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Abstract

Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was iden-

tified in Brazil in 2015 and was declared a global health emergency by the World Health

Organization (WHO). Epidemiologists often use common state-level attributes such as pop-

ulation density and temperature to determine the spread of disease. By applying techniques

from topological data analysis, we believe that epidemiologists will be able to better predict

how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations

in Brazil to create simplicial complexes, from which we extract homology group generators.

Previously epidemiologists have not relied on topological data analysis to model disease

spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the

value of these techniques for the improved assessment of vector-borne diseases.

Introduction

An explosive outbreak of ZIKV began in Brazil in April 2015. The ZIKV outbreak has spread

to many regions throughout South America due to the abundance of the Aedes aegypti mos-

quito species [1], which is the primary transmission vector for ZIKV [2]. Approximately 2.6

billion people live in regions suitable for the virus to spread [3], and as of November 2016, 57

countries have active local ZIKV transmission [4]. Researchers project that the number of

ZIKV cases in Brazil will be at least double that of any other country [5]. We focus our analysis

on Brazil because it was one of the first countries to see an outbreak of ZIKV and therefore the

virus has had more time to develop. The immediate symptoms of ZIKV are mostly mild, but

ZIKV has been associated with more serious conditions. ZIKV has been linked to increased

cases of the Guillain-Barré Syndrome [6], which is a severe neurological disease that causes the

immune system to attack the nervous system. Occurrences of microcephaly, a condition caus-

ing the brain to be underdeveloped, has increased in the children of infected pregnant women

[7]. Predicting the spread of ZIKV is, therefore, a priority.

Researchers have made substantial progress in modeling ZIKV to better understand and

prevent its spread. Various models have already been developed to study the spread of vector-

borne diseases. For example, variants of the SIR model from classic epidemiology theory can

be used for these purposes and often are applied to obtain estimates of the basic reproduction
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number, a metric to study how infectious a disease is [8]. For example, Gao et al. (2016) used a

type of SEIR model based on classic epidemic theory to estimate the impact of mosquito-

borne and sexual transmission of the ZIKV in Brazil, Colombia, and El Salvador and estimate

a basic reproduction number of the virus [9]. However, this framework requires reliable esti-

mates of epidemiological parameters such as the vector disease transmission rate.

Another class of models that are often used by researchers to study the spread of vector-

borne diseases are time series models such as ARIMA [10]. These models can take advantage

of time series data of climate conditions and disease incidence data to model disease transmis-

sion over time. Zhang et al. (2016) developed a time series predictive model for the dengue dis-

ease in China using weather predictions and dengue surveillance information in order to

obtain projections of the number of ZIKV infections in the Americas [11]. One drawback of

time series models is that acquiring granular time-series data over extended durations can be

difficult [11].

Researchers have also used stochastic models to analyze ZIKV spread and prevention meth-

ods. Castro et al. (2016) developed a stochastic model to capture the uncertainty in ZIKV

reporting, importation, and transmission to identify regions of greatest risk in the state of

Texas [12]. But again, this model again requires estimates of epidemiological parameters like

reporting rates and vector abundance [12].

We propose studying the topological features of vector locations to inform the parameter

estimation of these models. The primary benefit of using topological data analysis over the tra-

ditional models mentioned above is that it allows researchers to gain information from spatial

data in a computationally efficient way. Spatial data is prevalent in many applications in study-

ing disease spread, which makes topological data analysis an especially exciting new tool for

epidemiologists. To validate the explanatory power of these features in this specific application,

we use a linear regression model to predict the number of ZIKV cases in each state of Brazil

using features generated from the mosquito population topology. We find that our prediction

results are comparable to the performance of models in the existing literature.

Methods

Predictions of the number of Zika cases can be obtained by utilizing the population density of

Aedes aegypti mosquitoes [13], average temperature of a given region [14], and human popula-

tion density. However, by applying techniques from persistent homology via Vietoris-Rips fil-

trations—we find valuable information within the spatial structure of the locations of Aedes
aegypti mosquitoes.

First, we obtain data on the geographic locations of Aedes aegypti mosquitos in Brazil. In

2013, Brazilian municipalities conducted physical household surveys, searching for mosquito

larvae, pupae, and adult mosquitos. If a mosquito population was discovered in the municipal-

ity over a region greater than 5km x 5km, a “mosquito occurrence” was marked as a polygon

region [15]. The coordinate associated with this polygon its centroid. There are 5057 entries,

each of which has an associated polygon centroid that represents a mosquito population at

that location during 2013 [16]. An example of our data for Brazil and the state of Sergipe is

given in Fig 1. Also, it is well known that Aedes aegypti mosquitos thrive in warmer weather

(up to 32˚ C) and in regions with higher rainfall [17]. Using this information, we weight

municipalities that are more suitable to Aedes aegypti reproduction. To estimate the relation-

ship between the number of ZIKV cases and the spatial structure of the Aedes aegypti mosquito

populations within each state, we use monthly reports containing the cumulative number of

confirmed ZIKV cases in each state, which Brazil’s Ministry of Health has been publishing

since 2015.
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We propose a model that exploits the spatial information within the Aedes aegypti mosquito

occurrence maps. This is done by utilizing ideas from persistent homology to extract topologi-

cal information from the 2-dimensional point clouds resulting from the longitudinal and lati-

tudinal coordinates of the Aedes aegypti mosquito polygon centroids. Specifically, we study the

0th and 1st dimensional homology group generators (connected components and loops),

which cannot be accessed using more standard statistical techniques. We use the Vietoris-Rips

filtration [18, 19] to create intermediate structures (simplicial complexes) from which we can

extract topological information from our original data. The Vietoris-Rips filtration is applied

to the coordinates of the polygon centroids in each state of Brazil using the TDA package in R

[18]. The filtration is constructed starting with balls of radius 0 around each point. As we grow

the ε-balls, some begin to intersect with one another, which forms “simplexes”. A 0-simplex is

defined to be a single vertex, a 1-simplex is a line segment connecting a pair of vertices and a

2-simplex is a triangle connecting three vertices. For each value of ε, we obtain a simplicial

complex which is composed of all the simplexes in the filtration. Note that in the filtration, the

simplicial complex for a specified value of ε is a subset of the simplicial complexes of larger ε.

Using these topological features of the Aedes aegypti mosquito occurrence locations in each

state of Brazil and the corresponding number of ZIKV cases in each state, we fit linear regres-

sion models. More specifically, we look at the number of H0 features at the start of the filtra-

tion (H0N), the total number of H1 features throughout the filtration (H1N), and the

maximum lifetime of H1 features (H1ML). The H0N features measure the density of mosqui-

toes, with a higher number of H0 features indicating a greater presence of mosquitos. The H1

features measure the spatial distribution of mosquitoes, with more H1 features indicating

loops or areas in the state without mosquito occurrences.

Results and discussion

Researchers have found the effects of mosquito populations and climate to be useful in antici-

pating the transmission of vector-borne diseases [14, 20]. Some have even proposed a fast way

of predicting the spread of ZIKV infections in Brazil [5, 13], which involves estimating the

number of ZIKV cases using attributes such as the average temperature, the population den-

sity, and the population of Aedes aegypti mosquitos of a region. We use the number of Aedes
aegypti mosquito occurrences (AMO) in the 2013 physical household surveys in Brazil

Fig 1. Fitted vs residuals plot and Q-Q plot of standardized residuals of model A. The two plots show that the residuals seem to be

symmetrically distributed around 0 and in general clear patterns are not present. Therefore, the residuals are approximately normally

distributed around 0 and a linear regression with a logarithmic transformation of the number of ZIKV cases appropriately models our data.

https://doi.org/10.1371/journal.pone.0192120.g001
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described above as a proxy for the Aedes aegypti mosquito population for each state of Brazil.

For the temperature of each state, we use the mean yearly temperature calculated by averaging

monthly temperatures in degrees Celsius of 98 weather stations in Brazil in 2010 (TEMP) [21].

To estimate the population density, we divide the estimated resident population size of each

state in 2014 by the geographic area of each state in km2 (HPOP) [22].

We propose a model that takes advantage of the spatial information within Aedes aegypti
mosquito occurrences maps in addition to state-level attributes such as population density and

average temperature. We include the number of H0 features to predict the number of ZIKV

cases as a topological feature, since states with fewer H0 features have fewer municipalities that

have had occurrences of the Aedes aegypti mosquito than states with less H0 features. A low

number of H0 features for a state could either arise through a fewer number of municipalities

or the existence of municipalities that do not harbor Aedes aegypti mosquitos. Because ZIKV is

mainly transmitted to people from Aedes aegypti mosquitoes, either case will lead to fewer

infections. A fewer number of municipalities is likely to indicate a lower population density in

a state, which would decrease the chance of ZIKV infections, while the existence of municipali-

ties that do not harbor many Aedes aeypgti mosquitoes also can lead to a lower chance of ZIKV

infections for a state due to a fewer number of transmission vectors. Therefore, we anticipate

that ZIKV transmission to people is more likely in the states with more occurrences of the

Aedes aegypti mosquito or H0 features and less likely in states with fewer occurrences of the

mosquito.

We also include the number of H1 features to model the spread of ZIKV. A large number

of H1 features within a state may arise due to a large amount of municipalities with Aedes
aegypti mosquitoes exist within a state, which create more loops during the Vietoris-Rips filtra-

tion due to chance or municipalities in general are more spread out due to geographic barriers

such as mountains or lakes. Keeping the number of municipalities with Aedes aegypti mosqui-

toes constant within a state, we anticipate that more H1 features will signify that municipalities

with the mosquito occurrences are spread out. This spatial distribution of these municipalities

may indicate either a low Aedes aegypti mosquito density or human population density in a

state. Therefore, we anticipate that a large number of H1 features will have a negative effect on

the number of ZIKV infections, keeping the number of H0 features constant. It is worth noting

that the H1 features respect geographical topology such as lakes and mountainous regions,

since municipalities are far less likely to be located in these areas. Thus it is very improbable to

have polygon centroids located in such regions and therefore the loops do not intersect a state’s

topography.

Lastly, we include H1ML in our model because it informs the disease’s transmission rate

between municipalities. States with densely packed municipalities will see higher transmission

rates due to greater mobility. And conversely, states with municipalities spread far apart due to

geographic topology such as mountainous regions and lakes will observe lower transmission

rates, and therefore fewer cases. A high H1ML indicates that the municipalities within that

state are spread farther apart than states with low H1ML. Furthermore, simply calculating the

density of municipalities is not sufficient; the state could be very large and have a few number

of closely packed municipalities. Thus, we need some way of determining the proximity of the

municipalities between each other. The H1ML feature gives us a proxy for this. We specifically

study the maximum lifetime of H1 features for each state rather than an average or median,

since this metric is robust to the H1 features that have very short lifetimes which may arise due

to a large number of H0 features out of chance rather than being a signal for areas free of Aedes
aegypti mosquitos.

Using these features, we create a linear regression model. This model uses AMO (H0N),

TEMP, POP, H1N, H1ML as its predictors and the number of ZIKV cases with a logarithmic
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transformation as the response. The model is labeled A (Table 1). All of the model’s features

are statistically significant at the 5% level. AMO (H0N), POP, and TEMP have positive effects

on the number of ZIKV cases, while the interaction between H1ML and H1N have negative

effects. To compute the fit of the model, we calculate the model’s adjusted R2 and find it to be

0.76. Additionally, to test if a linear regression model is appropriate for the data, we look at the

residuals of the model (Fig 1). We find that the residuals are approximately normally distrib-

uted, which imply that a linear regression model is appropriate. To test how well the model

predictions perform, we use leave-p-out cross-validation and achieve average errors of 0.75,

0.40, and 0.79 using p = 1, 2, and 3, respectively.

It is possible that this final model overfits the data given its higher number of topological

predictors. To check for this potential problem, we fit another linear regression model by

removing the topological features predictors; this model is labeled B in Table 1. The model’s

goodness-of-fit can be measured through the adjusted R2, which was 0.42. We also apply leave-

p-out cross-validation [23] using p = 1, 2, and 3 to test how well the model predicts the log-

transformed number of ZIKV cases in each state of Brazil. The model achieves an average

cross-validated squared error of 1.89, 1.97, and 2.05 for p = 1, 2, and 3, respectively (Table 2).

Therefore, we see that model A is an improvement over the reduced model B when evaluating

them on the prediction errors, as well on the adjusted R2 metric.

We compare the results of our model with the results of Zhang et al. (2016). Zhang et al.
(2016) report a Pearson correlation value of 0.57 between state-level model projections of

ZIKV cases and surveillance data of ZIKV cases through June 2016 in Colombia. We obtain a

Pearson correlation value of 0.88 between state-level model projections of ZIKV cases and the

cumulative number of actual ZIKV cases through July 2016 in Brazil and plot the predicted

number of cases against the confirmed ZIKV cases (Fig 2). Due to our high correlation value,

our model performance is comparable to the results in Zhang et al. (2016). Thus, we show the

explanatory power of the integration of state-level attributes and topological features in pre-

dicting the number of ZIKV cases through using even simple linear regression.

Overall, we have shown that topological features of the locations of mosquito occurrences

contain additional information that can be used in conjunction with standard features to

Table 1. Coefficients of linear regression model predictors.

Model Model A Model B

Intercept -3.03 -3.72

AMO / H0N 0.057� 0.0067�

H1N -0.12� -

Interaction (H1N and H1ML) -0.090� -

POP 0.0056� 0.0060�

TEMP 0.20� 0.27�

� Coefficient is statistically significant at the 5% significance level

https://doi.org/10.1371/journal.pone.0192120.t001

Table 2. Leave-p-out cross-validation mean squared errors.

p Model A Model B

1 0.75 1.89

2 0.40 1.97

3 0.79 2.05

https://doi.org/10.1371/journal.pone.0192120.t002
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better predict the spread of ZIKV. Due to the nature of vector-borne diseases, infected arthro-

pod species are their primary modes of transmission. Our results suggest that applying TDA to

their locations can help epidemiologists and public-health officials better track vector-borne

diseases and curb the spread of future contagions.

Supporting information

S1 File. This document contains a brief tutorial of topological data analysis and a more

detailed description of the statistical methods we used in this paper. Finally, the supporting

information also contains the code we used for our analysis and where we collected our data.
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