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Characterization of pyruvate metabolism 
and citric acid cycle patterns predicts response 
to immunotherapeutic and ferroptosis in gastric 
cancer
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Sufeng Chen2, Fangchun Shao4*, Jiyun Yang1* and Yanchun Li5* 

Abstract 

Background: Gastric cancer is one of the most common malignancies of the digestive system with a high lethal 
rate. Studies have shown that inherited and acquired mutations in pyruvate metabolism and citric acid cycle (P-CA) 
enzymes are involved in tumorigenesis and tumor development. However, it is unclear how different P-CA patterns 
affect the tumor microenvironment (TME), which is critical for cancer progression.

Methods: This study mainly concentrated on investigating the role of the P-CA patterns in multicellular immune 
cell infiltration of GC TME. First, the expression levels of P-CA regulators were profiled in GC samples from The Can-
cer Genome Atlas and Gene Expression Omnibus cohorts to construct a consensus clustering analysis and identify 
three distinct P-CA clusters. GSVA was conducted to reveal the different biological processes in three P-CA clusters. 
Subsequently, 1127 cluster-related differentially expressed genes were identified, and prognostic-related genes were 
screened using univariate Cox regression analysis. A scoring system was then set up to quantify the P-CA gene signa-
ture and further evaluate the response of the patients to the immunotherapy.

Results: We found that GC patients in the high P-CA score group had a higher tumor mutational burden, higher 
microsatellite instability, and better prognosis. The opposite was observed in the low P-CA score group. Interestingly, 
we demonstrated P-CA gene cluster could predict the sensitivity to immunotherapy and ferroptosis-induced therapy.
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Introduction
Gastric cancer (GC) originates from the mucosal epi-
thelium of the stomach. A higher incidence has been 
reported in people aged > 50 years, the ratio of men to 
women is about 2:1 [1, 2]. In response to changes in diet 
structure, work stress, and chronic infection with Helico-
bacter pylori, the incidence of GC is increasing and has 
shown a younger trend in recent years [3, 4]. Despite 
substantial improvements in its diagnosis and treatment, 
including curative surgical resection and adjuvant ther-
apy, outcomes of GC remain poor, and the overall sur-
vival is less than 40% [5–8]. Therefore, in order to achieve 
greater efficacy and improve the prognosis for GC 
patients, we developed a prognostic model through the 
identification of novel P-CA patterns to provide insights 
into personalized treatment for GC patients.

Pyruvate metabolism and the citric acid cycle (P-CA) 
are regarded as fundamental units for generating energy 
and biosynthetic precursors during cell growth and pro-
liferation. Upon uptaken into cells, glucose is initially 
converted into pyruvate in the cytoplasm, and the full 
oxidation of glucose occurs in the mitochondria through 
the citric acid cycle under aerobic conditions [9]. Unlike 
aerobic metabolism, pyruvate is metabolized to lactate 
in the cytoplasm under anaerobic conditions [10]. Nota-
bly, cancer cells tend to metabolize glucose to lactate in 
aerobic environments, which is known as the “Warburg 
effect” [11], allowing for enhanced glucose uptake and 
utilization by tumor cells. Research showed that muta-
tions in the citric acid cycle enzymes contribute to the 
dysregulation of metabolites and are associated with 
oncogenesis [12]. Isocitrate dehydrogenase (IDH) is a 
key member of metabolic enzymes involved in the oxida-
tive decarboxylation of isocitrate to α-ketoglutaric acid 
(α-KG) and the reduction of NADH to NADPH [13]. 
Mutations or aberrant expressions of IDH have been 
documented in numerous types of cancers [14–16]. Suc-
cinate dehydrogenase (SDH) is an enzyme localized in 
the mitochondria that plays a catalytic role in the oxida-
tion of succinate, which subsequently produces fumarate. 
It also functions as a tumor suppressor by reducing suc-
cinate and inactivating hypoxia-inducible factor 1α [17]. 
Mutations in SDH can act as promoting factors for the 
occurrence and development of diseases, including tum-
origenesis and genomic instability [18]. A previous study 

reported that miR-422a modulates the metabolism and 
malignancy of GC cells by targeting pyruvate dehydroge-
nase kinase 2 [19]. In addition, the accumulated interme-
diate products of P-CA contribute to cancer progression 
by activating or inhibiting specific signaling pathways, 
thereby influencing metabolic pathways [12].

Tumors are highly heterogeneous tissues surrounded 
by the tumor microenvironment (TME), which is sub-
stantially different from a healthy microenvironment, 
including metabolism, biosynthetic processes, and phys-
ical-chemical environment [20]. Immunotherapy is an 
emerging and representative therapeutic modality for 
cancer treatment [21, 22]. The types of immunotherapy 
include immune checkpoint blockade (ICB) antibody or 
immune checkpoint inhibitor (ICI) treatment, chimeric 
antigen receptor T-cell therapy, and cancer vaccines 
[22], among which, immunotherapy targeting immune 
checkpoints have achieved significant benefits in a wide 
variety of malignancies [23]. The response of tumor 
cells to immunotherapy agents and patient survival rate 
are tightly linked to the TME [24]. As reported, tumor-
derived lactate strongly inhibits the proliferation of natu-
ral killer (NK) cells and T lymphocytes and limits their 
anticancer immunity [25, 26]. Interactions between the 
TME and tumor cells are derived in part from diffusible 
metabolites [27]. Targeting metabolic pathways in can-
cer cells might pave pathways for a breakthrough in anti-
cancer treatment in the future. Therefore, it is crucial to 
understand the type of tumor-infiltrating immune cells 
influenced by P-CA patterns for cancer therapy.

In this study, three gene clusters were proposed in 
GC patients depending on the different expression lev-
els of P-CA-related genes. A scoring system was then 
set up to quantify the P-CA pattern and further evalu-
ate the response of the patients to immunotherapy. It 
was elucidated that P-CA acts as a vital player in the 
development of GC via regulating the TME and can be 
a parameter to increase the predictability of the response 
to immunotherapy.

Materials and methods
Gastric cancer dataset acquisition and preprocessing
Processed FPKM gene expression data, genome muta-
tion data, and clinicopathologic information of 375 gas-
tric cancer patients and 32 normal control were obtained 

Conclusion: Collectively, the P-CA gene signature in this study exhibits potential roles in the tumor microenviron-
ment and predicts the response to immunotherapeutic. The identification of these P-CA patterns may significantly 
accelerate the strategic development of immunotherapy for GC.
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from The Cancer Genome Atlas (TCGA, available online: 
https:// portal. gdc. cancer. gov/). The data set GSE84437 
(433 tumor samples) were derived from Gene Expres-
sion Omnibus (GEO, available online: https:// www. ncbi. 
nlm. nih. gov/ geo/). Patients without prognostic informa-
tion were excluded from the study. Before data analysis, 
the RNA-Seq FPKM expression values were transformed 
into transcripts per kilobase million (TPM) values using 
R software.

Consensus clustering of P‑CA
49 genes in P-CA were acquired. Independent prognos-
tic genes were obtained after performing univariate Cox 
regression analyses. The identification of P-CA clus-
ters was conducted with unsupervised cluster analysis 
through the R package “ConsensusClusterPlus” on basis 
of the expression profiles of these genes.

Evaluation of the relationship between clinical 
characteristics and different P‑CA clusters
To determine the relationships between P-CA clus-
ters and clinical phenotypes, clinical information of GC 
including age, sex, TNM stage, and survival status were 
summarized for analyses of the association with P-CA 
clusters, the result was visualized in a heatmap. Kaplan 
Meier curves were used to determine survival prognostic 
differences in GC among the three clusters with the “sur-
vival” and “survminer” R packages.

Gene set variation analysis and gene enrichment function 
annotation
GSVA, a nonparametric, unsupervised method for calcu-
lating gene set enrichment through expression profiles, 
was performed to disclose the difference in the activities 
of P-CA clusters in biological processes. The gene ontol-
ogy (GO) function annotations of genes were analyzed 
using the“clusterProfiler” package.

Immune cell difference analysis
Single sample Gene Set Enrichment Analysis (ssGSEA) 
was performed to quantify the immune cell infiltration 
levels, including activated  CD8+ T cells, activated den-
dritic cells, giant natural killer T cells, and regulatory T 
cells. Adjusted p-value < 0.05 was considered statistically 
significant.

Construction of a P‑CA‑related prognostic model
Limma package was utilized to survey the common dif-
ferentially expressed genes (DEGs) among three  P-CA 
clusters. Gene expression was quantified by Transcript 
per Million (TPM). The intersecting DEGs of the three 

clusters were obtained for model construction. The gene 
function annotation and identification of correspond-
ing enriched pathways were performed using the GO 
and KEGG database based on P-CA-related DEGs with 
the “clusterProfifiler” package in R and under the condi-
tion FDR < 0.01. Principal component analysis based on 
selected genes was carried out to verify the ability to dif-
ferentiate clusters. Furthermore, DEGs were analyzed by 
univariate Cox regression analysis to filtrate the genes 
related to prognosis and served as input for model train-
ing. A scoring system noted as “Pyruvate metabolism 
and Citric Acid cycle score” (P-CA score) was estab-
lished based on principal component analysis to quan-
tify the P-CA pattern of individual GC patients. Patients 
were then alternatively separated into two groups (the 
high-score group or low-score group) by the maximally 
selected rank statistics.

Correlation between the P‑CA score and immune‑related 
functions
Group comparisons of P-CA score were performed using 
a series of analyses, including Kaplan–Meier curves 
analysis (log-rank tests, p < 0.001) to investigate the prog-
nostic value of P-CA score. Meanwhile, stratification 
analyses on tumor mutation burden were subsequently 
conducted to assess the predictive ability of the score 
model. In addition, ssGSEA was used to determine the 
abundances of immune cell infiltration and Wilcoxon 
ranked-sum test was used to compare the differential 
expression of immune checkpoints including PD1, and 
PDL1 between the two P-CA score groups. Furthermore, 
the association between the P-CA score and the status of 
microsatellite instability was also evaluated through cor-
relation analysis.

Hub genes expression datasets
The validation datasets (GSE27342) were downloaded 
from the GEO database (http:// www. ncbi. nlm. nih. gov/ 
geo/) for further validation. In addition, The gene expres-
sion data for GC and the paired adjacent non-cancerous 
tissues were obtained from The Human Protein Atlas 
database (HPA, https:// www. prote inatl as. org/), and the 
corresponding immunohistochemistry pictures were 
taken to show the expression of the target proteins.

Cell culture
Human gastric cancer cells, BGC823, were preserved and 
passaged in our laboratory and cultured using DMEM 
medium (Hyclone, Logan, UT, USA) supplemented with 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
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10% fetal bovine serum (Gibco, Grand Island, NY, USA), 
penicillin (100 U/mL) and streptomycin (100  µg/mL, 
Solarbio, China). The plates were placed in a  CO2 incuba-
tor in which the gas composition was 95 vol% air and 5 
vol%  CO2.

CCK8 assay
Cell viability evaluation was executed by the CCK8 
experiment. Cells were seeded in 96-well culture plates 
(Nest, Biotechnology) at a density of 2 ×  104 cells /well. A 
series of agents including C968 (an allosteric inhibitor of 
glutamine oxidation pathway), Complex I inhibitor rote-
none (Rot), Complex II inhibitor diethyl butylmalonate 
(DBM), Complex III inhibitor antimycin A (Anti A), and 
Complex IV inhibitor NaN3 were used in subsequent 
experiments. A dose of 10µM C968, 10 µM Rot, 2mM 
DBM, 2.5 µM Anti A, and 15mM NaN3 was admin-
istered in combination with erastin to cells for 36  h at 
37  °C. Then the supernatant was replaced with CCK8-
containing medium for additional 2 h and assayed for cell 
viability by measuring the absorbance at 450  nm. Each 
experiment was repeated three times.

Fluorescent probes staining
BGC823 cells (700,000 per well) were plated in 6-well 
plates with indicated treatments. The culture solution 
was discarded, and replenished with culture medium 
containing 4 µM BODIPY, a fluorescent probe used for 
detecting the level of cellular lipid peroxides, and incu-
bated for 30  min again. Cells were washed three times 
with PBS to remove excess BODIPY and subsequently 
viewed and captured under a confocal microscope.

Statistical analysis
Correlation coefficients between the TME infiltrating 
immune cells and the expression level of P-CA regula-
tors were calculated using the spearman and differential 
expression analyses. Difference comparisons in these 
groups were performed by one-way analysis of variance 
(ANOVA) and Kruskal-Wallis test. To obtain the opti-
mum cutoff point for each dataset set according to the 
relationship between patient survival and P-CA score, 
the “survminer” R package was carried out. We dichoto-
mized the P-CA scores as low or high by the maximally 
selected rank statistics. Chi-square tests were used to 
evaluate the relationships between the P-CA score and 
the clinical characteristics. The prognostic analysis was 
implemented using the log-rank test and Kaplan–Meier 
curves to generate survival curves. Univariate regression 
analyses were subjected to calculate the hazard ratios 
(HR) for P-CA regulators and P-CA subtype-related 
genes. All statistical analyses were performed with R ver-
sion 4.1.0.

Results
The genetic variation landscape of P‑CA regulatory factors 
in gastric cancer
We firstly identified 49 P-CA regulators in gastric can-
cer, and the variations in genetic and transcriptomic 
were investigated. Among the samples downloaded from 
TCGA-GC mutation dataset, 24.25% carried mutations 
of 49 P-CA regulatory factors. Among the 49 genes, we 
observed that DLAT exhibited the highest mutation fre-
quency in GC samples. Following this, a slightly lower 
mutation frequency was found in ACO2, SDHA, PDPR, 
OGDH, NNT, PPARD, RXRA, LDHA, and SLC16A1, 
in contrast, there were no mutations in IDH2, SDHC, 
MPC1, L2HGDH, CS, IDH3A, IDH3B, MDH2, SDHD, 
SUCLG1, PDP1, LDHC, and MPC2 (Fig.  1A). For that 
DLAT had the highest mutation rate, patients were sepa-
rated into DLAT wild-type group and DLAT mutation 
group. As shown in Additional file  1: Fig. S1, we found 
that SLC16A1, FH, SDHB, PDHB, PDK1, L2HGDH, CS, 
and SDHD expression was higher in the DLAT muta-
tion group (Additional file  1: Fig. S1A), whereas the 
expression level of PDK4 was increased in DLAT wild-
type group (Additional file 1: Fig. S1B). The results ten-
tatively proved the functionality of DLAT in regulating 
P-CA gene expression in gastric cancer. Copy number 
profiling showed that there were 48 of these genes exhib-
ited copy number variation (CNV). For IDHA2, RXRA, 
SDHA, NNT, SDHC, PDK4, SLC16A3, PDK2, PDP1, 
PDHX, FH, IDH3G, IDH3A, MPC2, and CS, their most 
prevalent status were copy number gain, for SDHB, 
SLC16A1, D2HGDH, DLST, LDHAL6B, DLAT, SDHD, 
and PDHB, the most prevalent status were copy num-
ber loss (Fig. 1B). The chromosome position of the CNV 
mutation of the P-CA regulatory factors were indicated 
on the circle diagram (Fig. 1C). We conducted an addi-
tional analysis to reveal the difference in gene expression 
of P-CA regulators between normal and tumor samples. 
Compared with normal tissues, the majority of P-CA 
modulators were significantly upregulated in GC tissues, 
regardless of CNV gains or CNV losses (Fig. 1D), indicat-
ing that CNV mutations may not be a unique factor in 
the regulation of P-CA-related genes expression.

Identification of distinct P‑CA clusters based on P‑CA 
regulators
To identify potential molecular subtypes of GC, the GC 
patients were classified into different clusters by consen-
sus clustering (k = 2–9) using the “ConsensusClusterPlus” 
package according to the expression levels of P-CA regu-
latory factors. The result was visualized in a consensus 
matrix heatmap (Fig. 2A) when k = 3, the consensus matrix 
showed the cleanest separation between clusters (Fig. 2B). 
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Then, the three clusters with significantly different clini-
cal outcomes and gene expression patterns were termed 
cluster A, cluster B, and cluster C. In cluster C, a substan-
tial portion of the P-CA genes was highly expressed, and 

in contrast, the majority of these genes were expressed at 
low levels in cluster B (Fig. 2C). In addition, Kaplan–Meier 
survival curves showed a significant survival difference 
among the different clusters (Fig. 2D).

Fig. 1  Genetic and expression changes of the P-CA regulators in gastric cancer. A Mutation frequency of the P-CA regulators of gastric cancer 
patients in the TCGA cohort. B The CNV alteration frequency of each gene was obtained by statistical analysis of the copy number of P-CA 
regulators. The abscissa and the ordinate represent the P-CA-related gene and the mutation frequency, respectively. Red indicates an increase 
in copy number, and green indicates loss of copy number. C This circle diagram displayed the alterations sites of P-CA-related genes CNV on 23 
chromosomes. D Boxplot shows the expression of P-CA regulators between tumor and normal tissues in the TCGA-GC cohort. (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, p-value < 0.05 were considered statistically significant). TCGA, The Cancer Genome Atlas; CNV, copy number variation

Fig. 2 P-CA patterns and the clinicopathological characteristics of each pattern. A The consensus matrix heatmap revealed three clusters (k = 3) 
and their corresponding region. B Different curves correspond to given different values of K. C Heat map showing the expression patterns of 49 
P-CA regulator genes with different clinicopathologic characteristics in the TCGA-GC and GSE84437 cohort. D Kaplan–Meier curves of the gastric 
cancer patients based on P-CA clusters. CDF, cumulative distribution function

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Characteristics of TME cell infiltration and biological 
behavior under different P‑CA clusters
We further investigated whether biological behaviors dif-
fered in different P-CA clusters by the GSVA enrichment 
analysis. As shown in Fig.  3A, cluster A was predomi-
nantly enriched in the pathway of signal transduction and 
organismal systems, such as the mTOR signaling pathway 
and vascular smooth muscle contraction. While cluster B 
was markedly activated in pathways of DNA metabolism 
processes (transcription, DNA replication, and repair) 
and metabolism, including spliceosome, nucleotide exci-
sion repair, DNA replication, base excision repair, pen-
tose phosphate pathway, steroid biosynthesis, one carbon 
pool by folate, and so on. Cluster C exhibited a similar 
trend to cluster B, but it was more enriched in DNA 
metabolism processes pathways (Fig. 3B and C).

Next, we sought to understand whether the P-CA regu-
lators had an impact on GC TME, so the ssGSEA enrich-
ment analysis was conducted to characterize the cell 
infiltration landscape among three clusters. We noticed 
that P-CA cluster A has a higher degree of immune cell 
populations including activated B cell, eosinophil, imma-
ture B cell, myeloid-derived suppressor cell (MDSC), 
mast cell, natural killer cell, plasmacytoid dendritic cell, 
T follicular helper cell, and T helper cell type 1 infiltra-
tion than the two other clusters. Cluster B demonstrated 
a higher level of CD56 bright natural killer cell and CD56 
dim natural killer cell infiltration. Cluster C was highly 
infiltrated with CD4 + T cells and neutrophils (Fig. 4A). 
Previous research declared that TME can be divided into 
three distinct immune subtypes according to the differ-
ent degrees of infiltration of immune cells and stromal 
cell [28]. In the present study, P-CA cluster A was char-
acterized by abundant infiltrating cells and MDSCs along 
with mTOR signaling pathway activation, which can be 
perceived as the immune-excluded phenotype. High 
infiltration of  CD4+ T cells and high DNA damage repair 
were observed in P-CA cluster C, which was referred to 
as the inflamed phenotype.

Principal component analysis indicated that the three 
clusters can be discriminated well by the expression of 
P-CA regulators (Fig. 4B). 1127 overlapping DEGs among 
the three clusters were selected according to the pairwise 
comparisons to further unearth the underlying biological 
characteristics of each P-CA cluster (Fig. 4C). To further 
understand the relevant biological functions of the iden-
tified P-CA cluster-related DEGs, functional enrichment 
was performed. For the biological processes, the P-CA 
cluster-related DEGs mainly participated in cell prolif-
eration processing such as organelle fission, chromosome 
segregation, mitotic nuclear division, nuclear division. 
For the cellular component, genes were mainly enriched 
in the chromosomal region, mitochondrial matrix, 

spindle, chromosome centromeric region. Furthermore, 
ATPase activity, catalytic activity acting on DNA and 
RNA were the principally enriched terms in molecular 
function (Fig. 4D). Simultaneously, KEGG signaling path-
way enrichment analysis was performed to confirm the 
association of the P-CA cluster-related DEGs with sign-
aling pathways, As shown in Fig.  4E, these genes were 
major involved in cell cycle, carbon metabolism, spliceo-
some, and DNA replication. Taken together, the results 
suggested that there is an association between P-CA clus-
ter-related DEGs and cell division and proliferation.

Construction of P‑CA‑related gene signature
To construct a more accurate gene signature with prog-
nostic significance, the 1127 DEGs were subjected to 
univariate Cox regression analysis, and prognosis-related 
genes were subsequently used for further analysis. Clus-
tering results showed a conspicuous difference among 
the three gene clusters when k = 3 (Additional file 2: Fig. 
S2). A heat map was drawn from differential genes among 
different gene clusters, which allowed for quick visuali-
zation of the clinicopathological differences across gene 
clusters (Fig.  5A). These prognostic-related genes were 
the most highly expressed in gene cluster II and showed 
low expression in gene cluster III. Next, a Kaplan-Meier 
survival analysis was performed to investigate whether 
there were significant differences in the survival out-
come among the three gene clusters. As shown, patients 
in gene cluster II had the best survival prognosis, while 
gene cluster III had the worst one (Fig. 5B). In addition, 
we observed significant differences in the expression of 
P-CA regulators among the three gene clusters (Fig. 5C). 
Considering the individual differences and complexity of 
P-CA, a scoring system was developed based on P-CA-
related gene expression to quantify the P-CA pattern 
in GC patients. Patients were stratified into two groups 
according to low or high P-CA scores using the median 
value. The alluvial diagram elaborated the survival out-
comes of the patients in the high and low P-CA score 
groups from different P-CA clusters and gene clusters. 
It’s clear that most of the patients in P-CA cluster C lean 
toward gene cluster II, whereas the majority of patients 
within gene cluster II flow to the high P-CA score group, 
which had a better prognosis (Fig.  5D). This was con-
sistent with the aforementioned results that patients in 
P-CA cluster C and gene cluster II had better survival 
outcomes. Survival analysis was conducted to identify 
the prognostic value of the P-CA score, and Kaplan-
Meier survival curves showed that for all GC samples, 
the high P-CA score group had better overall survival 
than the low P-CA score group (Fig.  5E). Furthermore, 
immune correlation analysis confirmed the positive asso-
ciation between  CD4+ T cells and P-CA score (Fig. 5F). 
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Fig. 3 GSVA analysis of different P-CA clusters. Highly enriched KEGG pathways in distinct P-CA clusters as identified in each comparison are 
visualized by a heat map. A P-CA cluster A vs. cluster B. B P-CA cluster B vs. cluster C. C P-CA cluster A vs. cluster C. GSVA, gene set variation analysis; 
KEGG, Kyoto Encyclopedia of Genes and Genomes
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Fig. 4 TME immune cell infiltration and transcriptome characterization in three P-CA clusters. A Assessing the abundance of infiltrated immune 
cells among three distinct P-CA clusters. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant, and p-value < 0.05 was considered statistically 
significant. B Scatter plot of transcriptome features via Principal component analysis. C Venn plots show the number of unique and shared DEGs 
from different comparisons among three P-CA clusters. D GO enrichment analysis of the overlapping DEGs among distinct P-CA clusters. The length 
and color depth of the bar stands for the number of genes enriched and the q-value of each GO term, respectively. E KEGG pathway enrichment 
analysis of overlapping genes. TME, tumor microenvironment; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes



Page 10 of 20Wang et al. Cancer Cell International          (2022) 22:317 

Differences in the P-CA score were compared among the 
three P-CA clusters and gene clusters, and the results 
showed that P-CA cluster C and gene cluster II exhibited 
the highest scores, respectively (Fig.  5G and H), which 
provided good evidence to prove the high accuracy of the 
P-CA scoring system for survival prognosis judgment.

Tumor somatic mutation and immune functions in distinct 
P‑CA‑score groups
Tumor mutational burden (TMB) is associated with 
the efficacy of immunotherapy [29, 30]. Thus, corre-
lation analysis was conducted to assess the associa-
tions between P-CA scores and TMB, which indicated 
that P-CA scores were positively correlated with TMB 
(Fig.  6A, B). Simultaneously, survival analysis of TMB 
revealed that the high TMB group indicated a better 
prognosis for patients (Fig. 6C). Importantly, the survival 
curves with the integration of TMB and P-CA scores 
showed that patients in group with high TMB and the 
high P-CA score showed the best outcomes (Fig. 6D). In 
addition, the differences in somatic-mutation frequencies 
between the high and low P-CA groups in GC patients 
were explored, which demonstrated a higher mutation 
frequency (96.27%) in the high P-CA group than that in 
the P-CA-low group (81.59%). The top five mutated genes 
were TTN, TP53, MUC16, ARID1A, and LRP1B in both 
groups (Fig. 6E and F).

Researchers have suggested that alterations in tumor 
metabolism facilitated the accumulation of acidic metab-
olites in the TME and promoted tumor cells to escape 
immune surveillance [31]. Therefore, we contemplated 
whether the P-CA score affected immune infiltrates. 
Results showed that the distribution of immune cells was 
different between the two P-CA score groups. The infil-
tration density of activated  CD4+ memory T cells, folli-
cular helper T cells, resting NK cells, M0 macrophages, 
and pro-inflammatory macrophages (M1) were higher in 
the high P-CA group, whereas the abundance of naive B 
cells, T cells CD4 memory resting, and mast cells were 
elevated in the P-CA-low group (Fig.  7A and B). The 
immune-related functions  in high and low P-CA score 
groups was recorded in Fig.  7C, and remarkable differ-
ences were observed between the two groups in naive 
B cells, memory B cells, memory resting  CD4+ T cells, 
activated CD4 memory T cells, follicular helper T cells, 

regulatory T cells (Tregs), resting NK cells, activated NK 
cells, Monocytes, M0 Macrophages, M1 Macrophages, 
resting dendritic cells, and resting mast cells. The P-CA 
pattern correlated with the mutation landscape, as well 
as distinguished TME immune cell infiltration. Currently, 
immune checkpoint blockade therapies, such as anti-
programmed cell death protein 1 (PD1) immunotherapy, 
have demonstrated considerable clinical benefits in can-
cer immunotherapy [32]. Programmed cell death protein 
1 (PD1) and programmed death-ligand 1 (PD-L1) were 
measured as important biomarkers for immune check-
point immunotherapy. Interestingly, we found that the 
expression levels of PD1 and PD-L1 were elevated in the 
high P-CA group and positively correlated with the P-CA 
score (Fig. 7D–G). These findings indicated that patients 
with GC in the high P-CA score group may benefit more 
from immunotherapy.

Immune subtypes and immunotherapy analysis
Previously, Thorsson et  al. proposed four immune sub-
types according to the relative abundance of different 
subpopulations of immune cells: C1 (wound healing), C2 
(interferon-gamma [IFN-γ] dominant), C3 (inflamma-
tory), and C4 (lymphocyte depleted), and the immune 
subtypes C2 had a high proliferation rate and is highly 
correlated with mutated gastric cancer [33]. In the pre-
sent study, GC patients were classified into different 
immune subtype clusters (C1, C2, C3, and C4). Whether 
in the high or low P-CA score group, the immune sub-
type C2 had the largest number of GC patients (Fig. 8A). 
To investigate the potential role of ICI therapy repre-
sented by the CTLA-4/PD-1 inhibitor in the high P-CA 
and low-P-CA score groups, the immunotherapy scores 
were analyzed. Differential analysis indicated that the 
P-CA score had a predictive value for the efficacy of 
CTLA-4 immunotherapy (Fig. 8B–E).

MSI analysis
The survival analysis found that P-CA score was closely 
related to the survival status, 51% of GC patients showed 
alive status in the low P-CA group, while 62% of patients 
were alive in the high P-CA group. This analysis illustrated 
that patients with high P-CA scores were more likely to be 
alive (Fig. 9A, B). Stratification analysis using tumor staging 
revealed that there was a tendency for favorable outcomes 

(See figure on next page.)
Fig. 5 Feature selection and signature construction process. A Heatmap for the relationship of clinicopathologic characteristics with P-CA gene 
clusters. B Kaplan-Meier survival curves reveal the significant difference in prognosis advantage among three distinct P-CA gene clusters (log-rank 
tests, p-value < 0.001). C The difference in the expression of P-CA-related genes among three distinct P-CA gene clusters. D Alluvial diagram showing 
the relations of P-CA cluster, gene cluster, risk group, and status. E Kaplan–Meier curves revealed that the P-CA score was markedly related to the 
overall survival of patients with gastric cancer (log-rank tests, p-value < 0.001). F Correlation between P-CA score and multiple immune infiltrating 
cells. A negative correlation is marked with blue and a positive correlation is marked with red. * was considered statistically significant. G Differential 
expression analysis of the P-CA score in the P-CA cluster. H Difference analysis of the P-CA score in the gene cluster
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in patients with high P-CA scores than those with low 
P-CA scores in T3–T4 stages (Fig. 9D). Although the dif-
ference was not statistically significant in T1–T2 stages, 
longer survival was observed in the high P-CA score group 
(p = 0.154) (Fig.  9C). A deficiency in mismatch repair 
(MMR) genes leads to microsatellite instability (MSI), 
which is classified into MSI-high (MSI-H), MSI-low (MSI-
L), and microsatellite stable (MSS) [34]. Considering the 
greater sensitivity to immunotherapy demonstrated in 
patients with MSI-H status [35], the relationship between 
MSI status and the P-CA score was assessed. Most patients 
with high P-CA scores had MSI-H status (Fig. 9E and F), 
demonstrating the advantage of immunotherapy in the 
high P-CA score group.

Cells administrated with P‑CA inhibitors resistant 
to ferroptotic cell death
Ferroptosis represents a new programmed cell death 
that is distinct from apoptosis and necrosis [36, 37]. Our 
recent studies demonstrated that metabolic reprogram-
ming toward glutaminolysis to fuel the mitochondrial ETC 
results in oxidative stress, thus predisposing cancer cells 
to an increased risk of ferroptotic cell death [38]. Hence, 
achieving ferroptosis via ferroptosis-inducing drugs is 
emerging as a new alternative therapy modality [39–42]. 
In the current study, heatmaps of ferroptosis inducers 
expression among P-CA subtypes and gene clusters were 
presented. These genes in P-CA cluster C and gene clus-
ter II exhibited their highest expression levels (Additional 
file 3: Fig. S3A and B). Additionally, the boxplots in Addi-
tional file 3: Fig. S3C showed that ferroptosis-related genes 
were most highly expressed in gene cluster II. Therefore, 
we can extrapolate that the expression of ferroptosis-
inducer genes was positively correlated with the expression 
of P-CA-related genes. Additionally, we wonder whether 
the P-CA cluster model could predict the sensitivity to fer-
roptosis induced therapy. To verify the above conjecture, 
series of mitochondrial metabolism inhibitors were used in 
subsequent experiments for the blockade of energy metab-
olism. As observed from Fig. 10A, cell viability was rescued 
in BGC823 cells treated with combination therapy along 
with the addition of mitochondrial respiration inhibitors, 
compared with erastin alone. Lipid ROS, which serves as 
a potent ferroptosis marker, was also examined. Similarly, 
accumulated lipid ROS declined in the combination treat-
ment group (Fig.  10B and C). These experimental results 
indicated that ferroptotic cell death induced by erastin can 
be blocked by inhibiting P-CA.

Hub gene validation
In order to further verify differentially expressed hub genes 
between GC and normal tissues, we download GEO data-
sets for validation. The results showed that the expres-
sion levels of LDHA, CS, IDH3G were significantly higher 
in cancer tissues than those in normal tissues (Additional 
file 4: Fig. S4A–C). Immunohistochemical staining results 
for IDH3G that mined from the HPA further confirmed its 
high expression in GC tumor tissues (Additional file 4: Fig. 
S4D).

Discussion
Metabolic reprogramming is a ubiquitous trait of cancer 
[43], which allows tumor cells to adapt to a tremendous 
crisis [44]. The primary metabolic processes modified by 
tumor metabolic reshaping are glycolysis and the citric acid 
cycle [45]. Accumulation of intermediate metabolites of the 
citric acid cycle appears in many types of tumor cells [46], 
including GC [47, 48]. Increasing evidence has demon-
strated the functional role of the accumulated intermedi-
ates of P-CA metabolism in cancer progression. However, 
such metabolites exert antitumor activity under certain 
conditions because of their cytotoxicity [12], and applying 
these findings to clinical diagnosis and treatment may have 
positive effects. The TME is a sophisticated system with 
different cell types here, including smooth muscle cells, 
fibroblasts of various phenotypes, granulocytes, myofibro-
blasts, and immune cells [49]. The interaction among cells 
in the TME provides a conducive habitat for the survival 
of tumor cells. The TME can be acidified by high lactate 
accumulation induced by the enhanced anaerobic glyco-
lytic activity of the tumor, which is considered to actively 
contribute to tumor immune escape [50]. However, to date, 
there has been no relevant systematic review on how P-CA 
alteration impacts TME cell infiltration characteristics in 
GC and its impact on prognosis. Therefore, the aim of the 
present study was to develop a P-CA-based scoring sys-
tem for assessing the effect of P-CA patterns on TME cell 
infiltration in patients with GC to develop more effective 
immunotherapeutic strategies.

First, the differential expression of P-CA regulators 
between normal controls and GC patients was revealed 
by comprehensively analyzing the multi-omics data of 
P-CA regulators. Subsequently, three P-CA clusters 
were established with distinct clinical features and 
immune infiltration, based on the expression pro-
files of 49 P-CA regulators. Currently, three distinct 
immune subtypes were reported: immune-desert, 

Fig. 6 Tumor somatic mutation landscape of GC patients. A Dot plots of correlations between P-CA score and TMB. B TMB difference between 
high and low P-CA score groups. C Kaplan-Meier survival curve showing the overall survival between the low or high TMB group (log-rank tests, 
p-value < 0.001). D Combined survival analysis of TMB with P-CA score (log-rank tests, p-value < 0.001). E, F The somatic mutation features in GC 
patients with high or low P-CA scores

(See figure on next page.)
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immune-excluded, and inflamed phenotypes [28]. 
In the present study, P-CA cluster A, with the worst 
prognosis, presented a TME highly infiltrated by 
immune cells, along with MDSCs and activation of 
the mTOR signaling pathway, which was in line with 
characteristics of the immune-excluded phenotype. 
Cluster C, with the best prognosis, was characterized 
by a high infiltration of CD4 + T cells and enrichment 
in genetic information processing pathways.  CD4+ T 
cells are associated with the production of IFN-γ and 
present tumor antigens to  CD8+ T cells. Thus cluster 
C matched the features of inflammatory phenotype. 
Immune checkpoint inhibitors are more effective in 
treating inflamed tumors than non-inflamed ones [28]. 
Therefore, the P-CA cluster was analyzed to improve 
understanding of the TME.

Cancer immunotherapy is currently a research hotspot 
and an important adjunct to traditional cancer therapies. 
Immune checkpoint blockade is a promising modality in 
clinical immunotherapy by activating the immune sys-
tem, such as PD-1/PD-L1 blockade and single-agent anti-
CTLA-4 [32]. Immunotherapeutic strategies have become 
popular in GC. However, not all patients can benefit from 
immunotherapy [51]. Therefore, there is an urgent need 
to identify molecular biomarkers for predicting treat-
ment benefits and risk stratification during GC treatment. 
Therefore, 1127 DEGs among the three P-CA clusters were 
identified and investigated in the subsequent Gene Ontol-
ogy (GO) enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis, which demonstrated that the P-CA-related genes were 
enriched mainly in the growth and proliferation of tumor 
cells. Furthermore, three P-CA-related gene clusters with 
different clinicopathological characteristics and TME fea-
tures were identified based on DEGs. To circumvent the 
impact of individual heterogeneity and specificity, a scor-
ing model was constructed to assess the P-CA pattern in 
individual patients with GC. P-CA cluster C and gene 
cluster-II had the highest P-CA scores and showed the best 
prognosis.

Mutations in tumor cells, which are considered to be 
non-self-epitopes, can produce neoantigens and improve 
the efficacy of immune checkpoint inhibitors [52]. A 
higher TMB suggests a likelihood of a better response to 
immunotherapy [52]. Furthermore, it has previously been 
demonstrated that tumors with microsatellite instabilit-
yare associated with a higher TMB, which would be more 

susceptible to the treatment of immunotherapy [35, 53, 
54]. Therefore, further investigations on the relationship 
between TMB, PD1/PD-L1 expression, and P-CA score 
were performed. The frequency of total gene mutations in 
the high P-CA score group was higher than that in the low 
P-CA score group. The P-CA score was strongly positively 
correlated with TMB and PD1/PD-L1 expression levels. In 
our subsequent analysis, the high P-CA score group with 
significantly higher mutation burdens, higher expression 
of PD1/PDL1, and microsatellite instability status had a 
favorable prognosis. These results indicated the effective 
prognostic value of the P-CA score.

Additionally, the P-CA score can also predict the effi-
cacy of the CTLA-4 immunotherapy. A high P-CA 
score presented high immune infiltration of  CD4+ T 
cells; these immune cells are instrumental for control-
ling immune function, including immune surveillance of 
tumor cells [55]. These results indicated that the P-CA 
score may influence the immunotherapy responses of GC 
cells, which was in agreement with the findings of previ-
ous studies.

Ferroptosis is a novel cell death manner, which has 
gradually become a promising adjuvant therapeutic 
measure in cancer treatment since its discovery [56]. Fer-
roptosis has also been described to be associated with 
sensitivity to immunotherapy. The mitochondrial elec-
tron transport chain and P-CA were responsible for ATP 
production and biosynthesis of amino and fatty acids. 
It was reported that P-CA and mitochondrial electron 
transport play indispensable roles in the execution of fer-
roptosis [57]. Hence, we sought to reveal whether P-CA 
pattern can predict the sensitivity of tumor cells to fer-
roptosis in GC. In this study, the expression of ferropto-
sis inducer genes was higher in P-CA cluster C and gene 
cluster II, in which highly expressed P-CA regulators 
were observed, as well. This recognition suggested that 
ferroptosis inducers may have high therapeutic indices 
for high-P-CA-score GC patients. Additionally, results 
from the experiment proved that inhibition of P-CA and 
blockade of electron transport could protect tumor cells 
against the onset of ferroptosis.

Collectively, this study provided insight into immune 
infiltration correlated with P-CA score, thereby predict-
ing the response of patients with GC to immunotherapy 
and ferroptosis-based therapy, simultaneously demon-
strating the predictive power of P-CA-related genes. The 
scoring system elucidated in this work could be used for 

(See figure on next page.)
Fig. 7 Immune function evaluation between the two P-CA score groups. A Immune infiltration status for low and high P-CA score groups. 
B, C The box plots show the comparison of immune cells’ abundance and immune-related functions between the two groups. D, E PD1 and 
PD-L1 expression levels in two distinct groups. F, G Correlations between P-CA score with PD-L1 expression or PD-1 expression. The * represents 
p-value < 0.05, ** represents p-value < 0.01, *** represents p-value < 0.001, and p-value < 0.05 was considered statistically significant
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Fig. 8 Immune subtypes and immunotherapy analysis of two different P-CA score groups. A Distribution of immune subtypes characteristics in 
GC patients with p-value of 0.001. Differential analysis for P-CA-high group and P-CA-low group in B CTLA-4 negative and PD-L1 negative therapy, 
C anti-PD-L1 immunotherapy, D anti-CTLA-4 immunotherapy, and E anti-PD-L1 combined with CTLA-4 immunotherapy. TCGA, The Cancer Genome 
Atlas



Page 17 of 20Wang et al. Cancer Cell International          (2022) 22:317  

Fig. 9 Prognostic value of P-CA score. A, B The relationship between survival status and P-CA score. C, D Stratified survival analysis of gastric cancer 
patients based on P-CA score in T1-2 cohorts and T3-4 cohorts. E The relationship between P-CA score and MSI. F Analysis of MSI status for gastric 
cancer patients stratified by P-CA score. MSS, microsatellite stability; MSI-L, microsatellite instability-low; MSI-H, microsatellite instability-high
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Fig. 10 P-CA inhibitors blocked erastin-induced ferroptosis. The BGC823 cells were exposed to erastin in the presence or absence of C968, 
Rotenone, DBM, Antimycin A, NaN3. then cell viability was measured by CCK8 assay (A), and intracellular lipid ROS labeled with BODIPY was 
detected by confocal laser microscopy (B, C).
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stratifying patients and provided direction for individual-
ized precise therapy.

Conclusion
In this study, the P-CA patterns were comprehensively 
assessed based on 49 P-CA regulatory genes. The differ-
ence in P-CA patterns may be a significant predictor in 
immunotherapy by analysis of the diversity and complex-
ity of TME. The higher P-CA score was associated with 
a better prognosis for GC patients. Additionally, patients 
with high P-CA scores were found to be more sensitive 
to ferroptosis inducers. This may have important implica-
tions for the understanding of TME infiltration charac-
teristics and lay a groundwork for guiding individualized 
precise therapy.
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