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Abstract: From the viewpoint of green chemistry and sustainable development, it is of great
significance to synthesize chemicals from CO2 as C1 source through C-N bond formation. During the
past several decade years, many studies on C-N bond formation reaction were involved, and many
efforts have been made on the theory. Nevertheless, several great challenges such as thermodynamic
limitation, low catalytic efficiency and selectivity, and high pressure etc. are still suffered. Herein,
recent advances are highlighted on the development of catalytic methods for chemical fixation of
CO2 to various chemicals through C-N bond formation. Meanwhile, the catalytic systems (metal
and metal-free catalysis), strategies and catalytic mechanism are summarized and discussed in detail.
Besides, this review also covers some novel synthetic strategies to urethanes based on amines and
CO2. Finally, the regulatory strategies on functionalization of CO2 for N-methylation/N-formylation
of amines with phenylsilane and heterogeneous catalysis N-methylation of amines with CO2 and H2

are emphasized.

Keywords: carbon dioxide utilization; chemicals; C-N bond formation; hydrogenation; reaction
mechanism; synthetic methods

1. Introduction

With the development of green chemistry, sustainable raw materials are urgently required, and
growing attention is being paid to green resources such as biomass [1], carbon dioxide (CO2) [2–4]
etc. due to their good features such as abundance, renewability and sustainability. In the past several
decades, utilization of CO2 as an ideal C1 building block become a hot and promising field in both
academic and industrial respects. A large number of advantages promoted the wide and deep research
on catalytic conversion of CO2 into chemicals (C-O, C-N and C-C bond construction) and fuels [5–7].
Though great breakthroughs have been achieved during these years, however, CO2 conversion
still faces many challenges due to its thermodynamic stability and kinetic inertness. Therefore,
many strategies have been employed for effective CO2 conversion, including CO2 and substrate
activation and active reagents (such as hydrogen, alkene, alkyne, epoxides, amines, etc.) [8–11] with
high free-energy. Among the active substrates, amines were demonstrated to be some of the most
high-efficiency candidates for chemical fixation of CO2 through C-N bond formation. The earliest
and most successful example is the production of urea from ammonia and CO2, which accounts
for most (>90%) of all of the industrial chemicals produced using CO2 as a chemical feedstock so
far. Besides, many other N-contained chemicals such as urea derivatives, carbamates, oxazolinones,
quinazoline-2,4(1H,3H)-diones, formamides, methylamines, etc. could also be synthesized through
C-N bond formation from CO2 and various amines or their derivatives [9].

In 2011, the He group comprehensively reviewed the development of CO2 conversion through
C-N bond formation with the production of oxazolidinones, quinazolines, carbamates, isocyanates and
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polyurethanes, etc. [6] In the subsequent years, several short reviews describing special fields were also
reviewed. For example, catalytic strategy insights were gained on the reaction of CO2 and aziridines
(a 100% atom economical route) to prepare oxazolidinones and polyurethanes in 2012 [12] and 2017
(heterogeneous catalysis schemes) [13]. Subsequently in 2013, Ghosh et al. summarized various
synthetic methods to produce oxazolidinones from CO2 with a variety of aziridines, propargylamines
and 2-aminoalcohols [14]. In addition, part of a mini-review from the Tomishige group focuses
on the direct conversion of CO2 with aminoalcohols and diamines to give cyclic carbamates and
cyclic ureas via heterogeneous catalysts [15]. Recently, Li et al. focused on catalytic synthesis
of urea derivatives using CO2 and amines [16]. Moreover, a book chapter from the He group
mainly focuses on the synthesis of carbonyl-containing chemicals, including 2-oxazolidinones and
quinazoline-2,4(1H,3H)-diones, through C-N bond formation [17].

Methodology research will provide a solid theory for CO2 conversion into value-added products
through C-N bond formation, and novel strategies have sprung up in the past few years. Herein, we
would like to highlight recent (2014–2018) developments in catalytic methods for chemical fixation
of CO2 to form various chemicals through C-N bond formation (Scheme 1). Notably, the work
described in the previous reviews will not be discussed in this review, unless specially required in
individual cases.
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2. Chemical Fixation of CO2 through C-N Bond Formation

2.1. Sequential Carboxylation and Cyclization with C-O/C-N Bond Formation

2.1.1. Synthesis of Oxazolidinone Derivatives

Oxazolidinones, a class of five-membered cyclic carbamates, display biological activities and
good antibacterial properties. Substituted oxazolidinones are not only used as substrates in organic
synthesis, but also as chiral auxiliaries in asymmetric synthesis [18]. In particular, some oxazolidinones
can be used as the core unit of antibacterial agents, such as toloxatone, linezolid and tedizolid [19].
Oxazolidinones can be prepared through the intramolecular nucleophilic cyclization of propynyl
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carbamates as well as chemical fixation of CO2 with several different reagents such as aziridines,
aminoalcohols and propargylic amines [20]. However, from an availability and economic viability
viewpoint, the three-component reaction of propargylic alcohols, primary amines and CO2 represents
the most attractive method for the synthesis of oxazolidinone derivatives [19].

In the three-component reaction, the carboxylative cyclization of the propargyl alcohol with
CO2 affords an α-alkylene cyclic carbonate, which then undergoes a nucleophilic attack by a
primary amine followed by an intramolecular nucleophilic attack and dehydration to generate
4-alkylene-2-oxazolidinones or 2(3H)-oxazolones (See Scheme 2, Path A) [21]. It is worth noting
that the formation of products is strongly associated with the substituents on the propargylic alcohols.

Molecules 2019, 24, x FOR PEER REVIEW  3 of 42 

 

tedizolid [19]. Oxazolidinones can be prepared through the intramolecular nucleophilic cyclization 
of propynyl carbamates as well as chemical fixation of CO2 with several different reagents such as 
aziridines, aminoalcohols and propargylic amines [20]. However, from an availability and economic 
viability viewpoint, the three-component reaction of propargylic alcohols, primary amines and CO2 
represents the most attractive method for the synthesis of oxazolidinone derivatives [19]. 

In the three-component reaction, the carboxylative cyclization of the propargyl alcohol with 
CO2 affords an α-alkylene cyclic carbonate, which then undergoes a nucleophilic attack by a primary 
amine followed by an intramolecular nucleophilic attack and dehydration to generate 
4-alkylene-2-oxazolidinones or 2(3H)-oxazolones (See Scheme 2, Path A) [21]. It is worth noting that 
the formation of products is strongly associated with the substituents on the propargylic alcohols. 

 

Scheme 2. The mechanism for three-component reaction of propargylic alcohols, amines and CO2. 

This reaction was catalyzed by copper salts including CuCl [22] and CuI [23], with the 
assistance of ionic liquids (ILs) [20] to obtain 4-methylene-2-oxazolidinones or 2(3H)-oxazolones. 
Alternatively, metal-free catalysts, i.e., bicyclic guanidines [24] and [DMIm]BF4 [25] are effective in 
the cycloaddition reactions of CO2 with propargylic alcohols and primary amines under relatively 
mild conditions, although the product yields are not high enough. Moreover, silver salts are suitable 
catalysts showing high efficiency in the three-component reaction (Scheme 3) [26]. 

OHR1

R2

+
R3NH2

+
CO2

AgWO4 (1 mol%)
Ph3P (2 mol%)

solvent-free
50 C, 0.5 MPa, 12 h

O NR3

O

R1

R2

Ag(I)-decorated sulfonate-MOF
(10 mol%), Ph3P (10 mol%)

50 C, 0.1 MPa, DMSO, 12 h

140 C, 3 MPa, 15 h

2,2',2''-terpyridine (5 mol%)

O NR3

O

R2

O NR3

O

R1

R2

99%
R1 = H

R2, R3 = Alkyl

R1 = Me, R2 = Me, Ar, R3 = Alkyl, Ar

O NR3

O

R2 Me

+

71-92% 70-89%

83-95%
R1 = H

R2 = Alkyl, Ph
R3 = Alkyl

O-H
R1

R2
W

O

O

O

O

C O
O

2-

+Ag

(eq. a)

(eq. b)

(eq. c)

 
Scheme 3. Catalytic systems for the reactions of CO2, propargylic alcohols and primary amines. 

Scheme 2. The mechanism for three-component reaction of propargylic alcohols, amines and CO2.

This reaction was catalyzed by copper salts including CuCl [22] and CuI [23], with the assistance
of ionic liquids (ILs) [20] to obtain 4-methylene-2-oxazolidinones or 2(3H)-oxazolones. Alternatively,
metal-free catalysts, i.e., bicyclic guanidines [24] and [DMIm]BF4 [25] are effective in the cycloaddition
reactions of CO2 with propargylic alcohols and primary amines under relatively mild conditions,
although the product yields are not high enough. Moreover, silver salts are suitable catalysts showing
high efficiency in the three-component reaction (Scheme 3) [26].
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Gratifyingly, He et al. obtained corresponding 2-oxazolidinones in moderate to excellent yields
by using a bifunctional Ag2WO4/Ph3P system (Scheme 3a and Figure 1) [21]. The reaction was carried
out under 0.5 MPa pressure of CO2 and 50 ◦C without using any solvent. As shown in Scheme 3a, the
high catalytic activity was ascribed to the dual activation capacity of Ag2WO4. The silver ion, acting as
a π-Lewis acid, could activate the C-C triple bond. Meanwhile, both CO2 and the O-H bond of the
propargylic alcohol were activated by tungstate anion.
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Recently, a noninterpenetrated primitive-cubic (pcu)-type sulfonate-based metal-organic
framework (MOF) was synthesized by Fei et al. [27]. Due to the unusual linker-defective nature
of the MOF, Ag(I) active sites were incorporated. The synergistic effect of high CO2 affinity and alkyne
activation nature enabled Ag(I)-decorated sulfonate-MOF successfully catalyze the cyclic carboxylation
of propargyl alcohol into oxazolidinones under atmospheric pressure of CO2 in the product yield of
up to 100% (Scheme 3b). Notably, a fast mass transport resulting from the high surface area and the
robust nature of the pcu topology result in a high catalytic efficiency.

An alternative catalyst to obtain 2-oxazolidinone derivatives or 2(3H)-oxazolones was a simple
organocatalyst, i.e., 2,2′,2′ ′-terpyridine in the absence of any solvent (Scheme 3c) [18]. Nevertheless,
high temperature and CO2 pressure was indispensable. Besides, this catalytic system was not suitable
for anilines or internal propargyl alcohols.

2.1.2. Synthesis of Carbamates

One of the most important acyclic carbamates, i.e., β-oxopropylcarbamate, has attracted increased
attention owing to its growing applications in agriculture and pharmacology [28]. It also acts as a
useful intermediate in organic synthesis as well as an amine protective group in peptide chemistry [29].
A one-pot reaction of a propargylic alcohol, secondary amine and CO2 is an environmentally benign
strategy to produce β-oxopropylcarbamate with high atom economy and easy handling [19]. Unlike
the formation of 2-oxazolidinone derivatives, β-oxopropylcarbamates can be obtained via nucleophilic
ring-opening of α-alkylidene cyclic carbonates and subsequent tautomerization (See Scheme 2,
Path B) [21].

There are various well-established protocols with metal complexes including ruthenium(II) [30],
iron complexes based on 1,1′-bis(diphenylphosphino)-ferrocene [31] and silver complexes [29] etc.
that were developed before 2012. Additionally, bicyclic guanidines [24] and noncatalytic systems [28]
were also demonstrated effective in the coupling of propargylic alcohols, secondary amines and CO2.
Unfortunately, these approaches generally have severe limitations such as high pressure (≥2 MPa) and
additional energy requirements.

In recent years, silver-containing catalytic systems have showed excellent performance in the
production of β-oxopropylcarbamates through the three-component reactions, as shown in Table 1.
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In 2014, He and co-workers reported that silver complex [(PPh3)2Ag]2CO3, which could be formed
in situ from Ag2CO3 and PPh3, promoted the reaction even under atmospheric CO2 pressure [32].
According to the results of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, CO2 and
propargylic alcohol were presumably simultaneously activated by [(PPh3)2Ag]2CO3, which greatly
facilitated the reaction (Figure 2). Additionally, the scope of the reaction system was demonstrated
to be wide (Figure 3). Furthermore, the combinations of Ag2WO4 and Ag2O with PPh3, respectively,
were also used as catalysts to synthetize β-oxopropylcarbamates under mild reaction conditions.
Ag2WO4/PPh3 showed good catalytic activity under the solvent-free condition primarily because of
the reactant activation through [Ag(PPh3)]+ and [WO4]2− (Scheme 3a) [21]. Nevertheless, the aromatic
amines could not afford the desired products in this system. In contrast, the employment of Ag2O/PPh3

successfully accomplished the reaction of propargylic alcohols and ammonium carbamate (amine-CO2)
to achieve the quantitative fixation of CO2 [33]. Herein, ammonium carbamate formed from amine
and CO2 was used as a CO2 surrogate. As shown in Scheme 4, propargylic carbonate intermediate A is
initially generated from the reaction of propargylic alcohol with ammonium carbamate. Subsequently,
the intermediate A is converted into silver propargylic carbonate B in presence of silver(I) catalyst.
Then, after the activation of C≡C bond by the silver species, intermediate C is obtained and follows
by the formation of α-alkylidene cyclic carbonate. Finally, in the presence of a secondary amine, the
corresponding β-oxopropylcarbamate can be obtained via tautomerization.

Table 1. Silver-containing catalytic systems.

Catalyst (catalytic amount/mol%) Solvent T/◦C P/MPa t/h Yield/% a Ref.

Ag2CO3 (1.5), PPh3 (6) CH3CN 30 0.1 16 68–98 [32]
Ag2WO4 (1), PPh3 (2) - 50 0.5 12 30–97 [21]

Ag2O (2), PPh3 (8) CH3CN 60 - 18 37–96 b [33]
Ag2CO3 (0.01), (p-MeOC6H4)3P (0.04) CHCl3 25 2 96 30.5–93.2 c [34]

AgCl (5), Et4NCl (9) CH3CN 60 0.1 24 29–98 b [35]
a Isolated yield; b NMR yield; c gas chromatography (GC) yield.
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Figure 2. 1H-NMR (a, b) and 13C-NMR (c–f) investigation. (a,b) 2-Methyl-4-phenylbut-3-yn-2-ol (8.0 
mg), Ag2CO3 (2.8 mg) and Ph3P (10.5 mg) ([D6] DMSO 0.6 mL). (c,d) 2-methylbut-3-yn-2-ol (20.2 mg), 
AgNO3 (40.8 mg) (CDCl3 0.6 mL). (e) [(Ph3P)2Ag]2CO3 (158.6 mg) in 0.6 mL of CDCl3. (f) 
[(Ph3P)2Ag]2CO3 (158.6 mg) in 0.6 mL of CDCl3 in the presence of 13CO2 (0.1 MPa). Reprinted with 
permission from [32] (Copyright 2014 John Wiley and Sons). 

Figure 2. 1H-NMR (a,b) and 13C-NMR (c–f) investigation. (a,b) 2-Methyl-4-phenylbut-3-yn-2-ol
(8.0 mg), Ag2CO3 (2.8 mg) and Ph3P (10.5 mg) ([D6] DMSO 0.6 mL). (c,d) 2-methylbut-3-yn-2-ol
(20.2 mg), AgNO3 (40.8 mg) (CDCl3 0.6 mL). (e) [(Ph3P)2Ag]2CO3 (158.6 mg) in 0.6 mL of CDCl3.
(f) [(Ph3P)2Ag]2CO3 (158.6 mg) in 0.6 mL of CDCl3 in the presence of 13CO2 (0.1 MPa). Reprinted with
permission from [32] (Copyright 2014 John Wiley and Sons).
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In addition, Song et al. also reported that Ag2CO3/(p-MeOC6H4)3P could catalyze the coupling
reaction of terminal propargylic alcohols, CO2, and secondary amines with a high turnover number
(turnover frequency) of up to 3350 (35 h−1) only using 0.01 mol% silver catalyst [34]. More recently,
13Ccarbonyl-labeled reactions, 13C-NMR spectrum and high-resolution mass spectrometer (HRMS)
characterization were performed by Zhang and Hao et al. in the AgCl/Et4NCl system. The results
further confirmed that carbon atom in -N-C- skeleton of product derived from CO2 and the evidence
of the previously reported reaction routes [35].
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2.2. Direct Carboxylation/Cyclization with C-N Bond Formation

2.2.1. Carboxylative Cyclization of Propargyl Amines with Carbon Dioxide

Propargylic amines, as some of the important propargylic compounds, are not only easily available
but also suitable for further transformations because of their two functional sites (an amino group
and a triple bond) [36]. To date, great efforts have been made to develop the carboxylative cyclization
of propargylic amines with CO2 to obtain 2-oxazolidinones. As described in Scheme 5, CO2 initially
reacts with propargylic amine to afford intermediate A. Then, an intramolecular cyclization occurs with
the generation of product. Notably, the second step is considered to be the rate-determining step [37].
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Taking into account that activation of the carbon-carbon triple bond is of importance to promote
the carboxylative cyclization, coinage metals (Au, Ag and Cu) have been extensively employed as
catalysts due to π-coordination with the alkyne (Scheme 6). Among them, N-heterocyclic carbene
(NHC)-Au complexes obviously paved the way to chemical fixation of CO2 (1 and 2, Scheme 6a).
Originally, Ikariya et al. found that AuCl(IPr) (1) was capable of catalyzing the synthesis of
(Z)-5-alkylidene-1,3-oxazolidin-2-ones in methanol under mild conditions [38]. Further investigation
of the substrate scope revealed that the catalytic activity was weakened by the introduction of aromatic
substituents at the alkyne terminus [39]. Metallodendrimers have a kind of functional or catalytic site
at the core, and their solubility and physical properties can be modified via peripheral structures [40].
Accordingly, amphiphilic dendritic Au/G1[PEG] (2) also exhibited good catalytic activity in aqueous
media under atmospheric pressure of CO2 [41].

Moreover, Sadeghzadeh developed various fibrous nanosilica (KCC-1)/metal nanoparticles (NPs)
to catalyze the incorporation of CO2 into propargylic amines (3, 4 and 5, Scheme 6a). KCC-1 has
a unique fibrous morphology bearing with high surface area, tunable pore size and pore volume,
controllable particle size, and improved stability. High polyglycerol (HPG)@KCC-1/PPh2/Au (3) and
Fe3O4/KCC-1/tetrazolylidene/Au (4) catalyst not only catalyzed and gave 2-oxazolidinones in good
to excellent yields under 0.5 MPa CO2 pressure at room temperature with water as solvent, but also
could be recovered and reused several times without appreciable loss of activity [42,43]. Especially, the
turnover number of the latter system was up to 1200. In addition, KCC-1/Salen/Ru(II) NPs (5) was
also efficient in production of oxazolidinones, but high reaction temperature was required [44].

Recently, a gold catalyst containing an Z-type ligand composed of a diphosphine-borane (DPB),
namely [Au(DPBF)]SbF6 (6, Scheme 6a) for the carboxylation reaction was developed [45]. The
desired products were formed in air (ca. CO2 300–700 ppm) at room temperature in the presence of
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). However, the yields of the vast majority of corresponding
products were around 40%.

As shown in Scheme 6b, silver compounds also displayed excellent performance in the
carboxylative cyclization. In 2012, Yoshida et al. reported that AgNO3/DBU (7) catalytic system
was used for CO2 capture and transformation at 60 ◦C and 0.1 MPa CO2 in dimethyl sulfoxide
(DMSO) [46]. During the process, atmospheric CO2 was initially trapped by DBU to give DBU-CO2

complex subsequently, which could propel the reaction.
Additionally, a simple and low cost CuI/DBU (8, Scheme 6c) system was explored to synthesize

2-oxazolidinones through the coupling reaction of propargylic amines and CO2 by Wang et al. [47].
The DFT results suggested that CuI and DBU have an excellent synergistic effect in promoting the
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reactions. DBU could capture and transfer protons; meanwhile, CuI activated the C≡C triple bond of
propargylic amine. Similarly, CuI/[DBUH][TFE] (9, Scheme 6c) system also afforded 2-oxazolidinones
in outstanding yields under mild conditions [48]. Moreover, He and co-workers exploited a series of
metal-substituted polyoxometalate (POM)-based ILs including Cu(II), Co(II), Fe(II), Ni(II), Zn(II) and
Mn(II) [49]. Among them, [(nC7H15)4N]6[α-SiW11O39Cu] (10, Scheme 6c) displayed higher catalytic
activity than that of other metal-substituted POM-based ILs. It was mainly ascribed to simultaneous
activation of propargylic amines and CO2 by the single-component catalyst. Notably, this procedure
featured as environmentally benign and low energy-input manner.
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In recent years, considerable attention has also been paid to Zn-based catalysts in CO2 fixation
because of their tunable Lewis acidity, natural abundance and eco-friendly properties. In 2016, He et al.
found that the mononuclear ZnII complex ZnCl2(TBD)2 (TBD = 1,5,7-triazabicyclo[4.4.0]dec-5-ene)
could fix CO2 by propargylic amines to deliver corresponding 2-oxazolidinones without any solvent
(Scheme 7a) [50]. Nevertheless, the internal propargylic amine was unreactive with CO2 in this catalytic
system. In contrast, the terminal and internal secondary propargylamines were smoothly transformed
into oxazolidinone derivatives by Indenediide-based Pd complex catalysts under mild conditions in
DMSO (Scheme 7b) [51]. In particular, six-membered cyclic carbamates and N-aryl oxazolidinones
were obtained (Scheme 7c). In addition, primary propargylamines, which were prone to occurring
side reaction due to the NH2 group, also led to the desired oxazolidinones in good yields.
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As can be seen from the above examples, the reported metal catalytic systems generally
employed expensive noble metals or complicated catalytic components. At the same time, metal-free
catalytic processes can reduce the cost and avoid the pollution caused by metals. In recent years,
there are well-established protocols with vigorous metal-free catalytic systems such as TBA2[WO4]
(TBA = tetra-n-butylammonium) [52], ILs [53], NHCs (e.g., 1,3-di-t-butylimidazol-2-ylidene) [54]
Bu4NF [55,56] and so on.

In 2012, Minakata reported an effective catalytic system being composed of t-BuOI and
CH3CN for the carboxylative cyclization of propargyl amine and CO2, and 2-oxazolidinone bearing
iodomethyl group could be generated under mild conditions (Scheme 8a) [57]. Afterwards, with
two equivalents of a protic ionic liquid namely 1,8-diazabicyclo-[5.4.0]-7-undecenium 2-methyl-
imidazolide ([DBUH][MIm]), the desired products were obtained in good to excellent yields
(Scheme 8b) [37]. Gratifyingly, this cheaper and greener catalyst could be easily recycled and reused
at least five times. Han et al. also found that [DBUH][MIm] promoted both the CO2 electrophilic
attack and the intramolecular cyclization step by capturing and transferring proton through theoretical
studies, respectively.

Very recently, the reaction of propargylic amines and CO2 were carried out in the presence
of a cyanuric acid (H3CYA)-based organocatalyst (Scheme 8c) [58]. [Et4N]3[CYA] was the main
component of the most effective catalyst among these organocatalysts. Notably, this was the first
reported example of direct organocatalytic conversion of low-concentration CO2 in air (0.04% v/v)
for 2-oxazolidinone synthesis. It could be ascribed to the better activation of CO2 in the presence of
[H3-nCYA]n− (n = 1−3) than that of [Phth]− and [2-PyO]− anions (Scheme 8e). Besides, triethanolamine
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(TEOA) as a low-cost and biodegradable alkanolamine showed excellent performance on affording
2-oxazolidinones (Scheme 8d) [59]. As can be seen from Scheme 8f, TEOA activated CO2 to form a
ring-shaped carbonate intermediate, which could be beneficial to the reaction procedure.
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It is worth mentioning that allylamines are less active than propargyl amines in the reaction
with CO2 because C≡C bonds are more prone to being attacked by carbamates than C=C bonds.
However, the carboxylative cyclization of allylamines and CO2 would significantly expand the toolbox
of 2-oxazolidinones synthesis. Most recently, Yu and co-workers summarized recent progress on this
reaction by homogeneous catalysis in detail [60]. In addition, they also reviewed various cyclization
reactions of allenic amines with CO2.

2.2.2. Direct/Indirect Condensation of Amino Alcohols and Carbon Dioxide

In 2013, there were two excellent reviews dealing with the synthesis of 2-oxazolidinones
through carbonylation of corresponding amino alcohols with CO2 (before 2013) by Pulla’s [14] and
Tomishige’s [15] groups. Recently, Fekri et al. provided a review of recent developments (before 2017)
in the synthesis of 2-oxazolidinone derivatives via dehydrative condensation of β-amino alcohols and
CO2 with a discussion on the mechanistic aspects of the reactions in detail [61]. Based on the above
works, this review will briefly discuss only the most recent literature (2017–2018) on direct/indirect
condensation of amino alcohols and CO2.

Despite efficient processes, the direct condensation of amino alcohols and CO2 were limited by
harsh conditions (high temperature and pressure) and side reactions [62–64]. This could be attributed
to the thermodynamic limitation of the reaction with water as by-product (Scheme 9a). Hence, organic
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bases, electrophiles and CeO2 were used for removing water from the system in most cases to improve
the yield of products [65,66].

In 2018, Repo et al. developed an efficient one-pot approach using an external base and
p-toluenesulfonyl chloride (TsCl) as a hydroxyl group activating reagent to synthesize cyclic carbamates
from CO2 and amino alcohols (Scheme 9b) [67]. This stoichiometric reaction system allowed
2-oxazolidinones with the 3-aryl-5-alkyl substitution pattern to be obtained under mild conditions
in good yields and high enantiomeric excess. In the reaction (Scheme 9c), a carbamate salt is formed
from CO2 and amino alcohol, followed by the tosylation of the -OH to improve its leaving group
character. Finally, ideal product is obtained via a ring-closing process. However, the carbamate species
must be formed firstly and stabilized to avoid the competition of N-tosylation reaction. Unlike the
above base-promoted work, a series of K-La-MgO with different K loadings (1, 3, 5, and 7 wt%)
synthesized by combustion were screened for carbonylation of diethanolamine in a green and clean
route [68]. Among them, 5% K-La-MgO was found to show the best performance. The catalytic
process with 5% K-La-MgO offered 72% conversion of diethanol amine and 100% selectivity of
3-(2-hydroxyethyl)-1,3-oxazolidin-2-one at 150 ◦C and 2.0 MPa CO2 pressure.
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Additionally, a thermodynamically favourable one-pot three-component approach of propargylic
alcohols, CO2 and 2-aminoethanols was described by He et al. in 2016 at first, offering 2-oxazolidinones
with equal amount of α-hydroxyl ketone (Scheme 10a). As shown in Table 2, organic solvent, high
CO2 pressure and excess propargylic alcohols were indispensable in the Ag-based catalytic system to
achieve excellent yields [69,70], while in the CuI/1,10-phen-catalyzed three-component reaction, the
desired products in good to excellent yields were obtained under mild reaction conditions without
solvent. It was worth mentioning that cheap, commercially available copper catalysts, and the ability
of C≡C activation have been widely utilized in CO2 transformations. The reaction consists of two
steps. Firstly, α-alkylidene cyclic carbonate intermediate M1 is formed via the carboxylative cyclization
of propargylic alcohol and CO2. Then, M1 undertakes a nucleophilic addition by a 2-aminoalcohol
to form the corresponding β-oxopropylcarbamate species M2, which simultaneously affords the
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2-oxazolidinone and an α-hydroxyketone with a subsequent intramolecular cyclization (Scheme 10b).
Notably, copper complex Cu2I2(phen)2 in situ formed from CuI and 1,10-phen could activate the C≡C
through coordination. Most recently, 1,5,7-triazabicylo[4.4.0]dec-5-ene ([TBDH][TFE]) trifluoroethanol
was used to catalyze the synthesis of oxazolidinones from propargylic alcohols, 2-aminoethanols and
CO2 under atmospheric pressure [71]. The catalysts could be recovered and reused at least five times
without obvious loss of activity.
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Scheme 10. Synthesis of 2-oxazolidinones through thermodynamically favourable approach [68].

Table 2. One-pot three-component reactions of propargylic alcohols, CO2 and 2-aminoethanols.

Catalyst (Catalytic Amount/mol%) Solvent T/◦C P/MPa t/h Yield
(2-oxazolidinones)/% a,b Ref.

Ag2CO3 (5), Xantphos (10) CHCl3 60 1 18–48 33–92 [69]
Ag2O (5), TMG (30) CH3CN 80 1 12 24–99 [70]

CuI (5), 1,10-phen (5), t-BuOK (10) - 80 0.5 12 24–97 [66]
[TBDH][TFE] (15) - 80 0.1 12 24–99 [71]

a NMR yield.; b Isolated yield.

2.3. Quinazoline-2,4(1H,3H)-Diones through Carbonylation of 2-aminobenzonitrile and CO2

Quinazoline-2,4(1H,3H)-diones have wide applications in the synthesis of pharmaceuticals, such
as Zenarestat, Prazosin, Doxazosin, and Bunazosin [72]. The synthesis of quinazoline-2,4(1H,3H)-dione
derivatives through carbonylation of 2-aminobenzonitrile and CO2 is an environmentally benign
process with 100% atom efficiency. This reaction was highlighted by Soleimani-Amiri et al. [72]. They
classified the reactions based on the type of catalysts to review the works before 2017. Thus, we
continued to summarise the published work in recent two years.
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According to the previous literature [73–75], amino group of 2-aminobenzonitrile is initially
activated by basic catalysts, which facilitates the nucleophilic attack of 2-aminobenzonitrile at CO2

to generate intermediate A. Then, nucleophilic cyclization of A produces B. Finally, B converts into
quinazoline-2,4(1H,3H)-dione with the regeneration of the catalysts (Scheme 11).
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Undeniably, numerous IL-based systems [73,74,76–78] exhibit excellent performance in the
transformation of 2-aminobenzonitrile and CO2 [79]. However, almost all the reported IL systems
involve high usage amounts of dual catalyst-solvent media (>1.0 equiv.). There were no intensive and
systematic research figuring out the role of the IL, such as the effects of cation and anion until Dyson’s
work [80] and Wang’s work [81] was published (Scheme 12).
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Scheme 12. IL-catalyzed transformation of 2-aminobenzonitrile and CO2.

Dyson et al. found that the cation from the IL did not play a direct role in the activation of
2-aminobenzonitrile, CO2, or the intermediates in the catalytic cycle [80]. On the contrary, the
basicity of the anion had an inseparable relationship with the reaction rate. Notably, the acidity
of quinazoline-2,4(1H,3H)-dione resulted in its deprotonation in basic catalytic conditions with the
formation of quinazolide anion. Furthermore, the reaction was limited due to the neutralization of the
basic IL catalyst and quinazolide anion.

On the other hand, according to quantum-chemical calculations, NMR spectroscopic
investigations and controlled experiments, Wang et al. proposed that the basicity of cation affects
the catalytic activity of ILs dramatically (Figure 4) [81]. In addition, the cation with more OH groups
exhibited poorer catalytic activity. Therefore, a hydroxyl functionalized aprotic IL [Ch][Im] was
designed and exhibited high catalytic activity (Scheme 13b).
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Figure 4. 1H-NMR spectra of (a) 2-aminobenzonitrile with (b) [HMIm][Im] (pKa value of cation was
7.1), (c) [HDBU][Im] (pKa value of cation was 11.7) or (d) [HMTBD][Im] (pKa value of cation was 13.0).
The H signal of amino in 2-aminobenzonitrile became broader when the basicity of cation was higher.
Reprinted with permission from [81] (Copyright 2018 American Chemical Society).

Inspired by Dyson’s work, Fujita et al. found that nBu4NF was an effective quaternary ammonium
salt for catalyzing the cyclization of 2-aminobenzonitriles when a catalyst loading of 1 mol% was used
at 110 ◦C under CO2 pressure of 2 MPa for 24 h [56].

As introduced in Section 2.2.1 of this review, cyanuric acid-based organocatalystw could be good
activators for CO2 capture and utilization [58]. [Et4N]3[CYA] was also an efficient organocatalyst in
converting atmospheric pressure of CO2 into quinazoline-2,4(1H,3H)-diones without any external base
or promoter.

In recent years, great efforts have been made to develop heterogeneous catalysts for a greener
procedure to quinazoline-2,4(1H,3H)-dione. Both a graphitic carbon nitride catalyst [82] and a
functionalized basic nanocrystalline zeolite [83] prepared by Srivastava et al. were demonstrated to be
effective in the synthesis of quinazoline-2,4(1H,3H)-dione from the reaction of 2-aminobenzonitrile
and CO2 (Scheme 13).
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In recent years, much attention was paid to the synthesis of quinazoline-2,4(1H,3H)-diones
via the multicomponent reactions involving CO2 (Scheme 14). In 2017, Cheng et al. reported
palladium-catalyzed multicomponent reactions of O-alkynylanlines, aryl iodides, and atmospheric
pressure of CO2, generating 3,3-diaryl 2,4-quinolinediones [84]. This reaction provided a one pot
strategy to incorporate CO2 into heterocycles bearing a quaternary carbon center (Scheme 14a).
As shown in Scheme 14c, the carboxylation of amine with CO2 and the trans-oxopalladation of
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C≡C bond by ArPdIIX species sequential occur to afford intermediate A. Subsequently, intermediate
A undergoes an reductive elimination, deprotonation and rearrangements to generate the product.
Moreover, palladium-catalyzed cyclization reactions of O-haloanilines, CO2 and isocyanides were
employed to prepare N3-substituted quinazoline-2,4(1H,3H)-dione with moderate to excellent yields
(Scheme 14b) [85].
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2.4. Urea Derivatives from Amine Derivatives and CO2

It is well known that urea derivatives have a wide range of applications in pharmaceutical
chemistry, organic synthesis as well as analytical chemistry [86,87]. Traditionally, urea derivatives
were synthesized by the stoichiometric reaction of amines and isocyanates [88]. Moreover, the reaction
of amines and highly toxic phosgene/phosgene analogs was performed to afford urea derivatives [89].
Besides, catalytic oxidative carbonylation of amines in the presence of CO was also developed to
obtain ureas [90]. Notably, alternative synthetic routes of CO2 as a source with amines have attracted
considerable attention in recent years.

In the last decades, bicyclic guanidines, as important organic bases, have shown to be active
catalysts in chemical fixation of CO2. For example, N,N′-dialkylureas were synthesized via the
carbonylation of amines with CO2 using TBD as catalyst (Scheme 15) [91]. Among three TBD-CO2

species (a–c) shown in Scheme 15, the formation of bicarbonate-guanidinium salt c is ascribed to trace
of water. The reaction proceeds with a sequential electrophilic attack of amine on c, elimination of
water from M1 and reaction between M2 and amine leading to N,N′-dialkylureas.
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The use of metal oxides and metal salts of oxalates significantly paved the way for
N,N’-dialkylurea synthesis in recent years (Table 3). CeO2 showed high activity for the direct synthesis
of 1,3-dibutylurea from CO2 and n-butylamine [92]. The catalytic system was applicable to various
amines such as linear primary alkylamines and branched primary alkylamines (Figure 5). Meanwhile,
secondary amines and aniline, which were unreactive using CeO2 in N-methyl-2-pirrolidinone (NMP),
were also transformed into the corresponding ureas when 2-cyanopyridine was combined with CeO2

in NMP.

Table 3. Metal-catalyzed carbonylation of amines and CO2.

Catalyst Solvent T/◦C P/MPa t/h Yield/% a Ref.

CeO2 NMP 130 5 24/48 <1–86 [92]
Y2(C2O4)3

b NMP 150 CO2(2)/N2(1) 24 62.43 [93]
Y0.08Zr0.92O1.96

b NMP 160 CO2(2)/N2(1) 12–24 47.14–80.60 [94]
In(N(SiMe3)2)Cl2·(THF)n, pyridine - 110 0.3 3–90 - [95]

a GC yield; b 4A zeolite as dehydrant.Molecules 2019, 24, x FOR PEER REVIEW  17 of 42 
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Y2(C2O4)3 and Y0.08Zr0.92O1.96 mixed oxide were independently used to catalyze carbonylation
of aliphatic primary amines with CO2. Y2(C2O4)3 provided the highest yield of N,N′-dialkylurea
among various metal salts of oxalates (Zr(C2O4)2, Ce2(C2O4)3, Mn(C2O4), Na2(C2O4), Ni(C2O4)) [93].
Y0.08Zr0.92O1.96 mixed oxide as the heterogeneous catalyst showed higher catalytic activity than
Y2(C2O4)3 [94]. The presence of oxygen vacancies in the mixed oxide was of great importance for
adsorption and activation of CO2 in the carbonylation process. It should be ascribed to the additional
reduction potential derived from the oxygen vacancies for the reduction of CO2 to CO and/or surface
carbonaceous species (an important intermediate).
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Indium-catalyzed transformations of CO2 with aliphatic and aromatic silylamines have been
exploited by Stephan et al. [95]. The indium compound In(N(SiMe3)2)Cl2·(THF)n (THF = tetrahydrofuran)
was able to efficiently catalyze the reaction and afford a wide range of aryl and alkyl ureas with
0.05–5 mol% catalyst loadings. Notably, the available main group metal-catalyzed transformations of
CO2 were improved.

Polyureas containing urea linkages and connected by hydrogen bonds are a new kind of polymer.
In 2016, good to excellent yields of various polyureas were achieved with different diamines and
CO2 by hexyltributylphosphonium aminotriazole (P4,4,4,6ATriz, ATriz = 3-amino-1H-1,2,4-triazole)
(1, Scheme 16) IL catalyst [96]. It was found that the catalytic performance was essentially consistent
with the basicity of ILs described by Deng et al. Recently, some functional polyureas were successfully
synthesized via the polymerization of CO2 with diamines using amino triazole alkali salts i.e., MATriz
as catalysts (2, Scheme 16), and M was Li, Na, K [97]. More importantly, the catalysts could be reused
for several times without obvious deactivation.
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Additionally, Arai et al. found that DBU (3, Scheme 16) was the most active among multiple
organic and inorganic base catalysts in addition of CO2 to 4,7,10-trioxa-1,13-tridecanediamine
(TOTDDA) [98]. DBU could activate both CO2 and -NH2 group of TOTDDA, which was demonstrated
by in situ high-pressure attenuated total reflectance Fourier transform infrared spectroscopy
(ATR-FTIR), resulting in a high catalytic performance (Figure 6).
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Figure 6. (1) FTIR spectra of (a) TOTDDA, (b) DBU, and (c) mixture of TOTDDA and DBU
(TOTDDA:DBU was 10:1). The protonation of DBU by TOTDDA indicated that DBU could activate the
-NH2 group of TOTDDA. (2) In situ ATR-FTIR spectra of DBU (C=N) and DBU·CO2 (C=O) collected at
different periods of reaction time. The new band at 1644 cm−1 is assignable to C=O and this implies
the formation of the complex of DBU·CO2. Reaction conditions: DBU 2 mmol, CO2 8 MPa, 60 ◦C.
Reprinted with permission from [98] (Copyright 2018 John Wiley and Sons).
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2.5. Novel Synthetic Strategies of Carbamate Derivatives Based on Amines and CO2

2.5.1. N-Tosylhydrazones as a Building Block to Construct C-N Bond

N-Tosylhydrazones have been extensively employed as useful building blocks to construct
complicated molecules. In 2015, Jiang et al. reported the first approach for the synthesis of
organic carbamates by a three-component coupling reaction of CO2, amines, and N-tosylhydrazones
(Scheme 17a) [99]. Notably, in the presence of K2CO3 and a mixed CH3CN/H2O solvent, the reaction
system tolerates a variety of valuable functional groups on the products, which provided ample
potential for further organic syntheses. Subsequently, Chung et al. modified the procedure performed
under mild conditions with desired carbamates (Scheme 17b) [100]. Nevertheless, poor yields were
observed compared with Jiang’s work.
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Scheme 17. N-tosylhydrazones as a building block to construct C-N bonds. Scheme 17. N-tosylhydrazones as a building block to construct C-N bonds.

At present, however, there is insufficient evidence for the proposed mechanism [99]. Presumably,
for example, N-tosylhydrazone decomposes in the presence of K2CO3, and generates diazo compound,
which can be followed by a protonation and a thermodynamically favorable liberation of dinitrogen
to give allylic carbocation species M1 (a resonance hybrid of A and B) (Scheme 17d). Finally, the
carbamate anion of M2 as a nucleophile attacks to M1 generating products of C and D.
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Notably, Cheng et al. developed a strategy towards 4-aryl-2-quinolinones by a three-component
coupling reaction of N-tosylhydrazones, 2-iodoanilines and CO2 catalyzed by PdII/phosphine system,
which was benefited from the N-tosylhydrazone chemistry (Scheme 17c) [101]. Gratifyingly, four novel
bonds: two C-C, one C=C and one C-N formed simultaneously in the heterocycles.

2.5.2. O-Aryl Carbamates from Three-Component Reactions Containing Amines and CO2

A straightforward route to O-aryl carbamates was achieved through a three-component reaction of
CO2, amines and diaryliodonium salts with an organic base (DBU) as the promoter (Scheme 18a) [102].
In this phosgene- and metal-free protocol, diaryliodonium salts was used as electrophilic arylating
agents to trap the in situ-generated carbamate anions. However, this transformation generated a
stoichiometric amount of by-product, i.e., aryl iodides. In addition, the preformation of diaryliodonium
salts was required.
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Additionally, a more convenient route to O-aryl carbamates by a copper(I)-catalyzed oxidative
coupling reaction between arylboronic acids, amines and CO2 was developed (Scheme 18b) [103].
At the same time, BF3·OEt2 was employed as the promoter and O2 as the oxidant. This approach
tolerated a wide range of functionalized O-aryl carbamates.

Ribas and Company et al. reported a one-pot procedure of a model pincer-like arene, amines and
CO2 to synthesize O-arylcarbamates (Scheme 18c) [104]. This reaction performed smoothly at room
temperature by an aerobic Cu(II)-based catalyst and a nucleophile of carbamic ammonium salts in situ
generated from amines and CO2 gas.

2.5.3. N-Arylcarbamate from Three-Component Reactions Containing Amines and CO2

N-Arylcarbamate synthesis directly from CO2, amines and organic halides often has negative
environmental effects [105]. Choi et al. reported the first successful example of a halogen-free process
for producing N-phenylcarbamate from CO2, aniline and dibutyltin dialkoxide (Scheme 19a) [106].
Gratifyingly, the corresponding methyl N-phenylcarbamate was formed in a yield of 80% along
with N′-diphenylurea as by-product. Recently, they found that silicate ester (i.e., Si(OR)4)
could be incorporated with aliphatic or aromatic amines and CO2 to synthesize N-arylcarbamate
(Scheme 19b) [107]. Notably, the corresponding carbamates of aromatic amines could be obtained in a
yield of up to 96%. Besides, the reaction was chemoselective toward amine activation. The use
of Zn(OAc)2/1,10-phenanthroline (phen) catalysts offered the best performance because of the
carboxylate-assisted proton activation, as shown in Figure 7.

Alternatively, adding the corresponding alcohols to the system including CO2 and amines
was also an efficient route to obtain N-arylcarbamates. In 2018, the combination of CeO2 and
2-cyanopyridine was used in the direct synthesis of N-arylcarbamates from CO2, amines and alcohols



Molecules 2019, 24, 182 20 of 41

(Scheme 19c) [108]. Various linear and branched alcohols were transformed into the corresponding
carbamates in high selectivities.
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Figure 7. (a) 1H- and (b) 15N-NMR spectra of aniline with and without Zn(OAc)2/phen in CD3CN at
room temperature. The chemical shifts in both 1H and 15N-NMR spectra illustrated the interaction
between aniline and acetate, and the formation of hydrogen bonds. Reprinted with permission
from ref. [107] (Copyright 2017 John Wiley and Sons).

2.5.4. Allyl Carbamates from Amines and CO2

As seen from Scheme 20a, Zhao et al. developed a three-component reaction of unsymmetrical
allylic chlorides, CO2 and amines to afford allyl carbamates by Pd catalysis [109]. This method tolerated
various allyl carbamates in moderate yields but with excellent regioselectivity (99/1).

A facile and efficient methodology for the synthesis of new acetal-type O-allyl carbamates
by regioselective coupling reaction of CO2, amines and aryloxyallenes was explored in 2018
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(Scheme 20b) [110]. A wide range of desired products were obtained in moderate to excellent yields
using the catalytic system of AgOAc and TBD. Jiang et al. found that a cationic species generated
from Ag(I) salt and TBD was the key active complex in the transformation, which was indicated by
1H-NMR studies.
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3. C-N Bond Formation through CO2 Hydrogenation

For the past fifteen years, reductive methylation using N-site-based nucleophiles and CO2 to
give the corresponding methyl amines or formamide, which represents one of the most economical
and environmentally friendly routes for C-N bond formation using CO2 as C1 building block has
been investigated intensively. Recently, in this hot field, several groups such as Cantat (2015,
reductive functionalization of CO2 with amines) [111,112], Yan (2015, transition metal-catalyzed
methylation) [113], Beller (2017, catalytic methylation) [114], He (2018, transition-metal-free
catalysis) [115], Kühn (2018, an update of CO2 catalytic conversion) [116], Fernández-Alvarez and
Oro (2018, homogeneous catalytic reduction of CO2 with silicon-hydrides) [117], Motokura (2018,
organocatalysis with silanes) [118], have reviewed the recent developments in CO2 hydrogenation
based on amine substrates from different viewpoints. On the basis of the previous reviews and the
integrity of this article, here, the introduction of the development of CO2 conversion based on amines
will be emphasized in a special view. The contents of this part include the regulatory strategies
for functionalization of CO2 for N-methylation and N-formylation of amines with phenylsilane and
heterogeneous catalysis N-methylation of amines with CO2 and H2.

3.1. Regulatory Functionalization of CO2 with Amines and Phenylsilane: N-Methylation and N-Formylation
of Amines

In 2013, the methylation of amines was achieved using hydrosilanes as reductants through zinc
complex catalysis by the Cantat group (Scheme 21) [119]. A mechanism going through a formamide
intermediate was proposed. In recent years, many researchers undertook the study on selective
catalysis of N-methylation and N-formylation of amines from amines, CO2, and hydrosilane.
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Scheme 21. Zinc complex-catalyzed methylation of amines using hydrosilanes.
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Subsequently, they described the first iron catalysts able to promote the reductive functionalization
of CO2 with amines using hydrosilanes as reductants to formamide and methylamine derivatives under
mild reaction conditions (Scheme 22a) [120]. At room temperature, the chemoselectivity of formamide
was almost 100%. After increasing the temperature to 100 ◦C, the selectivity of N-methylation was
greatly improved and the majority methylamine derivatives were obtained under the elevated loading
of catalyst. Similarly, iron-rich natural mineral Gibeon meteorite was used as an efficient heterogeneous
catalyst for the N-formylation or N-methylation of amines with CO2 and hydrosilanes recently
(Scheme 22b) [121]. In the work, a wide range of amines was converted into their corresponding
formamides in high yields at room temperature. By simply varying the conditions e.g., increasing
the temperature (25→100 ◦C) and catalytic loading (1→10 mol%), the selectivity was switched from
N-formylated to N-methylated products. Moreover, the Gibeon meteorite catalyst was recycled and
reused at least five times without appreciable activity loss.
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Scheme 22. Fe-based catalysis for temperature controlled N-formylation/N-methylation. 

In 2015, the Dyson group reported an effective thiazolium carbine-based catalyst for the 
N-formylation of amines, using polymethylhydrosiloxane (PMHS) as a reducing reagent under 
ambient pressure [122]. A board range of primary amines could be converted into the corresponding 
formamides with PMHS (200–300 mL) at 50 °C under atmospheric pressure of CO2. Notably, a 
interesting discovery, namely that the variation of reaction temperature could change the reaction 
products, was also made. For example, the N-formylation could be turned into N-methylation by 
changing the reaction temperature from 50 to 100 °C with PMHS (200–300 mL), and methylamine 
was obtained in high yield (Scheme 23). 
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In 2015, the Dyson group reported an effective thiazolium carbine-based catalyst for the
N-formylation of amines, using polymethylhydrosiloxane (PMHS) as a reducing reagent under
ambient pressure [122]. A board range of primary amines could be converted into the corresponding
formamides with PMHS (200–300 mL) at 50 ◦C under atmospheric pressure of CO2. Notably,
a interesting discovery, namely that the variation of reaction temperature could change the reaction
products, was also made. For example, the N-formylation could be turned into N-methylation by
changing the reaction temperature from 50 to 100 ◦C with PMHS (200–300 mL), and methylamine was
obtained in high yield (Scheme 23).
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formylation/methylation selectivity could be conveniently controlled. By means of experimental and 
computational studies, they revealed the possible mechanism including: i) activation of Si−H by 

Scheme 23. Thiazolium carbene-based catalyst for N-formylation/N-methylation.

Subsequently, the He group [123], Fu group and Lin group [124] reported the selective synthesis
of formamides or methylamines from amines, CO2, and hydrosilane under the different catalytic
conditions in the same year. In He’s work, butylammonium fluoride (TBAF) was used for the reductive
functionalization of CO2 with amines to selectively afford formamides or methylamines by employing
different hydrosilanes (Scheme 24). Formamides were obtained with triethoxysilane as reductant, and
methylamines with phenylsilane in excellent yield under atmospheric pressure of CO2 at 30 and 50 ◦C,
respectively. The mechanism of formation of the key silyl formate intermediate in the formylation step
and fluoride-promoted hydride transfer from the hydrosilane to CO2/formamide was proposed.
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Scheme 24. TBAF catalysis for selective N-formylation/N-methylation.

The Fu group and Lin group developed a simple and effective alkali-metal carbonate, i.e.,
cesium carbonate, that catalyzed both the formylation and methylation reactions under mild
conditions (Scheme 25). Through varying the reaction temperature and loading of silane, the
formylation/methylation selectivity could be conveniently controlled. By means of experimental
and computational studies, they revealed the possible mechanism including: (i) activation of Si−H by
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Cs2CO3, (ii) insertion of CO2 into Si−H, (iii) formylation of amines by silyl formate, and (iv) reduction
of formamides to methylamines.
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Scheme 26. Glycine betaine-catalyzed selective N-formylation/N-methylation. 

Recently, Chen and Xia reported an efficient DBU catalytic system for the selective 
N-methylation and N-formylation of amines with CO2 and PMHS (Scheme 27) [128]. The 
N-methylation products in high yields are obtained with 1 mol% DBU at 100 °C, and selective 
N-formylation of amines is realized with 10 mol% DBU at a lower temperature. 

Scheme 25. Cs2CO3 catalysis for selective N-formylation/N-methylation and proposed mechanism.

In 2007, the He group developed a glycine betaine-catalyzed strategy for the reaction of CO2 with
amines and diphenylsilane (Scheme 26a) [125]. Through tuning the amount of CO2 and the reaction
temperature, three kinds of products, i.e., formamide, methylamine, and aminal, were successively
obtained. This scheme firstly achieved the hierarchical reduction of CO2 with amine and hydrosilane
using organocatalysis with wide substrate scope. Almost at the same time, the Han group also
reported the glycine betaine-catalyzed transformation of CO2 with amines to synthesize N-substituted
compounds (Scheme 26b) [126]. Similarly, the selectivity to the reductive products could be controlled
by the molar ratio of reactants (i.e., CO2, amines, and PhSiH3) and the temperature. Subsequently,
they used lecithin as an organocatalyst for the formylation and methylation of various amines with
CO2 to corresponding formamides and methylamines via using PhSiH3 as the hydrogen source [127].
Meanwhile, the product selectivity could also be easily controlled by the molar ratio of reactants and
reaction temperature.
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Recently, Chen and Xia reported an efficient DBU catalytic system for the selective N-methylation
and N-formylation of amines with CO2 and PMHS (Scheme 27) [128]. The N-methylation products in
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high yields are obtained with 1 mol% DBU at 100 ◦C, and selective N-formylation of amines is realized
with 10 mol% DBU at a lower temperature.Molecules 2019, 24, x FOR PEER REVIEW  25 of 42 
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Scheme 27. DBU-catalyzed selective N-methylation/N-formylation using PMHS as hydride
reagent [128].

In previous studes, the selective N-methylation and N-formylation of amines with CO2

was mainly dependent on the reaction temperature because higher reaction temperatures favour
methylamine formation. Recently, a tungstate catalyst was employed for selective catalysis reductive
functionalization of CO2 with amines and phenylsilane (Scheme 28) [129]. By varying the CO2

pressure, 2-electron or 6-electron reduction of CO2 was achieved to give formamides or methyl-
amines, respectively. Meanwhile, the N-formylation proceeding through the silyl formate intermediate
and the N-methylation through an aminal intermediate were demonstrated via control experiments
and NMR studies.
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Scheme 28. Pressure-switched N-methylation/N-formylation to methylamine/formamide.

Afterwards, Li and He studied the ligand-controlled copper complex-catalyzed selective
transformations of amines and CO2 to formamides and methylamines with phenylsilane as reductant
(Scheme 29) [130]. Using the same reaction conditions and copper compound, selective catalysis was
accurately regulated through simply changing the phosphine ligand.
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Scheme 29. DBU-catalyzed selective N-methylation/N-formylation and possible mechanism [130].

Initially, the coordination of copper with phosphine ligand Ph2CyP or DPPB led to the copper
complex and the subsequent formation of the active Cu–H species, followed by CO2 insertion with the
generation of the copper formate (Cycle I). Then, copper formate reacts with amine and hydrosilane
to give the formamide along with the formation of the active Cu–H species (Cycle II). The catalytic
ability of copper complex determines the final products through the catalytic cycle I or cycle II.
The Cu(Ph2CyP) complex gave the final formamide product, and Cu(DPPB) could further catalyze the
formamide reduction to the methylamine product.

The Mechanism of Metal and Organocatalysis

The previously proposed catalytic pathways for the reactions of N-methylation and N-formylation
are summarized in Scheme 30 [131]. Among, the mechanisms for the synthesis of aminal from amine,
CO2 and hydrosilane (Cantat’s TBD-catalyzed method) is similar to the methylation (Scheme 31) [132].
The aminal product is obtained via a [Si]OCH2O[Si] intermediate, and HC(=O)O[Si] intermediate does
not react with amine to form formamide. Therefore, the formation of aminal does not undergo the
formamide intermediate process. Besides, other organocatalysts including glycine betaine [125,126],
DBU [128], K2WO4 [129], also supported the mechanism of aminal intermediate for the methylation of
amines with CO2 using hydrosilane as reductant through detailed control experiments (Scheme 32,
equations 1–3) and DFT study [133]. In addition, in some metal-based systems such as Fe [120],
Cs [124], Cu [130], and a few organocatalysts (e.g., TBAF [123], lecithin [127], etc.), the experimental
evidence supports the mechanism of further formamide hydrogenation to the corresponding the
methylation under the corresponding conditions (Scheme 32, equations 4–8). In these works, control
experiments, e.g., using the product formamide as reaction material, were carried out to demonstrate
the pathway (Scheme 30).
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Scheme 31. TBD-catalyzed aminal synthesis from amine, CO2 and hydrosilane [132].

Recently, a mechanistic investigation was carried out by Nguyen group on the guanidine catalyzed
reductive amination of CO2, using a combination of experimental and analysis method (1H, 29Si-NMR,
FT-IR, MS, and GC profiling) (Scheme 33) [131]. The results showed that reduction of CO2 to formamide,
aminal, and then N-methylamine is not sequential. Formamide was obtained dominantly at a lower
temperature (23 ◦C), but an obvious increase of aminal, and then N-methylamine was detected at the
higher temperature (60 ◦C).

Increasing the reaction temperature enables a competitive and higher-energy pathway to
aminal and N-methylamine, which requires direct reduction of CO2 with PhSiH3 to formoxysilane
PhSiH2OOCH intermediate. The theory provided a new evidence for the pathway to formamide from
aminal (Scheme 33, pathway 9).
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3.2. Heterogeneous Catalysis Methylation of Amines with CO2 and H2

The use of hydrosilane could lead to the formation of large amount of siloxanes as by-products
which is not beneficial to the development of sustainable chemistry. Therefore, in place of hydrosilane
with benign H2 would make the hydrogenation process cleaner. In addition, the advantages
of heterogeneous catalyst such as easily recovery and recycle are obvious. Therefore, herein,
heterogeneous catalysis on methylation of amines with CO2 and H2 was highlighted.

In 1995, the Baiker group reported the first example on the synthesis of methylamines from
ammonia, H2 and CO2 through Cu/Al2O3 catalysts in a fixed-bed microreactor (Scheme 34) [134],
but the efficiency was not high enough. Subsequently, they tested various types of metal–alumina
catalysts (Cu, Ag, Pt, Ni, Co, Fe) to further improve the catalytic activities and selectivities [135–137].
The best amine production rates were obtained with Cu–Mg–Al mixed oxides at 280 ◦C, and over 79%
selectivity of methylamine was obtained.
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During the past decade years, many research groups continuously carried out the study on
heterogeneous catalysis (Cu [138,139], Pd [140,141], Pt [142,143], Au [144,145], Re [146]) on methylation
of amines with CO2 and H2, and a significant progress had been made totally (Table 4). For example, Shi
and co-workers described effective heterogeneous catalyst systems CuAlOx [138] and Pd/CuZrOx [140]
for the methylation of amines with CO2 and H2 as sources for the methyl group, respectively.
Primary and second aromatic and aliphatic amines were converted to methylamines under the
identical reactions (170 ◦C, H2/CO2: 6–7/3 MPa). In the same year, Shimizu et al. [142] reported a
Pt-MoOx/TiO2 catalyst in the methylation of secondary amines under solvent-free conditions (0.5 MPa
CO2 and 5 MPa H2). Besides the good performance in the wide scope of secondary amines, the
catalyst was reused in methylation of N-methyl aniline with CO2 and H2 for at least ten cycles with no
significant loss in its activity. Notably, the total TON during the successive 10 runs reached 433 higher
than TONs of the homogeneous Ru catalysts. Recently, they also studied TiO2-supported Re catalyst
(Re/TiO2) promoted the N-methylation of amines by using H2 and CO2 [146]. Re/TiO2 efficiently
catalyzed the reaction of various amines including substituted anilines, tetrahydroquinolines, aliphatic
secondary amines in 66–99% yield.



Molecules 2019, 24, 182 30 of 41

Table 4. Methylation of selective amines with CO2 and H2.

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

Entry Sub. Cat. PCO2/MPa PH2/MPa Temp./◦C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref.

1

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

CuAlOx 3 6 160 24 hexane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 86 NA [138]

2

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

CuAlOx 3 7 160 24 hexane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 86 NA [138]

3

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

CuAlOx 3 7 160 24 hexane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 87 NA [138]

16

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

Cu/CeO2 1 7 160 4 toluene

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

28 27 95 [139]

6

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

Pd/CuZrOx 1 2.5 150 30 octane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 91 NA [140]

7

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

Pd/CuZrOx 1 2.5 150 30 octane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 71 NA [140]

8

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

Pd/CuZrOx 1 2.5 150 30 octane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

NA 75 NA [140]

15

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

PdGa/TiO2 5 5 180 10 octane

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 

98 92 94 [141]

9

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] Pt-MoOx/TiO2 0.5 5 200 24 neat

Molecules 2019, 24, x FOR PEER REVIEW  30 of 42 

 

Table 4. Methylation of selective amines with CO2 and H2. 

 
Entry Sub. Cat. PCO2 

/MPa 
PH2/MPa Temp./°C T/h Sol. Prod. Conv./% a,b Yield/% a,b Sel./% a,b Ref. 

1  CuAlOx 3 6 160 24 hexane  NA 86 NA [138] 

2  CuAlOx 3 7 160 24 hexane  NA 86 NA [138] 

3  CuAlOx 3 7 160 24 hexane  NA 87 NA [138] 

16  Cu/CeO2 1 7 160 4 toluene  28 27 95 [139] 

6  Pd/CuZrOx 1 2.5 150 30 octane  NA 91 NA [140] 

7  Pd/CuZrOx 1 2.5 150 30 octane  NA 71 NA [140] 

8  Pd/CuZrOx 1 2.5 150 30 octane  NA 75 NA [140] 

15  PdGa/TiO2 5 5 180 10 octane  98 92 94 [141] 

9  Pt-MoOx/TiO2 0.5 5 200 24 neat  85 85 100 [142] 85 85 100 [142]

10

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Pt-MoOx/TiO2 0.5 5 200 24 neat

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

100 63 63 [142]

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 65 NA [142]

5

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Pt-MoOx/TiO2 1 5 250 24 THF

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 56 NA [143]

12

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Au/Al2O3-VS 2 6 140 7 hexane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 92a NA [144]

13

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Au/Al2O3-VS
(Au: 0.5 mol%) 2 6 140 7 hexane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 96 NA [144]

14

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Au/Al2O3-VS
(Au 0.5 mol%) 2 6 140 7 hexane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 99 NA [144]

11

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Au/Al2O3 (Au
Size 2.0 nm, Au

0.73 wt%)
1 3 140 5 cyclohexane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

76 >75 >99 [145]

17

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Re/TiO2 1 5 200 24 octane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 98 NA [146]

18

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

Re/TiO2 1 5 200 24 octane

Molecules 2019, 24, x FOR PEER REVIEW  31 of 42 

 

10  Pt-MoOx/TiO2 0.5 5 200 24 neat  100 63 63 [142] 

4 NH4HCO3 Pt-MoOx/TiO2 1 5 250 24 neat  NA 65 NA [142] 

5  Pt-MoOx/TiO2 1 5 250 24 THF N
CH3H3C

CH3  NA 56 NA [143] 

12  Au/Al2O3-VS 2 6 140 7 hexane  NA 92a NA [144] 

13  
Au/Al2O3-VS 

(Au: 0.5 mol%) 
2 6 140 7 hexane  NA 96 NA [144] 

14  
Au/Al2O3-VS (Au 

0.5 mol%) 
2 6 140 7 hexane N  NA 99 NA [144] 

11  

Au/Al2O3 (Au 
Size 2.0 nm, Au 

0.73 wt%) 
1 3 140 5 cyclohexane  76 >75 >99 [145] 

17  Re/TiO2 1 5 200 24 octane  NA 98 NA [146] 

18  Re/TiO2 1 5 200 24 octane  NA 99 NA [146] 

a GC conversion and yield based on amine. b Not available (NA). 

NA 99 NA [146]

a GC conversion and yield based on amine. b Not available (NA).



Molecules 2019, 24, 182 31 of 41

In 2015, Su and Wang [144] demonstrated a supported Au catalyst (Au deposited on alumina)
which was highly effective for the methylation of both aromatic and aliphatic amines using CO2/H2

to N-methylated products (Scheme 35). The average TOF based on surface Au atoms was 45 h−1 in
the methylation of aniline with CO2 and H2. Moreover, in their work, a variety of amines including
aromatic, aliphatic, secondary, and primary amines were demonstrated with good performance
(40–99% yield). Notably, the catalytic scheme could make the one-pot method of primary amines,
aldehydes, and CO2 with H2 to unsymmetrical tertiary amines. In addition, to extend the work, Du et
al. revealed that with the decrease of the Au nanoparticle size from 8.3 to 1.8 nm, the TOF values for
methylation of N-methylaniline with CO2/H2 increased [145].
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The reductive N-formylation of amines using CO2 and hydrogen is also a promising means of 
fixing CO2 into value-added chemicals, and heterogeneous catalysis schemes were also well 
developed recently (Table 5). Lately, the Shi group were the first to report a highly active supported 
palladium nanoparticle catalyst for the N-formylation of various aliphatic amines with CO2 and H2 
(Scheme 37) [147]. During the preparation, Pd(NH3)xCly was initially adsorbed onto the carbon 
support, and then the active nano-Pd particles were generated by in situ reduction. Additionally, the 
activity of the Pd/C catalysts can be tuned by -OH groups through modulating the 
hydrophilic/hydrophobic properties of the carbon surface which further potentially promote the 
adsorption of CO2 and amines near the Pd sites.

Scheme 35. Au-catalyzed methylation of amine with CO2 and H2.

Zhao et al. demonstrated that PdGa bimetallic alloy nanoparticles were highly dispersed on the
TiO2 support, and the CO2 could be activated through the interaction between the electron-deficient
Pd and Ga, which was confirmed by several detailed characterization studies (TEM, TPR, XPS,
CO-adsorption IR and high-pressure in situ FTIR). The generation of a formic acid intermediate
was proposed for the methylation (Scheme 36) [141]. As a result, 98% conversion and 94% selectivity
for N-methylaniline was obtained under the identical conditions (180 ◦C, 5 MPa H2, 5 MPa CO2, 10 h).
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The reductive N-formylation of amines using CO2 and hydrogen is also a promising means
of fixing CO2 into value-added chemicals, and heterogeneous catalysis schemes were also well
developed recently (Table 5). Lately, the Shi group were the first to report a highly active
supported palladium nanoparticle catalyst for the N-formylation of various aliphatic amines with
CO2 and H2 (Scheme 37) [147]. During the preparation, Pd(NH3)xCly was initially adsorbed onto
the carbon support, and then the active nano-Pd particles were generated by in situ reduction.
Additionally, the activity of the Pd/C catalysts can be tuned by -OH groups through modulating
the hydrophilic/hydrophobic properties of the carbon surface which further potentially promote the
adsorption of CO2 and amines near the Pd sites.
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Table 5. N-Formylation of typical amines with CO2/H2.
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4.1 3.4 [148] 

6  Pd−Au/PANI-CNT 3.5 3.5 125 48 1,4-dioxane 
 

0.2 0.1 [148] 

7  Pd/NC 3 4 130 24 ethanol  NA 94 [148] 

8  Pd/NC 3 4 130 24 ethanol 
 

NA 11 [148] 

a GC conversion and yield based on amine. b Not available (NA). 
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Scheme 37. Heterogeneous palladium catalysis N-formylation of amines [147]. 

At the same time, a bimetallic Pd−Au catalyst (Pd/Au molar ratio of 1:1) prepared by depositing 
Pd−Au alloy nanoparticles (around 3.0 nm) on polyaniline-functionalized carbon nanotubes 
(PANI-CNT) was demonstrated the excellent catalytic activity for the N-formylation of pyrrolidine 
using CO2/H2 [148]. Ju et al. revealed that Pd atoms are the true active sites for the hydrogenation 
reaction, and the interaction between Pd atoms and Au atoms on bimetallic Pd−Au/PANI-CNT is 
beneficial to enhance the catalytic performance through changing the electronic properties of the 
formed bimetallic Pd−Au nanoparticles. In the work, a variety of aliphatic secondary amines showed 
excellent reactivity and gave high yield (67.2–98.3%). The aliphatic primary amines afforded a lower 
yield (up to 62.2%), and the tert-butylamine nearly performed no reactivity (trace product). 
Meanwhile, aniline was also not suitable under the reaction condition (0.1% yield). 

Recently, a Pd nanoparticle (average size <2.0 nm) catalyst supported on N-doped carbons 
(NCs) was prepared by Liu group and applied for effective N-formylation of amines with CO2 and 
H2 in ethanol [149]. The investigation revealed that the interaction between the Pd nanoparticles and 
nitrogen in the NC support was responsible for the good performance of the catalyst. The catalyst 
was reused for three times, and the product yield decreased (from 93% to 81%). TEM observations 
indicated the reason may be the aggregation of Pd nanoparticle (from 2 to 3.5 nm) under the 
experimental conditions. In addition, a serial of aliphatic primary and secondary amines showed 
good reactivity and afforded the target products in high yields (51–99%). However, the aromatic 
amines such as aniline and N-methylaniline gave the corresponding products in low yield (11%, 
11%) under the same conditions.  

4. Summary and Outlook 

In conclusion, C-N bond formation reaction through CO2 as C1 source represents a big stride 
forward for the development of sustainable and green chemistry. In this work, we have summarized 
recent the advances of CO2 conversion to valuable chemicals from various N-contained substrates 
through metal or organocatalysis strategies. C-N bond formation has been achieved involving direct 
carboxylation/cyclization of CO2 with various N-contained substrates (such as propargyl amines, 
amino alcohols, allylic amines, allenic amines, etc.), sequential carboxylation and cyclization of 
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hydrogenation. Among them, from the availability and the economic viability viewpoint, the 
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At the same time, a bimetallic Pd−Au catalyst (Pd/Au molar ratio of 1:1) prepared by depositing
Pd−Au alloy nanoparticles (around 3.0 nm) on polyaniline-functionalized carbon nanotubes
(PANI-CNT) was demonstrated the excellent catalytic activity for the N-formylation of pyrrolidine
using CO2/H2 [148]. Ju et al. revealed that Pd atoms are the true active sites for the hydrogenation
reaction, and the interaction between Pd atoms and Au atoms on bimetallic Pd−Au/PANI-CNT is
beneficial to enhance the catalytic performance through changing the electronic properties of the
formed bimetallic Pd−Au nanoparticles. In the work, a variety of aliphatic secondary amines showed
excellent reactivity and gave high yield (67.2–98.3%). The aliphatic primary amines afforded a lower
yield (up to 62.2%), and the tert-butylamine nearly performed no reactivity (trace product). Meanwhile,
aniline was also not suitable under the reaction condition (0.1% yield).

Recently, a Pd nanoparticle (average size <2.0 nm) catalyst supported on N-doped carbons (NCs)
was prepared by Liu group and applied for effective N-formylation of amines with CO2 and H2 in
ethanol [149]. The investigation revealed that the interaction between the Pd nanoparticles and nitrogen
in the NC support was responsible for the good performance of the catalyst. The catalyst was reused
for three times, and the product yield decreased (from 93% to 81%). TEM observations indicated
the reason may be the aggregation of Pd nanoparticle (from 2 to 3.5 nm) under the experimental
conditions. In addition, a serial of aliphatic primary and secondary amines showed good reactivity and
afforded the target products in high yields (51–99%). However, the aromatic amines such as aniline and
N-methylaniline gave the corresponding products in low yield (11%, 11%) under the same conditions.

4. Summary and Outlook

In conclusion, C-N bond formation reaction through CO2 as C1 source represents a big stride
forward for the development of sustainable and green chemistry. In this work, we have summarized
recent the advances of CO2 conversion to valuable chemicals from various N-contained substrates
through metal or organocatalysis strategies. C-N bond formation has been achieved involving direct
carboxylation/cyclization of CO2 with various N-contained substrates (such as propargyl amines,
amino alcohols, allylic amines, allenic amines, etc.), sequential carboxylation and cyclization of
propargyl alcohols, amines and CO2, as well as N-methylation/N-formylation of amine via CO2

hydrogenation. Among them, from the availability and the economic viability viewpoint, the
multi-component cascade reaction of amines, CO2 and other nucleophilic candidates is especially
receiving increased attention in recent years. Beside the advantages such as the thermodynamically
favourable procedure, nontoxic and easily accessible material, the cascade approach was accomplished
under mild reaction conditions with high efficiency. The insights on CO2 conversion through C-N
bond formation reactions would be beneficial for the exploration of new strategies and directions on
effective incorporation of CO2 into high value-added products.
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Gratifyingly, encouraging advances on the development of novel strategies to construct organic
molecules through C-N bond formation have been made, however, many problems and challenges
still remain. Firstly, in most transformations involving CO2 conversion, the catalytic performance in
transition metal systems is much better than that of organocatalysis strategies. Generally, the metal
complexes easily forming active sites are more beneficial for activating the substrates such as alkene,
alkyne and H2, etc. As a result, the catalytic efficiency and selectivity show much higher values,
together with the lower catalytic loading, faster reaction rates, shorter times, and lower pressures and
temperatures. Despite the superiority of metal complexes, their preparation processes are stricter (they
are generally sensitive to water and air) and their stability is lower than that of organocatalysts. Also,
the catalytic ability of organocatalysts has improved greatly. In addition, almost all of the metal-based
catalysts were focused on the transition metals. Accordingly, the number of examples exploring main
group metal-catalyzed transformations of CO2 is inadequate. Secondarily, the model products could
be generally obtained in excellent yield and selectivity, but the examples of products being directly
used as functional target molecules for medicines, natural products, or bioactive polymers, etc. are
limited. Thus, the compatibility of catalytic methods in larger molecules bearing with much more
complicated functional groups needs more exploration. Furthermore, for CO2 hydrogenation with
amines, high yields and selectivities are achieved much easier using hydrosilanes than H2 as hydrogen
source. However, the use of hydrosilanes will be lead to a large amount of siloxane by-products.
Therefore, from the point of view of sustainable chemistry, the development of benign H2 process
would have great significance and the exploration of robust methods for selective and effective catalysis
is also essential despite being challenging. Besides, the efficiency of the noble transition metal-based
homogenous schemes and metallic oxide-based heterogeneous catalytic systems must be further
improved. Last but not least, it is challenging and imperative to discover more available methods and
routes to transform CO2 into valuable chemicals with C-N bonds.
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