not show major discrepancies.

Second, the birth year of SATSA participants spanned a long period of time, from the year 1900 to

1948, thus raising concerns for cohort effects. During this time, improved medical conditions or

emergent public health events could affect both BA and mortality risk and cannot be controlled

merely through the age scale in the present analysis. All survival models were stratified by partici-

pants’ birth year in 10 year intervals to in part alleviate bias due to the cohort effect.

In summary, biological age is a construct built on molecular, cellular, and functional aspects of an

individual´s health status and has the potential to change the way risk prediction is performed in the

clinic. In the era of personalized medicine, individual health assessments are warranted and should

rely on better methods than simply using the CA. In this study, we present the most comprehensive

analysis of biological age in humans to date. We explain their correlations and longitudinal patterns.

We highlight the sex-specific effects and point to the importance of providing sex-specific estimates

in aging investigations and acknowledging sex-specific care in geriatric practices. Furthermore, we

found BAs had the potential to provide mortality-relevant information independently of CA and

independently of other types of BAs. Further studies are needed to investigate if the present find-

ings could be extrapolated to a younger population, what the specific mechanisms underlying the

BA correlations are, and possible modification effects on and between BAs.

Materials and methods

Study population
The Swedish Adoption/Twin Study of Aging (SATSA) was a population-based study consisting of

reared apart and reared together twin pairs (Finkel and Pedersen, 2004). In-person testing (IPT) in

SATSA was initiated in 1986 and nine complete waves of in-person testing were conducted through

2014 (IPT1 to IPT10, except for IPT four where only telephone interviews were performed), during

which the information of a maximum of nine BAs, including telomere length, four DNAmAges (Hor-

vath’s, Hannum’s, PhenoAge, and GrimAge), physiological age, and three functional ages (cognitive

function, FAI, and FI) were available. In total, 859 individuals participated in at least one IPT wave in

SATSA, and 846 individuals who had at least one BAs assessed once since IPT1 to IPT 10 (except for

IPT4) and the information of vital status through linkage between the Swedish Twin Registry (STR)
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and the Swedish Population Register were included in the present study. The number of individuals

and measurements by IPT and BAs were detailed in Table 1 and Supplementary file 1A.

Assessment of biological age
Telomere length
Telomere length was measured from DNA extracted from leukocytes in peripheral blood

(Berglund et al., 2016). A quantitative polymerase chain reaction-based technique was carried out

to compare the telomere sequence copy number in each participant’s sample (T) to a single-copy

reference gene from b-hemoglobin (S). The resulting relative length was represented as T/S ratio.

Relative telomere length was further adjusted for batch effect, and 10 outliers (beyond Mean ±4*SD)

were omitted in the present analyses.

DNA methylation age estimator (DNAmAge)
Genome-wide methylation levels were measured from leukocytes using Illumina’s Infinium Human-

Methylation 450K BeadChip according to the manufacturer’s protocol and quantified by beta-values

(Wang et al., 2018b). DNAmAges of Horvath and Hannum versions incorporate methylation levels

of 353 and 71 age-related CpGs trained from multiple sample types and blood sample accordingly

through a penalized regression model (Hannum et al., 2013; Horvath, 2013). In contrast to DNA-

mAges trained via regressing on age, the third version of methylation age estimator, PhenoAge,

were trained on a composite clinical measure of phenotypic age, and eventually included 513 CpG

sites (Levine et al., 2018). Further, GrimAge adopted a two-step development method, in which

methylation data were used to predict a set of biomarkers (plasma proteins and smoking pack-year),

and the methylation-predicted biomarkers were then used to predict mortality risk. As a result, a

total number of 1030 CpG sites were taken into account (Lu et al., 2019). All DNAmAges were com-

bined using penalized regression models and generated from the online DNA Methylation Age Cal-

culator (Horvath, 2019).

Physiological age
Physiological age considered a set of physiological biomarkers assessed from the immediate blood

test, blood test in lab, urine strip test, and physical examination data that were available in all waves

of IPT. First, we included one measurement for each individual to form a sub-sample in which one

measurement was randomly selected when repeated measurements for a single individual were

available. Pearson correlations were examined using measurements of age and candidate bio-

markers in the sub-sample. As a result, nine and five eligible age-associated biomarkers (Pearson

correlation >0.1) were included in the development of physiological age for men and women sepa-

rately. Supplementary file 1B illustrates the biomarker-age correlations in detail. We then per-

formed principal component analysis to created principal components (PCs) and applied a method

proposed by Klemera and Doubal (2006) to combine CA and PCs into a single physiological age

value in men and women separately using sub-sample. Second, we calculated PCs and physiological

age for all available repeated measurements in men and women separately using loadings of bio-

markers and weights of CA and PCs which were estimated from the sub-sample analysis.

Cognitive function
Four cognitive domains were assessed through a battery of in-person cognition testing, including

crystallized, fluid, memory, and perceptual speed abilities (Reynolds et al., 2005). Scores on all cog-

nitive measures were recorded to percentage correct of the total possible points for each respective

test. A general cognitive ability score was derived through the principal component analysis (PCA) of

the tests. Component scoring coefficients from the first component extracted at IPT1, excluding

demented individuals, were used to construct a cognitive function measure at the first and subse-

quent IPTs using test scores standardized to the mean and SD of each test at IPT1. T-score scaling

(M = 50, SD = 10) was then applied to the components.

Functional aging index (FAI)
Four types of specific functional measurements were taken into consideration in the development of

FAI (Finkel et al., 2019). Vision and hearing were self-reported on a scale of 1 to 5 and combined to
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create a measure of self-reported sensory ability. Muscle strength, walking speed time, and lung

function were tested and recorded by trained nurses. The four indicators were standardized sepa-

rately on the basis of the values from IPT two and then summed to create a composite score.

Frailty index (FI)
FI was introduced to conceptualize the vulnerability of a given person to a range of age-related

adverse outcomes. FI in SATSA was constructed from 42 self-reported health deficits, such as symp-

toms, diseases, disability, mood, and activities in daily living. FI was calculated as the ratio of the

number of deficits presented in a given person to the total number of deficits considered in the

study (n = 42 in SATSA). Details of FI items are described in Supplementary file 1C and elsewhere

(Jiang et al., 2017).

BA residuals
We constructed BA residuals by regressing out the CA-related part from respective BA. As BAs

were assessed in a longitudinal manner and BA levels within twin pairs were assumed to be related

due to shared familial factors, we adopted mixed models with fixed effects for sex and CA, the latter

as a natural spline term with three degrees of freedom, to allow for non-linear relationships, and ran-

dom intercepts at the twin-pair and subject level:

BAijk ¼ b0 þ ns CAijk; b1; b2;b3

� �

þb4 � Sexijþ�0iþ �0ijþBAResidualijk

with b and m denoting fixed and random effects, i, j, k being indicators for twin pair, individual,

and measurement, respectively, and nsðÞ representing a natural spline term with parameters as spec-

ified by the degrees of freedom. The resulting predicted residuals BAResidualijk have thereby been

adjusted for CA as well as systematic constant differences between twin pairs and individuals.

Assessment of covariates
Sex, educational attainment, and baseline information of BMI, and smoking status were considered

as covariates in the survival analyses. BMI was assessed through physical examination and other

covariates were acquired through self-reported questionnaire data. Educational attainment was clas-

sified as primary education, lower secondary or vocational, upper secondary education, and tertiary

education. BMI was derived as the body mass divided by the square of body height, expressed in

units of kg/m2. Smoking status was categorized as non-smokers, ex-smokers, and current smokers.

Among the included individuals and measurements, 28 out of 846 individuals without education

information were assigned into an unknown group, and another one and two individuals who missed

the BMI and smoking status were imputed with the corresponding information collected from their

nearest available IPTs.

Since the participants in the present analysis were born over a long period of time (1900 to 1948),

we estimated the mortality associations with stratification on the calendar year of the participants’

birthday to avoid confounding from cohort effects. Individuals’ birth year was treated as a categori-

cal variable with five groups in an interval of 10 years.

Assessment of mortality
All-cause mortality data, including vital status and dates of deaths, were obtained from linkages

between the STR and Swedish Population Register through the personal identification number

assigned to all residents. All-cause mortality data were updated on August 16, 2018.

Statistical methods
Characteristics of baseline measurements were presented as means (standard deviations, SDs) and

proportions. Longitudinal changes of BAs were presented in plots with individual level measure-

ments illustrated by dots, lines, and broken lines. Average trajectories of BAs were estimated

through mixed linear regression models as described above, each of which included fixed effects of

the intercept, CA, and sex, and a random effect of intercept at the individual and twin-pair level.

P-values for sex effects were obtained from fixed effects within the mixed linear model. In addition,

an interaction term between each BA and CA in natural spline was introduced to the model, and
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P-values for sex interaction were determined by the likelihood ratio test comparing the models with

and without the interaction term.

We estimated the repeated measures correlation coefficients between age and nine BAs using all

complete measurements (Bakdash and Marusich, 2017). The correlation analyses were then repli-

cated for CA and nine BA residuals to examine the correlations between the parts of BA residuals.

We then transformed correlation coefficients to scaled squared Euclidean distances and performed

hierarchical cluster analysis on BAs and BA residuals via Ward’s method.

We used the Cox regression model to estimate the association between baseline BAs and the

risk of all-cause mortality. When repeated measurements were available, only the first BA assessment

was included and referred to as the baseline BA. In all models, we used attained age as the underly-

ing time scale and the five groups of birth year as strata. Left truncation and right censoring were

accounted for in the estimations; that is individuals entering into the cohort is conditional on their

survival at baseline ages, and follow-up time may stop before death occurs. Follow-up time started

from the first available measurement (baseline measurement) and ended at the date when they died

or were censored on August 16, 2018. In addition, robust standard errors were introduced to adjust

for relatedness within twin pairs and subjects. To achieve a direct comparison of BA effects in rela-

tion to mortality risk, we standardized all nine BAs to the mean of zero and SD of one across all avail-

able measurements and replicated the transformation in the BA residuals, such that the estimated

hazard ratios (HRs) could be interpreted as the relative risk of death associated with a one-SD

increase in the level of BA or BA residual. In the first part of the survival analyses, all models

accounted for only one BA (one-BA models). For those who had their BAs assessed for multiple

times, the first available measurement was treated as the baseline measurement. For each BA, we

estimated the association of BAs and BA residuals with mortality risk using two models, a univariate

model and a multivariate model with sex, education, BMI, and smoking status as additional covari-

ates. In the second part of the survival analyses, all nine BAs were accounted for altogether in the

same survival model (multi-BA models). Similarly, two models with or without adjustment for com-

mon risk factors were estimated. Only BA residuals were taken into consideration in the second part

of survival analyses to avoid biased results caused by collinearity within BAs.

P values were two-sided, and statistical significance was defined as p<0.05. All analyses were con-

ducted using Stata 15.1 and R 3.6.0.
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Swedish Research Council for
Health, Working Life and Wel-
fare

2009-0795 Nancy L Pedersen

Swedish Research Council for
Health, Working Life and Wel-
fare

2013-2292 Nancy L Pedersen

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Xia Li, Formal analysis, Methodology; Alexander Ploner, Patrik KE Magnusson, Juulia Jylhävä, Super-
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Data availability

Information on sex, CA, and nine BAs were listed in the Supplementary file 2. Besides, the SATSA

cohort has been archived through NACDA program on aging (https://www.icpsr.umich.edu/icpsr-

web/ICPSR/studies/3843) and detailed information on the study can be found on the Maelstrom

Research platform (https://www.maelstrom-research.org/mica/individual-study/satsa). Data archiving

is completed for IPT1-7 and is a work in progress for IPT8-10. In addition, all methylation array data

are available in the Array Express database of EMBL-EBL (www.ebi.ac.uk/arrayexpress) under the

accession number of E-MTAB-7309.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Pedersen NL 2015 Swedish Adoption/Twin Study on
Aging (SATSA), 1984, 1987, 1990,
1993, 2004, 2007, and 2010

https://www.icpsr.umich.
edu/icpsrweb/ICPSR/stu-
dies/3843

ICPSR, 3843

Yunzhang Wang 2018 DNA methylation of longitudinal
samples from The Swedish
Adoption/Twin Study of Aging
(SATSA

https://www.ebi.ac.uk/ar-
rayexpress/experiments/
E-MTAB-7309/

ArrayExpress, E-
MTAB-7309
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