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Abstract
Breast cancer is the most common cancer and the leading cause of cancer death 
among women in the world. Tumour-infiltrating lymphocytes were defined as the 
white blood cells left in the vasculature and localized in tumours. Recently, tumour-
infiltrating lymphocytes were found to be associated with good prognosis and re-
sponse to immunotherapy in tumours. In this study, to examine the influence of FLI1 
in immune system in breast cancer, we interrogated the relationship between the 
FLI1 expression levels with infiltration levels of 28 immune cell types. By splitting 
the breast cancer samples into high and low expression FLI1 subtypes, we found that 
the high expression FLI1 subtype was enriched in many immune cell types, and the 
up-regulated differentially expressed genes between them were enriched in immune 
system processes, immune-related KEGG pathways and biological processes. In addi-
tion, many important immune-related features were found to be positively correlated 
with the FLI1 expression level. Furthermore, we found that the FLI1 was correlated 
with the immune-related genes. Our findings may provide useful help for recogniz-
ing the relationship between tumour immune microenvironment and FLI1, and may 
unravel clinical outcomes and immunotherapy utility for FLI1 in breast cancer.
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1  | INTRODUC TION

Breast cancer is the most frequently diagnosed cancer and the lead-
ing cause of cancer death among women in the world.1 It is esti-
mated that breast cancer accounted for 25% of newly diagnosed 
cancer cases and 15% of the cancer death in the world. In the United 
States, there are more than 270 000 newly diagnosed breast can-
cer patients and more than 40 000 new deaths due to this disease 
in 2018.2 Currently, different strategies, such as chemotherapy and 
radiotherapy are used to treat breast cancer. It is also effective for 
treating breast cancer by combination of different drugs, targeted 
therapy, hormone therapy, radiation therapy and surgery.3-6 Despite 
the important advances in breast cancer therapy, the progress 
against breast cancer in the past years remains very slow.

Friend leukaemia virus integration 1 (FLI1) is a member of the ETS 
family, initially identified as a proto-oncogene that highly expressed 
in retrovirus-induced haematological tumours.7 It was shown that 
FLI1 was associated with the progression of tumour, served as 
a prognostic marker in many types of tumour and also acted as a 
potential therapeutic target in tumours.8-12 Many studies demon-
strated that FLI1 was associated with autoimmunity and expressed 
highly in B cells and T cells during the lymphoid development.13,14 
However, the roles of FLI1 expression level in many types of cancers 
were only studied by a few researchers, and the results were often 
conflicted.10,15,16

Tumour-infiltrating lymphocytes (TILs) were defined as the white 
blood cells left in the vasculature and localized in tumours.17-19 In 
recent years, many studies had recognized the importance of TILs 
in many types of tumours.20-23 The immune system appears to influ-
ence the development of breast cancer.24,25 In addition to these ob-
servations, the TIL was found to be associated with improved clinical 
outcomes in breast cancer.24,26 Therefore, the biological functions 
and biological features of TILs were needed to be understood in the 
immune microenvironment of breast cancer.

In this study, the single sample gene set enrichment analysis 
(ssGSEA) was implemented to computationally infer the immune 
infiltration levels of 28 immune cell types in 1095 breast invasive 
carcinoma (BRCA) samples. Then, the association between the FLI1 
expression level, immune infiltration levels of 28 immune cell types, 
cytolytic activity (CYT), tumour purity, ESTIMATE score, immune 
score, stromal score, leucocyte fraction, TIL regional fraction, lym-
phocyte infiltration (LI) signature score and immunomodulators were 
investigated, and significant correlations were found between them. 
Next, we characterized the immune infiltration patterns in high and 
low expression FLI1 subtypes of BRCA patients by using the immune 
infiltration levels of 28 immune cell types, immune-related features 
and expression level of immunomodulators such as PD-1, PD-L1 and 
CTLA-4. Furthermore, we confirmed that all FLI1 expression level 
was associated with the expression level of immune-related genes 
by weighted gene co-expression network analysis (WGCNA), like 
other immune-related features, such as CYT and immune score. 
In addition, we evaluated the association of the FLI1 expression 
level with survival time. We believed that this integrative study 

substantially improved our understanding of the important role of 
FLI1 in tumour microenvironment in BRCA patients and established 
an approach that can easily be extended to other types of tumours 
in the future work.

As demonstrated by a series of recent publications 27,28 and sum-
marized in three comprehensive review papers,29-31 to develop a 
really useful predictor for a biological system, one needs to follow 
‘Chou's 5-step rule’30-39 to go through the following five steps: (a) 
select or construct a valid benchmark data set to train and test the 
predictor; (b) represent the samples with an effective formulation 
that can truly reflect their intrinsic correlation with the target to be 
predicted; (c) introduce or develop a powerful algorithm to conduct 
the prediction; (d) properly perform cross-validation tests to objec-
tively evaluate the anticipated prediction accuracy; and (e) estab-
lish a user-friendly web server for the predictor that is accessible 
to the public. Papers presented for developing a new sequence-an-
alysing method or statistical predictor by observing the guidelines 
of Chou's 5-step rules have the following notable merits: (a) crystal 
clear in logic development, (b) completely transparent in operation, 
(c) easily to repeat the reported results by other investigators, (d) 
with high potential in stimulating other sequence-analysing methods 
and (e) very convenient to be used by the majority of experimental 
scientists.

2  | MATERIAL S AND METHODS

2.1 | Data set

The normalized gene-level RNA-Seq data of 1095 BRCA samples 
were retrieved from TCGA tumour samples (data accessed at GEO: 
GSE62944). The normalized gene-level RNA-Seq data of 113 normal 
patient samples for BRCA were also downloaded from the GEO data 
set (GSE62944).40 The values of overall survival and overall survival 
time for BRCA were obtained from the work of Liu et al.41 The im-
mune-related data set and molecular subtype information of BRCA 
were obtained from the supplementary files of Thorsson et al 42 and 
the manuscript page in Genomic Data Commons, which was availa-
ble at the publication page (https://gdc.cancer.gov/about -data/publi 
catio ns/panim mune). The read count data of 1095 BRCA samples 
were also retrieved from TCGA tumour samples (data accessed at 
GEO: GSE62944).

2.2 | Gene signatures and infiltration signatures

782 marker genes for 28 immune cell types were downloaded from 
the work of Charoentong et al.43 A list of angiogenesis genes was ex-
tracted from the work of Masiero et al,44 and a list of immunomodu-
lator genes were extracted from the work of Thorsson et al.42 The 
CYT index, which was used to assess the intratumoural immune 
cytolytic T cell activity in tumours, was calculated as the mean of 
the GZMA and PRF1 expression levels.45 The R package ‘ESTIMATE’ 

https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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(version 2.0.0)46 was used to calculate the stromal score, immune 
score, ESTIMATE score and tumour purity. The stromal score and 
immune score were used to predict the fraction of stromal cells and 
the infiltration level of immune cells by expression data in tumour 
samples. These two scores formed the basis for calculating the 
ESTIMATE score. Tumour purity was defined as the proportion of 
tumour cells in a solid tumour sample, which can be inferred from the 
ESTIMATE score in this study.

2.3 | Gene set enrichment analysis

The gene set enrichment analysis (GSEA) as implemented in the 
R package clusterProfiler (version 3.4.1)47 was used to iden-
tify whether the immune cell types were over-represented in the 
tumour microenvironment. The tumour infiltration levels of 28 im-
mune cell types for each BRCA patient were quantified by a single 
analysis of the enrichment analysis of regenerated cells (ssGSEA)48 
that implemented in the R package GSVA (version 1.24.0).49 For 
using GSEA and GSVA software, the collected gene set of 782 
marker genes in 28 immune cell types was chosen as the reference 
gene sets. The normalized enrichment score (NES) that calculated 
from the ssGSEA was considered as the tumour-infiltrating level 
and used to examine the enrichment analysis results of 28 immune 
cell types.

2.4 | Co-expression network construction

The expression data profile of 782 immune marker genes was 
used to construct a gene co-expression network for exploring the 
phenotype-related immune genes and their interactions by using a 
weighted gene co-expression network analysis (WGCNA) 50 that im-
plemented in the R package WGCNA (version 1.24.0).51

2.5 | Statistical analysis

Survival curves were estimated by using the Kaplan-Meier method, 
and the differences between survival distributions were assessed by 
the two-sided log-rank test. The univariable survival analyses were 
performed by using Cox proportional hazards regression as imple-
mented in R package survival (version 2.39-5). The glmQLFTest that 
implemented in R package edgeR was used to identify the differen-
tially expressed genes (DEGs).52-54 The KEGG pathway and immune 
system process enrichment analysis of these DEGs were performed 
and visualized by using the Cytoscape software (version 3.6.1) with 
the ClueGO (version 2.3.5).55 The GO biological process enrichment 
analysis was performed and visualized by the functional annotation 
tool enrichDAVID that implemented in R package clusterProfiler 
(version 3.4.1).47 All statistical analysis was performed in R 3.5.0. 
All of the statistical tests were two-sided, and the differences with 
P-values less than 0.05 were considered as statistically significant.

3  | RESULTS

3.1 | The immune infiltration differences between 
two BRCA subtypes

The tumour infiltration levels of 28 immune cell types for 1095 
BRCA patients were quantified by using ssGSEA. A heat map was 
plotted to depict a more comprehensive picture of the immune in-
filtration landscape for breast cancer (Figure 1A). Based on median 
FLI1 expression level, the BRCA patients were classified into the 
high expression FLI1 subtype and low expression FLI1 subtype. In 
Figure 1A, 1095 BRCA patient samples were arranged along the row 
by the FLI1 expression level of patients, and 28 immune cell types 
were ordered along the column by clustering. Interestingly, samples 
with high FLI1 expression levels had high immune infiltration pro-
files in most regions. In contrast, samples with relatively low levels 
of FLI1 expression illustrated the low immune infiltration profiles in 
most regions.

Then, we compared the gene expression profile of the high ex-
pression FLI1 subtype samples with the low expression FLI1 subtype 
samples by the GSEA analysis to study the different TILs in these 
two subtypes of breast cancer. The NES scores and P-values that 
generated by the GSEA enrichment results for the enriched and 
depleted immune cell types in two BRCA subtypes were visualized 
by the volcano plot Figure 1B. Then, the immune cell types were 
considered significantly enriched or depleted if the P-value was less 
than 0.05. In the GSEA enrichment results (Figure 1B), we observed 
that the type 1 T helper cell, activated CD8+ T cell, natural killer T 
cell, activated B cell, activated CD4+ T cell, effector memory CD8+ T 
cell, activated dendritic cell, macrophage, T follicular helper cell, im-
mature B cell, MDSC, regulatory T cell, mast cell, eosinophil, gamma 
delta T cell, monocyte, plasmacytoid dendritic cell, natural killer cell 
and central memory CD4+ T cell were significantly enriched in the 
high expression FLI1 subtype of breast cancer cohort. In summary, 
the GSEA analysis results implied that the high expression FLI1 sub-
type of BRCA was more associated with the enriched TILs.

In an effort to provide additional evidence to support the ini-
tial observation, the read count data set was also downloaded for 
BRCA samples for investigating the DEGs between the high expres-
sion FLI1 subtype and low expression FLI1 subtype. Finally, 955 
up-regulated DEGs were identified by using the false discovery rate 
(FDR) <0.05 and log 2 (fold change) more than 1.0 as the cut-off. To 
annotate the function of these DEGs, all of these DEGs were used 
to perform the GO biological process enrichment analysis, KEGG 
pathway enrichment analysis and immune system process enrich-
ment analysis, respectively. The GO biological process enrichment 
analysis of these 955 DEGs indicated that they were significantly en-
riched in many immune-related biological processes, such as immune 
response, adaptive immune response and innate immune response 
(Figure 1C-E).

Network visualization based on the immune system process 
enrichment analysis demonstrated that these DEGs were signifi-
cantly enriched in 9 terms (Figure 1C), such as T cell activation, 
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lymphocyte proliferation, positive regulation of T cell proliferation 
and lymphocyte chemotaxis. Network visualization based on KEGG 
pathway enrichment analysis was shown in Figure 1D. From this 
figure, we observed that these DEGs were commonly enriched in 
the immune-related pathways, such as Th17 cell differentiation, nat-
ural killer cell-mediated cytotoxicity and T cell receptor signalling 
pathway.

3.2 | Correlations between FLI1 and immune-
related profiles

To identify whether the immune infiltration levels of 28 immune 
cell types were associated with FLI1 expression level in BRCA, the 
Spearman correlation tests were applied in 1095 BRCA samples 
between them (Figure 2A). As shown in Figure 2A, strong or mod-
erate positive Spearman's correlations between the FLI1 expres-
sion level and ssGSEA scores were observed in most of the immune 
cell types. The Spearman correlations between FLI1 and effector 
memory CD8+ T cell, type 1 T helper cell and mast cell were 0.76, 
0.75 and 0.72, respectively, which were the top three highest 
Spearman's correlations in this study. We also observed the weak 
Spearman correlations between FLI1 expression level and acti-
vated CD4+ T cell, central memory CD8+ T cell, CD56bright natural 
killer cell, CD56dim natural killer cell and immature dendritic cell 

and neutrophil. All the Spearman correlations were statistically 
significant according the statistical tests. These results indicated 
that FLI1 expression level in BRCA samples was associated with 
immune infiltrating levels.

Next, we calculated the Spearman correlation coefficients in 
1095 BRCA patients between LI signature score, TIL regional frac-
tion, leucocyte fraction, CYT, tumour purity, ESTIMATE score, 
immune score, stromal score and immune infiltrating levels of 28 
immune subpopulations, and displayed the results in Figure 2A. 
Interestingly, we observed moderate or strong significant associa-
tions in most of them, which were similar to the association results 
of FLI1. We also found that most of the Spearman correlations be-
tween these features were moderate or strong in 1095 BRCA pa-
tients (Figure 2B).

The differences between the high and low expression FLI1 
subtypes in the immune infiltrating levels of 28 immune cell sub-
populations, CYT, immune score, ESTIMATE score, stromal score, 
tumour purity, TIL regional fraction, LI signature score and leucocyte 
fraction were also investigated in the BRCA patients (Figure S1 and 
Figure 2C). Except for the tumour purity, the average values of the 
high expression FLI1 subtype were significantly higher than those in 
the low expression FLI1 subtype for of all the other features. These 
results supported the conclusion that the FLI1 seemed to play an 
important role in immune systems, which needed more research in 
our future work.

F I G U R E  1   The immune infiltrate profile of BRCA. A, Heat map of 1095 breast cancer samples by using the ssGSEA scores from 28 
immune cell types. Samples were arranged along the rows by two subtypes. Red-green colour scale reflected magnitude. The barplot at the 
top indicated the percentages of 28 immune cell types which were significant. The barplot on the left indicated the percentages of BRCA 
samples which were significant. B, Volcano plot for the high FLI1 subtype that calculated from the GSEA when compared with the low FLI1 
subtype. The visualization of (C) enriched immune system processes and (D) KEGG enriched pathways of the DEGs by using ClueGO (P-
value < .05). E, Top 10 statistically enriched biological processes by the DEGs
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Immune checkpoints are critical modulators in the immune sys-
tem, allowing the initiation of a productive immune response and 
preventing the onset of autoimmunity. Among these immune check-
points, PD-1, PD-L1 and CTLA-4 were three important immune 
checkpoints. Here, we wanted to investigate whether the expression 
level of FLI1 in BRCA was associated with PD-1, PD-L1 and CTLA4. 
For doing this, we calculated the Spearman correlation coefficients 
between the expression level of FLI1 and three immune checkpoints. 
As illustrated in Figure 2D, the expression level of FLI1 was signifi-
cantly positively correlated with the expression level of PD-1, PD-L1 
and CTLA4. The expression levels of PD-1, PD-L1 and CTLA4 in the 
high FLI1 expression subtype were significantly higher than those 
of the low FLI1 expression subtype in the BRCA cohort (Figure 2E).

As numerous immunomodulator agonists were evaluated in 
clinical oncology, researchers found that immunomodulators were 
critical in cancer immunotherapy.56 To advance this research, it is 
needed to investigate the association between their expression 
levels and FLI1 expression level in BRCA. Associations between im-
munomodulator expression levels and FLI1 expression level were 

evaluated by using Spearman's correlation (Figure 3A). Figure 3A 
demonstrated that most of the immunomodulator expression levels 
had the moderate or strong positively correlations with FLI1 expres-
sion level. Among immunomodulators under investigation for cancer 
therapy, most of the immunomodulators demonstrated that the high 
expression levels in the high expression FLI1 subtype via a compar-
ison against the low expression FLI1 subtype in BRCA. In summary, 
we had observed close associations between FLI1 and immunomod-
ulators in BRCA.

3.3 | Gene co-expression network analysis

The WGCNA was widely used to explore modules of highly co-
expressed genes and explore the associations between gene sets 
and biological features. In this study, based on WGCNA algorithm, 
we wanted to provide additional evidence to support the associa-
tions between FLI1 and immune-related features and to investigate 
which immune genes were more associated with FLI1 in BRCA. For 

F I G U R E  2   The relationship between the FLI1 and the immune-related features in BRCA. A, Spearman's correlation between the ssGSEA 
scores of 28 immune cell types and the FLI1 expression level, LI signature score, TIL regional fraction, leucocyte fraction, stromal score, 
tumour purity, ESTIMATE score, immune score and CYT. Statistical significance at the level of null ≥ 0.05, * <0.05, ** <0.01 and *** <0.001. 
B, Spearman's correlation between the FLI1 expression level, LI signature score, TIL regional fraction, leucocyte fraction, stromal score, 
tumour purity, ESTIMATE score, immune score and CYT. The correlation coefficients were represented by red-blue colour scale on the left. 
C, The violin plots of the CYT, immune score, ESTIMATE score, stromal score, tumour purity, TIL regional fraction, LI signature score and 
leucocyte fraction for two BRCA subtypes. D, Spearman's correlation between FLI1, PD-1, PD-L1 and CTLA4 expression level. E, The violin 
plots of the PD-1, PD-L1 and CTLA4 expression level for two BRCA subtypes
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doing these, the expression values of 782 immune genes in 1095 
BRCA samples were used to construct the co-expression network by 
WGCNA algorithm. The BRCA samples with FLI1 expression level, 
PD-1 expression level, PD-L1 expression level, CTLA expression 
level, CYT, tumour purity, ESTIMATE score, immune score, leucocyte 
fraction, TIL regional fraction and LI signature score were included in 
co-expression analysis. The power of beta was selected as the soft 
thresholding to ensure a scale-free network. A total of five distinct 
gene co-expression modules were identified via the average linkage 
hierarchical clustering. 63, 65, 89, 207 and 348 co-expression genes 
were included in the modules of yellow, brown, blue, turquoise and 
grey, respectively. The correlation between module eigengenes 
and FLI1 expression level, PD-1 expression level, PD-L1 expression 
level, CTLA expression level, CYT, tumour purity, ESTIMATE score, 

immune score, leucocyte fraction, TIL regional fraction and LI signa-
ture score of BRCA patients were identified (Figure 4A). Similar to 
the correlation results of immune-related traits, including PD-1, PD-
L1, CTLA, immune score, leucocyte fraction and LI signature score, 
FLI1 was significantly associated with blue module and turquoise 
module. These results may indicate that FLI1 expression level was 
correlated with immune-related genes, like the previously described 
traits. In addition, we also found that the brown module showed high 
association with FLI1.

Among the identified modules, the turquoise module was found 
to have the highest association with FLI1. Based on this, the tur-
quoise module was identified as the significant module, which was 
extracted for further analysis. We also found that the brown module 
and blue module shown high correlation with FLI1. To biologically 

F I G U R E  3   The relationship between the FLI1 and immunomodulators. A, Spearman's correlations between FLI1 expression levels and 
immunomodulators. Statistical significance at the level of null ≥ 0.05, *<0.05, **<0.01 and ***<0.001. B, The heat map for the expression 
levels of 75 immunomodulators. The immunomodulators were annotated by super category and immune checkpoint type
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characterize the genes in the turquoise module, we applied the 
DAVID tool to classify these genes and observed several GO biolog-
ical process enrichment results in these three modules. According 
to GO biological process enrichment analysis (Figure 4B and Figure 
S2), our results demonstrated that the genes in turquoise module 
and blue module were mainly enriched in immune response, regu-
lation of immune response, adaptive immune response and so on. 
The brown module showed no statistical significance for GO bio-
logical process enrichment. The scatter plots of gene significance 
(GS) for FLI1 versus module membership (MM) in the blue module, 
brown module and turquoise module were also plotted (Figure 4C-
E). The blue module, brown module and turquoise module exhibited 
significant correlation with FLI1 expression level in BRCA samples. 
Therefore, the FLI1 was considered to be significantly associated 
with blue module, brown module and turquoise module in breast 
cancer patients, which should be further investigated to understand 
the association between FLI1 expression level and immune gene ex-
pression level.

3.4 | Prognostic significance of FLI1 in BRCA

Considering the important immune role played by the FLI1 in BRCA 
patients, we want to investigate the association between the FLI1 
expression level and prognosis of BRCA patients by the survival 

analysis and univariable Cox regression analysis. Overall survival dif-
ferences between the low expression FLI1 subtype and the high ex-
pression FLI1 subtype were assessed by the Kaplan-Meier estimate, 
and compared by using the log-rank test. Patients with the high ex-
pression FLI1 subtype had higher median overall survival time than 
those of the low expression FLI1 subtype. However, the difference 
was not significant (129 months versus 121 months; log-rank test 
P-value = .06) (Figure 5A). The associations between the FLI1 ex-
pression level and the overall survival time in the five subtypes of 
breast cancer were also assessed by performing the same analysis 
(Figure 5B-F). The patients in each subtype were classified into the 
high expression FLI1 group and the low expression FLI1 group by 
using the median FLI1 expression level in this subtype as the cut-off 
point. Survival differences between the high FLI1 expression group 
and low FLI1 expression group in each subtype were assessed by 
the Kaplan-Meier estimate and compared by using the log-rank test. 
It was noteworthy that patients in the high FLI1 expression group 
had significantly longer median overall survival than those in the low 
FLI1 expression group in the normal subtype (124 months versus 
72 months; log-rank test, P-value = .046) (Figure 5F). However, the 
associations of the FLI1 expression level with overall survival were 
not significant in the other four BRCA subtypes.

We next want to investigate whether the TILs of each patient 
were a prognostic factor in BRCA patient's overall survival time. 
For doing this, all the BRCA patients and the BRCA patients in each 

F I G U R E  4   Identification of modules associated with the immune-related features in BRCA by WGCNA. A, Heat map of the correlation 
between module eigengenes and immune-related features in BRCA. B, Top 10 statistically enriched biological processes of turquoise module 
genes. The scatter plots between gene significance for FLI1 and module membership in (C) blue module, (D) brown module and (E) turquoise 
module. Each point corresponded to a gene in the module.
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subtype were classified into two groups by using median ssGSEA 
scores as the cut-off point, separately. The ssGSEA scores of each 
patient were considered as continuous variables in the univariable 
Cox regression analysis. By subjecting the ssGSEA scores of 28 im-
mune cell types to univariable Cox regression analysis, we found that 
the high ssGSEA scores of activated B cells, central memory CD4+ 

T cells and eosinophils were significantly correlated with longer 
overall survival time in all BRCA patients (Figure 5G). For patients 
in the Basal subtype and Her2 subtype, the only one significant 
association was found between the immune infiltrates and over-
all survival time (Figure 5H). The univariable Cox analysis showed 
that the increased tumour-infiltrating levels of type 1 T helper cells, 

F I G U R E  5   Prognostic significance of FLI1 in BRCA. Kaplan-Meier survival curves by high and low FLI1 expression level for (A) BRCA 
(B) Basal (C) Her2 (D) Lum A (E) Lum B and (F) normal patients. G, Forest plot visualizing hazard ratios (HRs) with 95% CI and P-values of 28 
immune cell types in 1095 breast cancer patients. HR with 95% CI and P-values was determined by univariate Cox proportional hazards 
regression analysis. H, Bubble plot for the hazard ratios and P-values of 28 immune cell types in BRCA, Basal, Her2, Lum A, Lum B and 
normal patients
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plasmacytoid dendritic cells, natural killer cells, natural killer T cells, 
MDSCs, macrophages, gamma delta T cells, effector memory CD8+ 
T cells, CD56dim natural killer cells, activated CD8+ T cells and acti-
vated B cells were significantly associated with good prognosis in the 
BRCA normal subtype (Figure 5H). However, no significant associa-
tion was found between the immune infiltrates and overall survival 
time in Lum A subtype and Lum B subtype (Figure 5H).

4  | DISCUSSION

The knowledge of protein 3D (three-dimensional) structures or their 
complexes with ligands is vitally important for rational drug design. 
Although X-ray crystallography is a powerful tool in determining 
these structures, it is time-consuming and expensive, and not all 
proteins can be successfully crystallized. Membrane proteins are 
difficult to crystallize and most of them will not dissolve in normal 
solvents. Therefore, so far very few membrane protein structures 
have been determined. NMR is indeed a very powerful tool in de-
termining the 3D structures of membrane proteins,57-61 but it is also 
time-consuming and costly. To acquire the structural information in 
a timely manner, a series of 3D protein structures have been de-
veloped by means of structural bioinformatics tools.62 Meanwhile, 
facing the explosive growth of biological sequences discovered in 
the post-genomic age, to timely use them for drug development, a 
lot of important sequence-based information, such as PTM (post-
translational modification) sites in proteins, have been successfully 
predicted.63-65 Actually, the rapid development in sequential bioin-
formatics and structural bioinformatics have driven the medicinal 
chemistry undergoing an unprecedented revolution,66 in which the 
computational biology has played increasingly important roles in 
stimulating the development of finding novel drugs. In view of this, 
the computational (or in silico) methods were also utilized in the cur-
rent study.

With the explosive growth of biological sequences in the 
post-genomic era, one of the most important but also most diffi-
cult problems in computational biology is how to express a biological 
sequence with a discrete model or a vector, yet still keep consid-
erable sequence-order information or key pattern characteristic. 
This is because all the existing machine-learning algorithms (such 
as ‘optimization’ algorithm,67 ‘covariance discriminant’ or ‘CD’ al-
gorithm,68,69 ‘nearest neighbour’ or ‘NN’ algorithm,70 and ‘support 
vector machine’ or ‘SVM’ algorithm 70,71) can only handle vectors 
as elaborated in a comprehensive review.66 However, a vector de-
fined in a discrete model may completely lose all the sequence-pat-
tern information. To avoid completely losing the sequence-pattern 
information for proteins, the pseudo amino acid composition 72 or 
PseAAC 73 was proposed. Ever since the concept of Chou's PseAAC 
was proposed, it has been widely used in nearly all the areas of 
computational proteomics.65,74-76 Because it has been widely and 
increasingly used, four powerful open-access softwares, called 
‘PseAAC’,77 ‘PseAAC-Builder’,78 ‘propy’ 79 and ‘PseAAC-General’,80 
were established: the former three are for generating various modes 

of Chou's special PseAAC,81 while the 4th one for those of Chou's 
general PseAAC,29 including not only all the special modes of feature 
vectors for proteins but also the higher level feature vectors such as 
“Functional Domain” mode, “Gene Ontology” mode, and “Sequential 
Evolution” or “PSSM” mode. Encouraged by the successes of using 
PseAAC to deal with protein/peptide sequences, the concept of 
PseKNC (pseudo K-tuple nucleotide composition) 82 was developed 
for generating various feature vectors for DNA/RNA sequences 83-

85 that have proved very useful as well. Particularly, in 2015 a very 
powerful web server called ‘Pse-in-One’ 86 and its updated version 
‘Pse-in-One2.0’ 87 have been established that can be used to gener-
ate any desired feature vectors for protein/peptide and DNA/RNA 
sequences according to the need of users’ studies.87

As mentioned in previous studies, the high levels of FLI1 ex-
pression were found in T cells, B cells and several other types of 
immune cells, suggesting that the importance of FLI1 in the immune 
system.12,14,88 In this study, we had shown for the first time that 
the expression level of FLI1 in BRCA samples was associated with 
the immune infiltration levels of many immune cell types and many 
immune-related features, including CYT, tumour purity, ESTIMATE 
score, immune score, stromal score and immunomodulators.

By using the median expression level of FLI1 as the cut-off point, 
the BRCA patients were divided into a high expression FLI1 subtype 
and a low expression FLI1 subtype. Compared with the low expres-
sion FLI1 subtype, patients in the high expression FLI1 subtype had 
stronger immune cell infiltration and anti-tumour immune activities. 
For example, high expression FLI1 subtype had high levels of T cell 
and B cell infiltration. When we used ssGSEA to calculate the pro-
portions of 28 immune cell types in BRCA, we found that the infiltra-
tion levels of all immune cell types tended to be significantly higher 
in high expression FLI1 subtype than in low expression FLI1 subtype 
(P-value < .05, Wilcoxon's test) (Figure S1). These results confirmed 
the elevated anti-tumour immune activity in the high expression 
FLI1 subtype. We examined the expression levels of PD-L1 in the 
two BRCA subtypes and found that the high expression FLI1 sub-
type had the higher PD-L1 expression levels when compared with 
the low expression FLI1 subtype, and the difference between them 
was significant (P-value < 2.20E-16, Wilcoxon's test). These results 
indicated that the high expression FLI1 subtype might better re-
spond to anti-PD-L1 immunotherapy than the low expression FLI1 
subtype, as PD-L1 expression level tended to be positively associ-
ated with immunotherapeutic responsiveness.89

In order to further understand the possible biological functions 
of the high expression FLI1 in BRCA, the DEGs between the high 
expression FLI1 subtype and the low expression FLI1 subtype were 
identified and functional enrichment analysis was performed. The 
DEGs between these two subtypes were significantly enriched in 
many immune-related biological processes and KEGG pathways by 
performing functional enrichment analysis. The analysis results in-
dicated that the FLI1 was associated with immune-related profiles.

We also downloaded the transcriptional profiles of 113 paired 
normal samples for BRCA and compared the FLI1 expression levels 
of the normal samples with their paired tumour samples. We found 
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that the FLI1 expression levels of the normal samples were signifi-
cantly increased when compared with those of their paired tumour 
samples (Figure 6A), which was consistent with previous work.88 
To evaluate the FLI1 expression levels in human different tissues, 
we analysed FLI1 in the Human Protein Atlas (HPA).90 The tissue 
specific expression in all analysed tissues on FLI1 expression levels 
was plotted from three different RNA expression data sets: includ-
ing 37 tissues from HPA data set, 31 tissues from Genotype-Tissue 
Expression (GTEx) consortium and 35 tissues FANTOM5 consortium 
(Figure 6B-D). These figures illustrated that the FLI1 was simultane-
ously elevated in spleen, when compared to all other analysed tis-
sues. Spleen was believed to play an important role in the immune 
response and systemic regulation of innate and adaptive immunity.91 

This indicated that FLI1 may be an important gene in immune sys-
tem. These observations further confirmed the results that the FLI1 
expression level was associated with immune-related profiles.

The association of the FLI1 expression level with survival time 
was also investigated. However, no significant survival difference 
was found by the log-rank test. By conducting the univariate Cox 
regression analysis on the tumour-infiltrating levels of 28 immune 
cell types, these results showed that the increased tumour-infil-
trating levels of activated B cells, central memory CD4+ T cells, and 
eosinophils were significantly associated with longer overall sur-
vival time in the BRCA patients. When extending the same analysis 
to five subtypes of BRCA patients, we found that the increased tu-
mour-infiltrating levels of 11 immune cell types were significantly 

F I G U R E  6   The evaluation of FLI1 expression level. A, Pairwise comparison of FLI1 expression level by normal and tumour tissues. The 
FLI1 expression level in human different tissues from (B) HPA data set, (C) GTEx data set and (D) FANTOM5 data set
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associated with longer overall survival time in the normal subtype 
of BRCA patients, which was more than other four subtypes. These 
results indicated that the normal subtype of BRCA was more as-
sociated with the immune cell types than the others, and this may 
explain why the high expression FLI1 subtype of normal subtype 
was significantly associated with overall survival time.

In this study, a simple and readily adapted method was applied 
for inferring immune infiltration levels of different immune cell types 
in tumours. There were several advantages in this study. First, using 
a set of immune genes for decomposing of immune cell types was 
more robust than using only one gene, as several genes were ex-
pressed in many different immune cell types. Second, assessing the 
relative expression changes of a set of genes with the expression of 
all other genes in one sample by GSEA was less sensitive to noise. 
Third, using the BRCA samples in TCGA may be more advantageous 
than using the BRCA samples from other data sets, as more com-
prehensive data set about the immune infiltration levels can be ob-
tained in the TCGA data set.

In summary, the FLI1 expression level was found to be associated 
with immune infiltration profiles in BRCA patients. Immunotherapy 
for breast cancer is an active field of investigation, and the higher 
immunogenicity exhibited by the high expression FLI1 subtype com-
pared to the low expression FLI1 subtype indicated that immuno-
therapy could be a viable option for the patients with the high FLI1 
expression level. With the increased understanding of the tumour 
immune microenvironment played an important role in tumour ther-
apy and patient prognosis, these findings may play a critical role for 
immunotherapy.

Using graphic approaches to study biological and medical sys-
tems can provide an intuitive vision and useful insights for help-
ing analyse complicated relations therein as shown by the eight 
master pieces of pioneering papers from the then Chairman of 
Nobel Prize Committee Sture Forsen 92-99 and many follow-up 
papers.101-103 As shown in a series of recent publications 104-117 
in demonstrating new findings or approaches, user-friendly and 
publicly accessible web servers will significantly enhance their im-
pacts,66 driving medicinal chemistry into an unprecedented revo-
lution,76 we shall make efforts in our future work to provide a web 
server to display the findings that can be manipulated by users 
according to their need.
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