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Abstract The chemical complexity of traditional Chinese medicines (TCMs) makes the active and

functional annotation of natural compounds challenging. Herein, we developed the TCMs-Compounds

Functional Annotation platform (TCMs-CFA) for large-scale predicting active compounds with potential

mechanisms from TCM complex system, without isolating and activity testing every single compound

one by one. The platform was established based on the integration of TCMs knowledge base, chemome

profiling, and high-content imaging. It mainly included: (1) selection of herbal drugs of target based on

TCMs knowledge base; (2) chemome profiling of TCMs extract library by LC‒MS; (3) cytological

profiling of TCMs extract library by high-content cell-based imaging; (4) active compounds discovery

by combining each mass signal and multi-parametric cell phenotypes; (5) construction of functional

annotation map for predicting the potential mechanisms of lead compounds. In this stud TCMs with

myocardial protection were applied as a case study, and validated for the feasibility and utility of the plat-

form. Seven frequently used herbal drugs (Ginseng, etc.) were screened from 100,000 TCMs formulas for

myocardial protection and subsequently prepared as a library of 700 extracts. By using TCMs-CFA plat-

form, 81 lead compounds, including 10 novel bioactive ones, were quickly identified by correlating 8089

mass signals with 170,100 cytological parameters from an extract library. The TCMs-CFA platform

described a new evidence-led tool for the rapid discovery process by data mining strategies, which is

valuable for novel lead compounds from TCMs. All computations are done through Python and are pub-

licly available on GitHub.
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1. Introduction

Natural compounds and their derivatives have significantly
contributed to clinical therapeutics1,2, which counted for 33.6% of
all US Food and Drug Administration (FDA)-approved small-
molecule drugs between 1981 to 20193,4. Compared with conven-
tional synthetic small molecules, natural compounds confer ad-
vantages for drug discovery due to their high structural diversity
and unique biological activities5,6. Particularly, traditional Chinese
medicines (TCMs)-derived molecules were a rich resource and
valuable treasure for drug discovery. TCMs theory and clinical
practices for thousands of years could be used as prior knowledge to
greatly increase the probability of discovering functional com-
pounds. For instance, artemisinin from the plant Artemisia annua
which has anti-malarial efficacy is a miracle of TCMs, known
around the world. However, drug or lead compounds discovery
from TCMs, a complex chemical system, is always been a chal-
lenge. To date, the well-known TCMs-sourced new drugs have been
discovered through individual activity testing after isolation and
purification, and/or based on the iterative activity-oriented frac-
tionation. This strategy is very labor-intensive and time-consuming,
leading to relatively low rates of discovering bioactive compounds7.

Efficient chemical annotation of TCMs was an essential
precondition for the bioactive natural compound discovery from a
complex mixture. Metabolomics based on modern analytical
techniques such as high performance liquid chromatography
coupled with mass spectrometry (HPLC‒MS) enabled the rapid
detection and identification of known or unknown compounds in
TCMs. Each compound could be labeled as some specific LC or
mass signals. Advances in metabolomics have provided a better
understanding of the constituents, but using LC‒MS alone cannot
be used for activity evaluation8,9.

Active screening techniques, such as affinity chromatog-
raphy10,11, were thus often combined with MS for the discovery of
lead compounds of specific efficacy from complex matrix12. These
methods are simple and effective, but not systematically investi-
gate the activities of all fractions and their characteristics. With
the rapid development of modern biotechnology, cell mapping-
based high-content imaging technology has been widely used in
the field of drug research and biomedicine13e17. The cytological
profiling allowed high-throughput and automated multicolor im-
aging of complex cellular events18,19. For example, researchers
quantified 74 features defining filamentous actin (F-actin) and
cellular morphology in >25 million cells after treatment with a
library of 114,400 structurally diverse compounds, each defined
by distinct quantitative features that could be machine learned13.
Cellular perturbations by microenvironments or chemicals could
bring about a lot of phenotypic changes13,14. Significantly, high-
content imaging provides untargeted and unbiased multiple
phenotypic parameters from an intact cell perspective, which
might be suitable for in-depth understanding of the “multi-frac-
tions, multi-targets” integration mechanism of TCMs. However, a
potential disadvantage is a challenge of how metabolomic and
phenotypic profiling technologies integrate to directly discover the
hits from TCMs complex system. Kurita et al.16 reported Com-
pound Activity Mapping to connect phenotypic signatures to small
molecules to predict novel bioactive natural products. Moreover,
Lamb et al.20 reported the Connectivity Map: using gene-
expression signatures to connect small molecules, genes, and
disease.

In this work, TCMs-Compounds Functional Annotation Plat-
form (TCMs-CFA) was constructed, which combines a TCM
knowledge-oriented strategy and comprehensive functional anno-
tation of fractions in TCMs (Fig. 1). The TCMs-CFA allows the
prediction of the identities and modes of action of biologically
active compounds directly from TCMs, providing a mechanism for
rational lead selection based on target compound. To evaluate this
platform for natural compounds discovery we take the TCMs with
myocardial protective activity as a case study. Firstly, 7 natural
medicine were screened out as the most high-scored car-
dioprotective TCMs based on the knowledge base from 100,000
prescriptions. Then, 100 Fractions of each herb were prepared, and
their untargeted chemomics and high-content imaging data of car-
dioprotection were integrated by Python, which to establish the
high-content imaging data for annotation of activity compounds and
prediction of mechanism of action. The 81 cardioprotective lead
compounds were discovered from which we derived 170,100
cytological parameters and 8089 mass spectral features. Moreover,
the target of lead compounds was predicted by machine learning
(ML) and 12 target compounds in the library. Clustering the cyto-
logical profiles of ginsenosides (vina-ginsenoside R4, etc.) with
those of the 12 target compounds training set suggests that these
compounds protect cardiomyocyte by protecting mitochondrial
function. Thus, an efficient annotation map was constructed to
predict the target of the screening functional compound from
TCMs.
2. Materials and methods

2.1. Chemicals and reagents

Acetonitrile and formic acid (HPLC grade) were purchased from
Merck (Darmstadt, Germany) and ROE (Newark, USA), respec-
tively. Other organic reagents and chemicals were all analytical
grades. Mito-Tracker� Deep Red™ (M22426), Hoechst 33342
(R37605), Alexa Fluor™ 488 Phalloidin (A12379), Mito-SOX™
Red Mitochondrial Superoxide Indicator (M36008), Image-iT™
LIVE Mitochondrial Transition Pore Assay Kit (I35103), Nonyl
Acridine Orange (NAO, A1372), Mito-Probe™ TMRM Assay Kit
for Flow Cytometry (M20036), Pierce™ Microplate BCA Protein
Assay Kit (23225) and Pierce™ Fast Western Kit (35050) were
purchased from Thermo Fisher Scientific (USA). Anti-GAPDH
(ab8245); anti-VDAC1 (ab15895); anti-Drp1 (ab184247) were
obtained from Abcam (Cambridge, UK). Anti-Cox IV (bs-
10257R) were obtained from Bioss (China). Goat anti-mouse IgG
(H þ L) HRP (SA00001-1) and Goat anti-rabbit IgG (H þ L) HRP
(SA00001-2) were purchased from Proteintech (Manchester, UK).

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Workflow of traditional Chinese Medicines-Compounds Functional Annotation Platform (TCMs-CFA).
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The target compounds used were derived from Med Chem
Express (MCE) library, which information and chemical structure
are given in Supporting Information Table S1. Reference
standards, including ginsenoside Rf, vina-ginsenoside R4, ginse-
noside Rg6, ginsenoside Rg1, ginsenoside Rb1, Danshensu, sal-
vianolic acid E, salvianolic acid B, 900-methyl lithospermate B,
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and tanshinone IIA was obtained from Chengdu Munster Phyto-
chemicals Ltd. (Chengdu, China), and the purity was determined
using HPLC (> 98%).

2.2. TCMs knowledge analysis

There will also collect TCMs guided by TCMs knowledge. Data
including formula name, dosage form and compositional formu-
lation, TCMs indication and clinical application was collected
from all formulae recorded in ‘the dictionary of Chinese medicine
prescription’. And according to the myocardial protection related
Chinese herbal compound prescription or Chinese patent medicine
was sorted into Excel for later screening (Supporting Information
Table S2).

2.3. Fraction preparation of TCMs and chemical profiling

Each herbal medicine was extracted with 50% methanol/water (v/
v), and the 2 mL of extracted solution was fractionated on an X-
Bridge Prep C18 OBDTM column (19 mm � 250 mm, 5 mm,
Waters) with an eluotropic series of water/methanol 10%e100%
(v/v) wash in 95 min with 5 min for re-equilibration. The
preparative-HPLC (waters Prep 150) was run on a Waters Frac-
tionLynx system with an Autosampler combined Automated
Fraction Collector (Waters 2767). The flow rate was 5 mL/min.
The automated collection platform was moved every minute by an
automated robotic arm. Therefore, 100 extract samples were ob-
tained from each herbal medicines.

These Fractions were dried by a personal solvent evaporator
(GeneVac EZ-2 Plus, UK). Subsequently, the dried extracts were
redissolved into 10 mg/mL stock solutions using DMSO. The
DMSO stock solutions were 1:1000 for cytotoxicity assay or cell
phenotype profile, and 1:20,000 in 50% methanol/water (v/v) for
untargeted chemome profiling. Fractions resulting in reduced cell
count, as well as toxicity, were submitted for continuous dilution
and rescreening (Supporting Information Fig. S1).

Chemical profiling was carried out using an Agilent 1290 ultra-
performance liquid chromatography coupled to an Agilent 6545
quadrupole time-of-flight mass spectrometer (UHPLC‒QTOF-
MS) with a Jetstream ESI source. Chromatographic separation
was carried out on an Agilent ZORBAX Eclipse Plus C18 column
(2.1 mm � 150 mm 1.8 mm) under 30 �C, and the mobile phase
has consisted of 0.1% formic acid-water (A) and acetonitrile (B) at
flow rate of 0.3 mL/min. The gradient procedure is as follows:
0e40 min, 10%e100% B. The acquisition parameters of TOF-MS
were as follows: sheath gas temperature, 350 �C; drying gas
temperature, 350 �C; sheath gas flow rate, 11.0 L/min; drying gas
flow rate, 10.0 L/min; nebulizer gas pressure, 35 psi; capillary
voltage, 3500 V; fragmentor voltage, 135 V. For MS/MS param-
eters, the collision energy was set at 15�45 eV. The sample was
analyzed in both positive and negative ion mode and the mass was
recorded from m/z 100e1500.

2.4. Cell culture and high-content imaging analysis of TCMs
fraction

H9c2 cardiomyocytes cell lines were purchased from the National
Collection of Authenticated Cell Cultures, Chinese Academy of
Sciences (Shanghai, China). H9c2 cells were cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Sci-
entific, USA) containing 10% of Fetal Bovine Serum (FBS, Gibco,
USA) and 1% of penicillin and streptomycin (1000 U/mL,
Thermo, USA).

In the hypoxia model experiments, nitrogen (N2) was flushed up
to a partial oxygen pressure of about 1.0%. To simulate ischemia
moreover, the cell culture medium for hypoxia was free of serum.
By comparing the measured high-content imaging parameters in
different modeling times, 2 h of hypoxia was finally selected. The
molding time was optimized and 2 h of hypoxia was selected.

H9c2 cells were seeded at a density of 2000 cells/well into
CellCarrier-96 ultra microplates (PerkinElmer, USA) and incu-
bated at 37 �C for 24 h. When cells have reached the desired
confluency and after the model, remove the media from the dish
and add prewarmed (37 �C) staining solution containing Mito-
Tracker� Deep RedTM and Hoechst 33342 (1:5000), incubation
for 15 min. After cells were washed with PBS to remove the re-
sidual stain before immobilization with cold 4% para-
formaldehyde. After fixing for 20 min, the cells were
permeabilized with 0.1% Triton X-100 for 15 min and then
incubated with a mixture of Alexa FluorTM 488 Phalloidin
(1:1000) at room temperature for 15 min.

Cell phenotype profiles were collected on an high-content
imaging system (Opera Phenix, PerkinElmer, USA) equipped with
high-speed automatic spinning disk confocal optics, using a water
immersion 40� water objective. A total of 81 fields of view were
acquired for each well using three excitation sources, a Xenon UV
lamp (80 ms exposure), a 200 mW 488 nm solid-state laser
(120 ms exposure), and a 200 mW 561 nm solid-state laser
(100 ms exposure) and. Each image was taken with a 12-bit high-
sensitivity QE CCD camera applied to the images. Image data
were then uploaded to both the Columbus data storage and Har-
mony 4.9 software analysis server (PerkinElmer, USA).
2.5. LC‒MS method for chemical profiling

Chemical profiling was carried out using an Agilent 1290 ultra-
performance liquid chromatography coupled to an Agilent 6545
quadrupole time-of-flight mass spectrometer (UHPLC‒QTOF-
MS) with a Jetstream ESI source. Chromatographic separation
was carried out on an Agilent ZORBAX Eclipse Plus C18 column
(2.1 mm � 150 mm 1.8 mm) under 30 �C, and the mobile phase
has consisted of 0.1% formic acid/water (A) and acetonitrile (B) at
flow rate of 0.3 mL/min. The gradient procedure is as follows:
0e40 min, 10%e100% B. The acquisition parameters of TOF-MS
were as follows: sheath gas temperature, 350 �C; drying gas
temperature, 350 �C; sheath gas flow rate, 11.0 L/min; drying gas
flow rate, 10.0 L/min; nebulizer gas pressure, 35 psi; capillary
voltage, 3500 V; fragmentor voltage, 135 V. For MS/MS param-
eters, the collision energy was set at 15�45 eV. The sample was
analyzed in both positive and negative ion modes and the mass
was recorded from m/z 100e1500.
2.6. Data integration of chemical and cytological data sets

The parameters of F-actin and mitochondrial phenotypes were
analyzed by Harmony 4.9 software. Mover, the chemomics data-
base by Molecular-Feature-Extraction (MFE) algorithm based on
the Masshunter software (Agilent Technology). The data was
converted into matrix mode and saved in Excel for subsequent
data analysis. Integrating untargeted chemomics and high-content
imaging data of cell phenotype to Feature Phenotypic Fingerprint
(FPF) was described below.
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2.6.1. High-content imaging data processing
The high-content image data were processed by Harmony 4.9
software (184 parameters, i.e., cytological attribute values were
extracted from each well) and then normalized and further
analyzed using Python (Supporting Information). All of the 184
cytological attribute values of the model group (DMSO-treated)
and the component-treated group were compared with the control
group, and then conducted as a fingerprint, respectively. The value
of each parameter in the fingerprint was between �1 and 1, which
was shown as blue (negative) and red (positive), respectively.

2.6.2. Feature Phenotypic Fingerprint (FPF) processing
The Feature Phenotypic Fingerprint of a Feature is the average of
each cytological attribute value for the set of Fractions in which
the Feature is detected. This calculated “FPF” represents the
predicted cytological profile for each Feature in the sample set.

CZf1;2;3;/ig

FZff1; f2; f3;/fig

fð1�iÞZfa1;a2;a3;/ang

FPFxZfa1;a2;a3;/ang ð1Þ

where C was the Fraction set in which the Feature x was
detected, numbered as 1 to i. F was the set of each Fraction’s
phenotype fingerprint f, which contained cytological attributes a1
to an; Then the Feature phenotypic fingerprint of Feature x could
be calculated using Eq. (1) which is the set containing the average
of each cytological attribute value from Fraction 1 to i (Fig. 1).

2.6.3. Score of activity
From an FPF, the score of activity (SA) was defined as the sum of
the square of each attribute to f (Eq. (2)). This defined value was
used to evaluate the protective effect of each Feature on H9c2
cardiomyocytes cytoskeleton (SA of F-actin, SAF) or mitochon-
dria (SA of mitochondria, SAM).
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2.6.4. Score of clusters
The score of clusters (SC) of a Features is the mean value of
Pearson correlation cube between all combinations of two
different fð1�iÞ (Eq. (3)):
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The Pearson correlation values were cubed to reduce the
importance of low values since the concentration of one or more
extracts containing a given Feature, which is high enough to be
detected by a UHPLC‒QTOF MS (Fig. 1E). This value was used
to assess each Feature associated with cytological data sets.

2.6.5. Screening of activity compound based on FPF
In the primary analysis selected SAF or SAM that met the
threshold for modulating (>2.5 robust Z-scores) and score of
clusters >0.8, which is a strong correlation21.
The process was completed by Python, integrated with a pro-
gram, and each step through the Python package (Supporting In-
formation) output results and image analysis. Furthermore, the
codes supporting this study are available on GitHub: https://github.
com/CPU-XING/TCMs-High-content-data-and-chemicalome-
integration-platform.git.

2.7. Network visualization and annotation of functional
compounds

The heatmap summarizing hierarchical clustering of all pheno-
typic clusters and all Z-normalized quantitative features was
generated using the ‘Wald ’method function from the ‘Pheatmap’
package in the Python package. Agglomerative clustering pro-
ceeded via complete linkage as described for the default ‘Wald’
method’ function.

In part, Excel and Gephi were used to create the networks, and
the network data was analyzed and visualized (Fig. 1F). In the
network, blue nodes represent Fractions and are connected to red
nodes representing the Feature detected in those Fractions, green
nodes represent the compound inferred by the second-order mass
spectrum, and purple nodes represent the target compounds. Next,
the coefficient was calculated by the K-means algorithm, and the
visualized network was also used to quickly capture the rela-
tionship between Fractions, Features, inferential compounds, and
target compounds. This section uses Gephi’s built-in Fruchterman
Reingold algorithm to distribute nodes with default parameters
except the following: approximate repulsion of 0.4, the gravity of
5, scaling of 8, and setting the layout as “prevent overlap”.

2.8. Primary neonatal rat ventricular myocytes (NRVMs)
isolation and culture

NRVMs were isolated and cultured as described previously22. In
short, NRVMs were isolated from 1 to 2 day-old Sprague‒Dawley
rats (B&K Universal Group Ltd., Shanghai, China). The heart
tissue was cut into pieces and washed with precooled phosphate
buffer saline (PBS) and then digested continuously with 0.1% type
II collagenase (BS164) in a 37 �C water bath 5e7 times. After
removing erythrocytes using red blood cell lysate, the harvested
cells were pre-incubated with DMEM containing 10% FBS for
2 h. Cardiomyocytes were isolated and purified by discontinuous
Percoll gradient (Cytiva, 17-0891-01), and then grown in DMEM
supplemented with 100 mol/L 5-BrdU to inhibit fibroblast pro-
liferation. The cells were used for experiments after 3e4 days of
culture.

2.9. The assay of ROS, mitochondrial membrane potential
(Djm), mitochondrial number, ATP contents and calcium contents

For the observation of superoxide disputants of mitochondria,
H9c2 cardiomyocytes were treated with 500 nmol/L Mito-SOX™
red mitochondrial superoxide indicator, for live-cell imaging
working solution at 37 �C for 15 min, 50 nmol/L Mito-Tracker
Green solution at 37 �C for 25 min and avoid light. Subsequently,
images were acquired on a high-content imaging system, using a
63 � water objective to quantify fluorescence intensity.

For the detection of mitochondrial membrane potential (Djm),
H9c2 cells were incubated with 15 mol/L TMRM working solu-
tion dilution at 37 �C for 30 min in darkness. The data were

https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
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collected by Beckman cytometry (Beckman Coulter, Inc., USA)
and by FlowJo software (version 10.8.1) analysis. Fluorescence
intensity data were collected using the same method described
above.

To quantify the number of mitochondria, H9c2 cells were
treated with 0.1 mol/L nonyl acridine orange (NAO), synthesized
at 37 �C, and cultured in darkness for 30 min. According to the
manufacturer’s instructions, cell fluorescence was analyzed by
flow cytometry (CytoFLEX, Beckman Coulter, Inc., USA). And
fluorescence intensity data were collected using the same method
described above.

For the observation of mitochondria calcium ion change, the
treated H9c2 cells were cultured with 1.0 mol/L calcein AM stock
solution, 2 nmol/L Mito-Tracker Red CMXRos stock solution,
1.0 mol/L Hoechst 33342, and 1.0 mmol/L CoCl2. The cells were
washed twice in the modified HBSS buffer, the buffer was sucked
out of the cells, and a sufficient labeling solution was applied to
cover the cells attached to the covering. Incubate for 15 min at
37 �C, protected from light. Subsequently, images where fluo-
rescence intensity data were collected using the same method
described above.

The intracellular ATP contents were assayed with a commer-
cial kit (Beyotime, S0027). According to the manufacturer’s in-
structions, was using a microplate analyzer analysis.

2.10. Mitochondrial isolation and purification

Targeted analysis was performed to screen out the effects of
Fractions on mitochondria. Therefore, mitochondria in H9c2 cells
or NRVMs were isolated and purified by mitochondrial isolation
and extraction kit (Beyotime, C3601). Pellet 4 � 108 cells by
centrifuging harvested cell suspension in a 1.5 mL micro-
centrifuge tube at 600�g for 10 min. Carefully remove and
discard the supernatant. Add 1 mL of Mitochondria Isolation
Reagent. The cells were then broken up using a cell-crushing
apparatus. Centrifuge at 700�g for 10 min at 4 �C. Transfer the
supernatant to a new, 2.0 mL tube and centrifuge at 12,000�g for
15 min at 4 �C. Carefully remove and discard the supernatant.
20 mL of mitochondrial lysate was added to each centrifuge tube.
Subsequently, the protein concentration was determined by the
Pierce™ Microplate BCA Protein Assay Kit.

2.11. Western blot analysis

The same amounts of protein were separated by SDS-PAGE and
then transferred to the nitrocellulose (NC) membrane. After
blocking with 5% non-fat milk at room temperature for 2 h, the
membranes were immunoblotted with primary antibody (1:1000)
overnight at 4 �C and then followed by incubation with the HRP-
conjugated secondary antibody (1:10,000) at room temperature for
2 h. Protein bands were visualized using a Pierce™ Fast Western
Kit and Image-J software was applied to quantify the band in-
tensity values.

2.12. Interactions between small molecules and Drp1

Surface plasmon resonance (SPR) experiments were carried out at
25 �C by a Biacore T200 system (Cytiva). PBS-P buffer was
filtered through a 0.45-mm membrane and degassed before use.
After the surface of the CM5 sensor chip was prepared, Drp1 was
immobilized on the surface according to the following procedure.
Sodium acetate solution was used to prepare 30 mg/mL of Drp1 at
a pH of 4.0.

Various hit compounds were diluted in PBS-P buffer according
to a series of concentrations and flowed over immobilized Drp1 at
a flow rate of 30 mL/min. The contact time and dissociation time
were respectively set to, 60 and 150 s, respectively. A flow cell
without a coupling protein was used as the blank reference. Blank
solutions without analyte were adopted to correct system errors.
The binding activity of small molecules was evaluated with the
equilibrium dissociation constant (KD). Experimental data were
analyzed using a Biacore T200 instrument.

2.13. Statistical analysis

All data are expressed as mean � standard deviation (SD) unless
otherwise noted. Significance between the two groups was per-
formed by Student’s two-tailed t-test with GraphPad Prism 9.01
(Graph-Pad Software, La Jolla, CA, USA). In other cases, signifi-
cance across more than two groups was done in Prismwith one-way
ANOVA. P < 0.05 was considered significant for all tests.

3. Results

3.1. Establishment of a knowledge base grid of TCMs for
myocardial protection

To screen and select herbal drugs with potential myocardial pro-
tection, ‘the dictionary of Chinese medicine prescription’, which
records 10,000 proprietaries of Chinese medicine including
traditional Chinese prescription or Chinese patent medicines were
used. A total of 472 prescriptions were filtered out based on the
keywords of treating syndrome of heart blood stasis and
obstruction, syndrome of Qi stagnation and blood stasis in the
heart, and chest painful impediment, which were sorted by name,
dosage form, and composition in Supporting Information Tables
S2 and S3. Among them, 305 crude drugs including 258 medic-
inal plants (herbal medicines), 27 animal derived drugs, and 20
mineral drugs were involved (Supporting Information Table S2).
According to the classification and statistics of TCMs properties,
one-fourth of those medicinal materials (Supporting Information
Fig. S2) were Qi-tonifying drugs (13.43%), and blood-activating
and stasis-eliminating drugs (12.58%), which were often consid-
ered the best medicinal materials for the treatment of cardiovas-
cular diseases23,24.

The total appeared frequency of each crude drug in the pre-
scription was analyzed. The top 21 with a frequency of more than
10% were defined as “highlighted medicines” (Table S4). Herb
pairs was the smallest unit of compatibility of TCM compounds. It
has the advantages of a simple composition structure, clear
compatibility effect characteristics, and is suitable for scientific
research5. Therefore, chord diagrams were used for pairing anal-
ysis (Fig. 2A). Among them, herbal drugs Renshen (Chinese
name, 129 times), Danshen (Chinese name, 118 times), and
Danggui (Chinese name, 106 times) ranked as the top 3 with a
frequency of more than 100 times. Besides, a chord diagram
(Fig. 2A) was generated to show the compatibility relationships
between the 21 highlighted medicines in terms of frequency
(column width) and herbal pairing (connections width) in the 472
prescriptions. The most frequent herbal pairs (co-occurrences) of



Figure 2 The cardioprotective TCMs and its chemomes. (A) The chord diagram of the 21 most high-frequency crude drugs’ occurrence and

coexisting in the prescription of cardioprotection recorded in the encyclopedia of TCMs (the middle circle), and the top 6 of appearing herb pairs

(the surrounding small circles). (B) The “TCMs-Components-Features” graph of the selected 7 high-frequency herbal medicines; red nodes:

Features (n Z 8098); blue nodes: components (n Z 700); colored links: the feature was detected in which component and its herb sources.
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Renshen, Danshen, and Danggui were counted and selected,
respectively. As an example, Renshen occurred 35 times with
Danshen in myocardial protection, and the second herbal pair was
Renshen and Danggui with 34 times (Fig. 2A, little chord dia-
gram). Regarding Danshen, besides co-occurring with Renshen,
the top 2 herbal pairs were Danshen-Sanqi (34 times) and
Danshen-Honghua (28 times, Supporting Information Table S4),
while the top 2 herbal pairs in terms of Danggui (besides Renshen-
Dangui) were Danggui-Huangqi and Danggui-Chuanxiong
(equally 26 times). Based on the results, 7 most high scored
herbal drugs (Supporting Information Table S5), including
Renshen [roots and rhizomes of Panax ginseng], Danshen [roots
and rhizomes of Salvia miltiorrhiza Bge.), Danggui [roots of
Angelica sinensis (Oliv.) Diels.], Sanqi [roots and rhizome of
Panax notoginseng (Burk.) F. H. Chen.], Chuanxiong [rhizomes of
Ligusticum chuanxiong Hort], Huangqi [roots of Astragalus
membranaceus (Fisch.) Bge.], Honghua [Flowers of Carthamus
tinctorius L.) (Table S5), were selected as candidates for devel-
opment and validation of the TCMs-CFA platform.

3.2. TCMs extract library and chemical profiling

Each selected herb were extracted and prepared into 100 fractions,
and a total of 700-member TCMs extract library was constructed.
These fractions were subsequently subjected to UHPLC‒QTOF
MS for chemome profiling based on the untargeted metabolomics
approaches. The molecular features detected in at least two
Fractions were retained and then integrated into a database. The
TCMs extract library are referred to as Feature lists, which were
characterized by their accurate mass combined with their abun-
dance and retention time (Rt), as well as the originated herbal
fraction. Because the positive ion and negative ion data were two
independent sets, their corresponding networks are constructed,
respectively. To calculate the cluster value and the correlation
between Fractions, the Feature (nZ 8089) appearing from at least
two Fractions was utilized, including 1240 from Renshen, 1145
from Danshen, 1046 from Danggui, 1226 from Sanqi, 1051 from
Chuanxiong, 990 from Huangqi, and 1391 from Honghua. The
700 Fractions are broken up into different 8089 Features. Features
(Fig. 2B). In the network diagram (right enlarged drawing in
Fig. 2B), the red nodes represent the Features, which are linked to
the Fractions (blue dots) in which the features were detected. And
different colored edges represent different herb sources. This
graph could help to understand the Features’ information intui-
tively from Fractions to herbs. As shown in Fig. 2B, since
Renshen and Sanqi have many identical saponins, there was some
common point between the two herbs in the network diagram,
resulting a close distance without obvious boundary. Simulta-
neously, clear boundaries between other medicinal materials in the
network distinguish the compounds and Features from the
different herbs.

3.3. Multiparametric high content imaging for cytological
profiling of TCMs extract library

Cardiovascular disease was usually caused by acute and persistent
coronary artery occlusion, and leads to cardiomyocyte ischemia/
hypoxia injury. It has been reported that long-term hypoxia can
induce various harmful effects in these cells through various signal
cascades, including cell hypertrophy, apoptosis, and necrosis24. As
cardiomyocytes were terminally differentiated cells that lack
regenerative capabilities, preventing cardiomyocyte loss was an
important challenge. Therefore, the H9c2 cardiomyocyte was used
as a model under hypoxia. Hypoxic-induced myocardial apoptosis
was a complex process, which includes disruption of ionic ho-
meostasis. To characterize and annotate the Features from the
selected 7 herbs on myocardial protection effects based on cell
phenotypic screening, OGD-exposed H9c2 cells were applied for
the compound activity mapping development. Image segmentation
could extract and quantitative 100 morphological parameters
(Supporting Information Table S6) according to cell morphology,
texture, and properties of F-actin (Alexa Fluor™ 488 Phalloidin),
Mitochondria (Mito-Tracker� Deep red), and nucleus (Hoechst
33342). First, H9c2 cells were exposed to OGD for 0.5e5.0 h to
evaluate significant morphological changes (Fig. S3). Among
56 F-actin parameters, 17 such as ratio width to length and axial
length decrease with the increase of OGD time (Supporting In-
formation Figs. S2A and S3), indicated that OGD could signifi-
cantly lead to the contraction of H9c2 cytoskeleton, and
eventually lead to cell atrophy and apoptosis. With the increase of
OGD time, the cytoskeleton showed shrinkage, and corresponding
morphological parameters (such as Alexa 488 Ser 0 Px) and
cytoskeleton texture parameters (such as Spot Alexa 488 Gabor
Max 2 Px W2 and Spot Alexa 488 Gabor Min 2 Px W2) showed a
decreasing trend (Fig. S3). In addition, the values of 9 cell sym-
metry parameters increased significantly with the extension of
OGD time, indicating the cells lost the original spindle structure
and became round (Fig. S3) While for 32 mitochondrial param-
eters and cytoskeletal parameters (Supporting Information Figs.
S4 and S5), the morphological parameters were more in line
with the requirements of mitochondrial kinetic energy for mito-
chondrial morphology analysis. The number of mitochondria
increased with OGD time, indicating mitochondrial cleavage
under hypoxia. All the parameters with morphological changes
were statistically analyzed, and 80% of the parameters had sig-
nificant changes (vs. control). Most of the cytological attribute
values remained stable at 2 h (P < 0.05). Further, the robustness of
the imaging assay was assessed with the Z0 factor values25, which
showed that 81 cell phenotypic parameters met the requirements
(Z’ factor � 0.5, Supporting Information Fig. S6) in 2 h of
hypoxia. In addition, we analyzed the correlation between
morphological parameters and cell viability. The results showed
that these parameters were correlated with the time of OGD and
cell viability (Supporting Information Fig. S7).

Thus, the 81 morphological parameters (35 F-actin and 46
mitochondria) of H9c2 cells after 2 h induction of oxidative
glucose were selected. Subsequently, cytological analysis was
carried out to screen the active compounds of 7 herbs on H9c2
cells. In total, image data sets were collected. The data results
(81 � 700 � 3 Z 170,100) were output to Excel sheets in batches
for later machine learning analysis.

3.4. Screening of activity compound by correlating the chemome
and cytological database

In order to correlate chemome and cytological database, the
Feature Phenotypic Fingerprint (FPF) was calculated for the cor-
relation of the chemome and cytological database. Firstly, we
normalized the high-content imaging’s cytological profiling data
of 700 Fractions. FPF of each Feature was the set containing the
average of each cytological attribute value corresponding to
Fractions in which the Feature was detected. For example, the
Feature Z 1007.5425 @6.938 was detected in 8 Fractions
(Renshen-18-01, Renshen-18-02, Renshen-19-01, Renshen-19-02,



Figure 3 Integrating chemomics and cell phenotype profile database for activity compounds screening. (A) Schematic diagram of feature

phenotypic fingerprint (FPF), a score of activity (SA), and the score of clusters (SC) calculation, using the feature 1007.5425@6.938 as an

example. The 81-cell parameters with values between �1 and 1 of each component were displayed in blue (negative perturbation) or red (positive

perturbation), respectively. (B) Relative frequency distributions of average robust Z-scores for SA of F-action. (C) Average robust Z-scores (left)

and the cumulative distributions (right) for SA of F-action. (D) Relative frequency distributions of average robust Z-scores for SA of
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Renshen-20-01, Renshen-20-02, Renshen-21-01, Renshen-21-02).
Then, the FPF of Feature Z 1007.5425 @6.938 was generated by
the average 81 � 8 morphological parameters according to Eq. (1)
in the 2.6 section. The score of activity of Feature Z 1007.5425
@6.938 could be further calculated based on Eq. (2) in section 2.6
(Fig. 3A, left). Since the 81 morphological parameters include 35
related to F-actin and 46 to mitochondria, the score of activity in
terms of F-actin (SAF) or mitochondria (SAM) were generated,
respectively. Meanwhile, the score of clusters was calculated
based on the Pearson correlations of the cytological profiling,
according to Eq. (3) (Fig. 3A, right). Similarly, the scores of
clusters of each Feature could be differentiated for F-actin and
mitochondria respectively, which may be helpful in screening the
refining mechanism of active compounds. Finally, 1093 Features’
scores of clusters and SA were obtained for the integration of
chemome profiling and cytological profiling database. Then the
active compounds were screened based on the score of activity
and scores of clusters. Firstly, the score of activity (SAF or SAM)
and SC parameter values of 1093 features from 7 herbs were
analyzed by the cumulative distribution, respectively. In the
analysis, we selected 490 putative hits (44.95%) of SAF and 305
putative hits (27.98%) of SAM that met the threshold for modu-
lating (>2.5 robust Z-scores) (Fig. 3B‒E). Those selected Fea-
tures were fitted with Gaussian distribution which is shown in the
frequency histograms (Fig. 3B and D). Meanwhile, 985 features
with scores of clusters >0.8, a strong correlation21, were screened
out (Fig. 3F). A three-way Venn diagram was applied for the
features that meet the requirement of SAF, SAM, and SC
(Fig. 3G). Of the confirmed hits, 437 (214 þ 223, scores of
clusters > 0.8) potential hits (40.09%) were correlated with the
parameters of F-actin, and 272 (223 þ 49, scores of clusters >
0.8) potential hits (24.95%) were correlated with the parameters of
mitochondrial (Fig. 3G).

3.5. Functional annotation map of functional feature
(compounds)

The network map of “Fraction-Feature (Compounds)-Prediction
target” in the primary setting up (Supporting Information Fig. S8)
could be simplified according to the screened potential hits ac-
cording to F-actin and mitochondria. To discover the activity
compound associated with the exact mechanism, the FPF of 12
compounds with known targets, derived from the MedChemEx-
press (MCE) library (Table S1) was used as a reference. Then the
FPF of presumed compounds was clustered based on Ward’s
linkage criteria (Supporting Information Figs. S9 and S10) to
obtain the Feature (or the presumed compound) whose cytological
profile was close to the reference. The coefficient was calculated
by the K-means algorithm which was visualized as a network. In
Fig. 4, blue nodes represent Fractions (387 Fractions), and red
nodes represent the Features (486 potential hits) detected in those
Fractions. The 12 purple nodes represent the reference com-
pounds (Table S1), and the thickness of the line in the network
represents the strength of the relationship between two nodes. In
Fig. 4, the Feature Z 717.1458 @12.106, identified as salvianolic
acid B (Table S7), was connected to stachydrine hydrochloride
(NF-kB signaling pathway inhibitor) and asperosaponin VI
mitochondria. (E) Average robust Z-scores (left) and the cumulative distrib

of cluster distribution of Feature. (G) The three-way Venn diagram of

mitochondria, respectively) and SC.
(decreased the expression of active caspase-3) by the thick lines
(Fig. 4, Supporting Information Fig. S9A and B). The predicted
result was consistent with previously reported that salvianolic acid
B inhibited myocardial apoptosis through the NF-kB26 and
Caspase-3 pathways27. For Feature Z 1007.5427 @6.938, iden-
tified as vina-ginsenoside R4 by comparing with the commercial
reference standard, showed a strong correlation with Mdivi-1, a
Drp1 inhibitor for mitochondrial autophagy, mitochondrial syn-
thesis, and ATP production. Moreover, according to the clustering
results, ginsenoside Rf (Feature Z 799.4861 @22.954) may
remove superoxide disputants and affect mitochondrial membrane
potential because it close to Mito-TEMPO. ginsenoside Rg6
(Feature Z 765.4725 @12.453) may act on voltage-dependent
anion channel-1 (like AKOS-22-VDAC1 inhibitor) and affects
mitochondrial calcium ions (Fig. 4, Ru360- Inhibits Ca2þ uptake
into mitochondria). For Feature Z 845.4931 @9.698, identified
as ginsenoside Rg1 by comparing with the commercial reference
standard, showed a strong correlation with BMS-191095 and
resveratrol (Fig. 4). Previous studies have shown that Ginsenoside
Rg1 protect cardiomyocytes by maintaining ATP and other
pathways28. In summary, the potential mechanism of the 81 lead
compounds were predicted, and the top 5 ordered compounds of
SAF (Danshensu, salvianolic acid E, salvianolic acid B, 900-
methyl lithospermate B, and tanshinone IIA) or SAM (ginseno-
side Rf, vina-ginsenoside R4, ginsenoside Rg6, ginsenoside Rg1,
ginsenoside Rb1) rankings, respectively, were both selected for
the repeated high-content imaging Pharmacodynamic experi-
ments. The results were shown in Supporting Information Figs.
S11 and S12. The top 5 compounds of regulating skeleton were
all derived from Danshen (Fig. S11), and the five saponins
candidate lead compounds had a significant protective effect on
hypoxic H9c2 cells, in which 4 were derived from Renshen and 1
was from Sanqi (Fig. 2A). The results were also consistent with
previous reports that ginsenosides, the main Fractions of Renshen
and Sanqi, have been extensively studied to play an important role
in cardiovascular diseases29,30. Furthermore, there’s a lot of evi-
dence indicating that mitochondrial dysfunction has a distinctly
important role in the pathogenesis of multiple cardiovascular
disorders31. Based on the results of ML and the existing mecha-
nism research, we preliminarily studied the predictive mechanism
of 3 kinds of ginsenosides. Subsequently, we combined the
screening results with the prediction mechanism of ginsenoside
Rf, vina-ginsenoside R4 and ginsenoside Rg6 which was further
verified by immunofluorescence, flow cytometry, and Western
blotting.

3.6. Verification of TCM-CFA prediction

In order to verify the validity of the results, experimental verifi-
cation was carried out for the new prediction, such as ginsenoside
Rf, vina-ginsenoside R4 and ginsenoside Rg6 were verified. The
production of adenosine triphosphate (ATP) was an important
function of mitochondria, together with the regulation of
apoptosis. Meanwhile, cluster analysis and K-means clustering
showed that vina-ginsenoside R4 was related to mitochondrial
ATP production (Fig. 4 and Supporting Information Fig. S10D).
The primary functions of the mitochondria are to produce the
utions (right) for SA of mitochondria. (F) A score of activity and Score

the number of screened Features according to SA (of F-action and



Figure 4 The network of efficient annotation of functional compounds. The thickness of the line represents the similarity of the PFP that

between the Feature (green and red nodes) and the reference compounds (purple nodes). The green nodes are the highlight of the features

(compounds) which strongly correlated to the reference compounds.
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energy currency of the cell, ATP, via respiration, and to regulate
cellular metabolism32. To verify that vina-ginsenoside R4 can
regulate the level of ATP, the ATP content in H9c2 cells was
determined by the ATP content commercial kit. As the Fig. 5A,
ATP content in H9c2 cells decreased significantly after 2 h of
hypoxia. However, ATP content increased in the vina-ginsenoside
R4 group compared with the control group. Moreover, vina-
ginsenoside R4 was associated with mitochondrial dynamin-
related protein 1 (Drp1) by ML analysis (Fig. 4 and Fig. S10C).
As a regulatory protein of mitochondrial division, Drp1 plays an
important role in mitochondrial health and division. Previous
studies have shown that the expression of the Drp1 protein leads to
myocardial cell apoptosis under hypoxia conditions33. As shown
in Fig. 5B, compared with the control, the expression level of
Mito-Drp1 was increased in the hypoxia. Simultaneously, the
Total-Drp1 protein was constant in cells (Fig. 5C). The results
showed that a large amount of activated Drp1 was translocated to
the mitochondria under hypoxia conditions. Vina-ginsenoside R4
group decreased the expression of Drp1 protein in mitochondria
(Mito-Drp1, Fig. 5B), which had a protective effect on mito-
chondria. Consistently, Drp1 of NRVMs was downregulated by
vina-ginsenoside R4 dose-dependently in mitochondrial (Mito-
Drp1, Fig. 5D and E).

Moreover, in order to prove that compound vina-ginsenoside R4

may also have a direct interference on Drp1 protein. Vina-
ginsenoside R4 was diluted in PBS to obtain a series of concen-
trations (i.e., 48e780 nmol/L). The affinity of vina-ginsenoside R4

to Drp1 protein was assessed using the Biacore T200 Evaluation
Software 3.0. The assessment results showed that vina-ginsenoside
R4 could interact with Drp1 protein. The equilibrium dissociation
constant (KD) was used to evaluate the binding activity of each
compound. The KD value for the interaction between vina-
ginsenoside R4 and Drp1 was 1.39 � 10�6 mol/L (Fig. 5F). This
indicates that vina-ginsenoside R4 has a strong binding capacity
with Drp1 protein. To quantify the number of mitochondria, we
treated H9c2 cell with NAO and chose the mean fluorescence



Figure 5 Validation of prediction for vina-ginsenoside R4. (A) The level of ATP in the H9c2 cell. (B) The analysis of Mtio-Drp1 protein

expression in mitochondria of H9c2 cell. (C) The analysis of Total-Drp1 protein expression in the H9c2 cell. (D) The analysis of Mtio-Drp1

protein expression in mitochondria of NRVMs. (E) The analysis of Total-Drp1 protein expression in NRVMs. (F) The analysis of affinity be-

tween vina-ginsenoside R4 and Drp1 by SPR. A series of concentrations (0.05e0.78 mol/L) of vina-ginsenoside R4 were tested to obtain the

affinity between VR4 and Drp1 by kinetic analysis. (G) The mitochondrial number labeled with nonyl acridine orange (NAO) was viewed using

flow cytometry in the H9c2 cell. All data are repeated in six independent experiments. P values are determined by one-way ANOVA followed by

Tukey’s test. All data are presented as mean � SEM (n Z 6); *P < 0.05, **P < 0.01. #P < 0.05, ##P < 0.01.
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intensity of 8 � 106 as an arbitrary reference point. In the control,
only 14.4% of cells had a signal below this threshold; however, the
ratio raised to 40.10% after anoxic conditions (Fig. 5G). Contem-
porary, the protective effect of vina-ginsenoside R4 on mitochon-
dria of H9c2 cardiomyocytes under hypoxia conditions was
verified again using high-content system fluorescence quantifica-
tion (Supporting Information Fig. S13 A and S13B).
As acute hypoxia was capable of boosting superoxide produc-
tion of mitochondrial, especially superoxide34. As shown in Fig. 4,
Fig. S10A and S10G, cluster analysis showed that ginsenoside Rf
mitochondrial reactive oxygen species production and mitochon-
drial membrane potential (Djm). The result showed that ginseno-
side Rf, decreased superoxide of mitochondrial generation in
response to hypoxia (Fig. S13C and S13D). As expected,
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ginsenoside Rf prevented the collapse of mitochondrial membrane
potential (Djm) in H9c2 cardiomyocytes exposed to hypoxia
(Fig. S13E and S13F). Tetramethylrhodamine methyl ester
(TMRM) results were consistent with those of flow cytometry
(Fig. S13G and S13H). Related studies have shown that activation
of related proteins contributes to myocardial protection and regu-
lation of reactive oxygen species (ROS) under hypoxia35. Accord-
ing to machine learning analysis of candidate compounds and target
compounds (Fig. 4 and Fig. S10I), ginsenoside Rg6 may act on
VDAC1 and be related to mitochondrial calcium. It plays a crucial
role in both mitochondrial metabolism and cell death, which was
the mechanism by which mitochondria of cells in hypoxia, protect
from apoptosis36. In hypoxia, the fluorescence of calcium ions in
mitochondrial co-location was enhanced significantly. However,
fluorescence decreased in the ginsenoside Rg6 group (Fig. S13I and
J). Moreover, the mitochondrial membrane potential in the ginse-
noside Rg6 treatment group was also shown to be somewhat regu-
lated (Fig. S13K and S13L). Meanwhile, according to the results of
VDAC1 protein expression, ginsenoside Rg6 effectively inhibited
the expression of VDAC1 protein after hypoxia (Fig. S13M).
Consistently, mitochondrial VDAC1 of NRVMs was down-
regulated by ginsenoside Rg6 dose-dependently (Fig. S13N).
4. Discussion

The anthology of ancient medicine still served as a useful guide in
pharmacy practice and has remained an important source of new
drug discovery3,6. The knowledge base grid of TCMs practices
improves the success rate of screening and makes the purpose of
screening more explicit and possible activity. As a typical
example, Youyou Tu et al. conducted an in-depth review of the
literature. The only reference relevant to the use of qinghao (the
Chinese name of A. annua L.) for alleviating malaria symptoms
appeared in Ge Hong’s “A Handbook of Prescriptions for Emer-
gencies”5,37. Therefore, we explored the knowledge of ancient
Chinese medicine prescriptions and established the knowledge
base of TCMs (Fig. 1). Meanwhile, the screening results show that
of 81 lead compounds, 33 were derived from Renshen (Table S7).
Renshen was consistent with the statistical results of the clinical
use of TCMs and was the most frequent (Fig. 2A, 129 and
27.15%). Although there have been many studies on the protective
effect of ginseng on cardiomyocytes, we have found new active
components to protect cardiomyocytes (ginsenoside Rf, vina-
ginsenoside R4 and ginsenoside Rg6). Therefore, we have estab-
lished a TCMs-CFA platform following the application of ancient
Chinese medicine, which can improve the efficiency of new drug
discovery.

Besides, chemical profiling of TCMs and their secondary
metabolites has been widely reported, which provides multi-
dimensional information for the complex system of TCMs9.
However, the inability to discover active ingredients through
chemicalome alone was its limitation. Therefore, we constructed
TCMs-CFA platform, which combines the chemome and cyto-
logical database by Python. The effective correlation and inte-
gration of the two data will facilitate the discovery of active
compounds, or lead compounds, in the complex systems of
TCMs. It mainly included: (1) selection of herbal drugs of target
based on TCMs knowledge base; (2) chemome profiling of
TCMs extract library by LC‒MS; (3) cytological profiling of
TCMs extract library by high-content cell-based imaging; (4)
active compounds discovery by combining each mass signal and
multi-parametric cell phenotypes; (5) construction of functional
annotation map for predicting the potential mechanisms of lead
compounds. Compared to the methods established by previous
researchers16, we use the form of a cumulative distribution
function when screening features, which are defined by reason-
able statistical methods (Fig. 3B‒E). Furthermore, high-content
imaging technology was different from the previous fluores-
cence imaging, it has a more excellent image analysis system. It
outputs hundreds of morphological parameters through deep
learning of imaging38e40, which was conducive to the discovery
of tiny disturbances of cell phenotype caused by trace com-
pounds in TCMs Fractions and the study of pharmacodynamic
substances of TCMs. However, the focus of cell phenotypic
research was demonstrating changes in cell phenotypic parame-
ters in previous studies17,41. No correlation has been shown be-
tween changes in these phenotypic parameters and modeling.
Hence, correlation coefficients were introduced to demonstrate
that the selected phenotypic parameters were associated with the
protection of H9c2 cells in our research (Fig. S7).

Different from traditional activity screening, multidimensional
parameters of cell mapping can be obtained based on the above
screening method, and morphological and phenotypic data of
cells can be collected more comprehensively42. However, previ-
ous studies have added these multidimensional parameters for
screening, which leads to the loss of a large number of active
compounds43. In our approach, we focus on the regulation of
subcellular organelle parameters, thus obtaining different active
compounds in different subcellular organelles (Fig. 3G). More-
over, we used ML to integrate the above data for activity
screening. TCMs-CFA platform integrates ML such as Pearson
correlation coefficient, cumulative distribution function, ‘Wald’
method clustering analysis, method of K-means center distance,
and network visualization for data processing and screening. As
for the mechanism prediction of the screened compounds, the
method of clustering with the target compounds was used to
solve the mechanism prediction and exploration of the screened
compounds. Finally, the process was completed by Python, in-
tegrated with a program, and each step through the Python
package output results and image analysis. The codes supporting
this study are available on GitHub: https://github.com/CPU-
XING/TCMs-High-content-data-and-chemicalome-integration-
platform.git. Subsequently, we will also integrate this platform to
develop a new open online platform in the future.

Previously, the data for functional annotation maps of TCM
active ingredients came from different databases, such as the
network pharmacology, in which the data lacked corresponding
experimental data of components and activities and which rely on
database analysis44. The TCMs-CFA platform was constructed
activity annotation maps by correlating the chemomics with high-
content imaging data of various components to predict active
components and their potential mechanism of action, in which the
high-content imaging data of the drug with a clearly target were
used as reference. To verify this strategy, we take TCMs with
myocardial protection as a case. Furthermore, we integrated the
“Fraction-Feature (Compound)-Prediction target” information of
7 kinds of TCMs through the TCMs-CFA platform and built a
relationship network. Then, the most common clustering method
used in phenotypic screening was introduced to predict potential
targets. By introducing the above data into the atlas, the rapid
annotation of the active ingredients of TCMs was realized. The
results showed that predicted targets of some compounds have
been confirmed in previous studies. For example, salvianolic acids

https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
https://github.com/CPU-XING/TCMs-High-content-data-and-chemicalome-integration-platform.git
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(salvianolic acid A, salvianolic acid B, etc.) from Danshen protect
cardiomyocytes through NF-kB pathway26,27. Saponins from
Renshen, Sanqi, and Huangqi (ginsenoside Rb145, astragaloside
IV46, etc.), and hydroxysafflor yellow A in Honghua protect car-
diomyocytes47 by influencing mitochondrial function. The known
results validate the reliability of our method. Furthermore, many
compounds (vina-ginsenoside R4, etc.) have not been reported. To
prove the reliability of our method, we verify three Fractions
(ginsenoside Rf, vina-ginsenoside R4, and ginsenoside Rg6).
Based on established high-content imaging data, the TCMs-CFA
platform predicted that the cell phenotype of vina-ginsenoside
R4 was similar to that of Mdivi-1, a Drp1 inhibitor48 (Fig. 4). In
previous studies, Mdivi-1 treatment was found to reduce Drp1
expression in mitochondrial49,50. Therefore, the Mito-Drp1 protein
expression in vina-ginsenoside R4-treated cells was measured
(Fig. 5B). Vina-ginsenoside R4 block the mitochondrial trans-
location of Drp1 protein, while Total-Drp1 protein content un-
changed (Fig. 5C), which is consistent with the previous studies
that have shown that Mdivi-1 markedly inhibited Drp1 trans-
location to the mitochondria51,52. However, it is unclear whether
vina-ginsenoside R4 is an absolute target inhibitor of Drp1 or
influences Drp1-related phenotypes (phenotypes similar to Mdivi-
1, Fig. 4). Therefore, we further verified the binding of vina-
ginsenoside R4 to Drp1 by SPR. As the result shows, vina-
ginsenoside R4 was bonded to Drp1 directly (Fig. 5F). Besides,
phenotypic prediction does not accurately identify pharmacolog-
ically related targets of compounds of interest, which only predicts
underlying similar mechanisms39,53. Therefore, further research is
needed to determine the true target of vina-ginsenoside R4

therapy.

5. Conclusions

In our study, a novel strategy of a basic knowledge-oriented
compounds functional annotation map of TCMs-CFA platform
was constructed and developed for rapidly discovering candidate
compounds. Without the need for chemical separation and com-
parison one by one, the strong active ingredients are directly
predicted from the complex system of TCMs, and the automation
was realized through Python. This platform is available at GitHub:
https://github.com/CPU-XING/TCMs-High-content-data-and-
chemicalome-integration-platform.git. To verify this strategy,
active fractions of myocardial protection were rapidly annotated
with potential molecular mechanisms from 7 high-frequency
drugs to promote blood circulation and remove blood stasis, and
the related mechanisms of the three compounds (ginsenoside Rf,
vina-ginsenoside R4, and ginsenoside Rg6) were also verified.
Together, this platform reduces the time consumption to discover
the interest molecules, overcomes the bottleneck of traditional
target-based and phenotypic assays in TCMs-based drug discov-
ery, and allows driven TCMs library exploration by providing a
global view of compound diversity. In the future, the TCMs-CFA
could be applied to screen the lead compounds with various
activities.
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