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Abstract
Background: In recent years, constrained optimization – usually referred to as flux balance
analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in
large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is
that it basically requires only knowledge of the stoichiometry of the network. On the other hand,
results of FBA are to a large degree hypothetical because the method relies on plausible but hardly
provable optimality principles that are thought to govern metabolic flux distributions.

Results: To augment the reliability of FBA-based flux calculations we propose an additional side
constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent
with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for
which plausible ranges can be inferred from experimental data. Computationally, our method
results in the solution of a mixed integer linear optimization problem with quadratic scoring
function. An optimal flux distribution together with a metabolite profile is determined which
assures thermodynamic realizability with minimal deviations of metabolite levels from their
expected values. We applied our novel approach to two exemplary metabolic networks of different
complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network
iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity
entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free
energy changes and metabolite concentration ranges. We demonstrate the usefulness of our
method for assessing critical concentrations of external metabolites preventing attainment of a
metabolic steady state.

Conclusion: Our method incorporates the thermodynamic link between flux directions and
metabolite concentrations into a practical computational algorithm. The weakness of conventional
FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome.
This enables the computation of reliable flux distributions even under extreme conditions of the
network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where
metabolite concentrations may be drastically altered.
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Background
Sequencing the whole genomes in conjunction with high-
throughput analyses of mRNA, protein and metabolite
profiles [1] has paved the way for a fast reconstruction of
metabolic networks [2]. For a quantitative assessment of
metabolic fluxes, Palsson and co-workers have developed
a theoretical approach commonly referred to as flux bal-
ance analysis (FBA) [3]. This method relies on the hypoth-
esis that the most likely distribution of stationary fluxes in
the network has to be optimal with respect to a feasible
optimization criterion linking the fluxes with cellular
functions. In most applications of FBA the fluxes have
been determined to maximize a specific network output
as the production of biomass [4-6]) or the production of
ethanol in yeast [7]. Whereas the maximization of bio-
mass production appears to be a reasonable objective of
the cellular metabolism of rapidly growing and replicat-
ing primitive cells such as bacteria, the flux distribution in
complex eukaryotic cells is governed by a larger variety of
cellular functions that have to be met simultaneously.
Therefore, the principle of flux-minimization was pro-
posed as a more general optimization criterion for FBA [8-
10]. The extension of FBA outlined in this paper will be
tested by choosing as flux objective both the maximiza-
tion of biomass and the minimization of internal fluxes at
given output fluxes. Flux distributions predicted by FBA
are hypothetical because they depend essentially upon the
choice of the flux evaluation criterion used. Therefore, to
increase the reliability of FBA results, one has to seek for
strategies to include additional biochemical knowledge
into FBA. One way is to include measured flux rates as fur-
ther side constraints. However, flux measurements –
except for exchange reactions that deliver metabolites into
the external space – are still difficult and costly to perform
as they require determining labeled isotopomers in a
time-dependent manner [11-13]. Another possibility to
increase the credibility of flux balance calculations is to
include some basic thermodynamics of the reactions and
transport processes constituting the network. The thermo-
dynamic consensus rule dictates that a positive net flux
through a reaction implies a negative corresponding
change of the Gibb's free reaction energy and vice versa.
Based on this fundamental criterion one may check
whether given flux directions conflict with known Gibb's
free energy changes. This allows to identify putative regu-
latory sites in the network [14,15] or to decide on the
reversibility/irreversibility of reactions [16-20]. However,
regarding flux distributions predicted by constrained opti-
mization methods as FBA it is desirable to judge their fea-
sibility not only post-hoc but to include thermodynamic
constraints on flux directionalities directly into their cal-
culation [21-23]. In our previous work [8,9] this was
accomplished by weighting negative (backward) fluxes
with the thermodynamic equilibrium constant of the
reaction. The rationale behind this empirical weighting

procedure is to impede reversing the direction of a reac-
tion (such that the change of Gibb's free energy has the
opposite sign than under standard conditions) with
increasing value of the thermodynamic equilibrium con-
stant. However, this way of mixing the costs for the main-
tenance of metabolic fluxes with the thermodynamic
'costs' for reversing the direction of a reaction in one and
the same objective function is questionable for two rea-
sons. First, the concentrations of metabolites in a cell dif-
fer significantly from 1 M so that the actual free energy
changes of biochemical reactions may considerably differ
from their standard values. Second, increasing or decreas-
ing the concentration of the reactants to an extent that
enables reversal of the flux direction might occur in the
cell by regulations that does not cause much real 'costs' in
terms of the production of more enzyme and of used
external resources. One way to overcome this shortcom-
ing of our previous approach [8,9] is to incorporate fulfill-
ment of the thermodynamic consensus rule as additional
side constraint into the calculation of the flux distribu-
tion. Such an approach was recently outlined by Henry et
al. [23]. These authors studied the range of metabolite
concentrations that is still compatible with a thermody-
namically feasible flux distribution in a genome-scale net-
work of E. coli under conditions of optimal bacterial
growth. Here we go one step further to include informa-
tion on metabolite concentrations directly into the calcu-
lation of the flux distribution. Our algorithm considers
the optimization of two different objectives: On one hand
a functionally optimal and thermodynamically feasible
flux distribution is demanded an on the other hand the
calculated metabolite concentrations are required to devi-
ate as little as possible from set-point values prescribed on
the basis of biochemical knowledge. In the following we
outline the method and provide applications to two dif-
ferent metabolic networks: (i) the energy- and redox
metabolism of red blood cells for which a detailed kinetic
model has been established [24] thus allowing to check
the feasibility of our method and (ii) the large-scale
genome-based metabolic network of Escherichia coli
iJR904 [25] which has already been subjected to FBA in
several studies [23,26,27].

Results
Algorithm
Thermodynamic constraints
The directionality of the net flux of a chemical reaction
and the change of Gibb's free energy are related to each
other by the consensus rule

sgn(v) = -sgn (∆Gr), (1)
where 'sgn()' is the sign function, ∆Gr denotes the change
of Gibb's energy of the reaction and v is the net flux (rate)
through the reaction. Actual changes of Gibb's energy can
be calculated from changes of standard Gibb's energy
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(where each reactant has a concentration of 1 M) accord-
ing to

where [M] is the active concentration (activity) of the
metabolite M, S and P denote the sets of substrates and
products of the reaction, respectively. R is the universal gas
constant and T is the absolute temperature. The change of
the standard Gibb's energy is related to the equilibrium
constant Keq of the reaction by

It has to be noted that standard Gibb's energy changes
depend on temperature, pH value, and ion strength and
thus may significantly differ from those determined under
specific in vitro conditions. For a metabolic network, (eq.

2) reads in vector notation , where

 is the column vector of the ∆Gr values for all reac-

tions of the network,  is the column vector of the

 values, C is the column vector of the natural loga-

rithms of the active metabolite concentrations. (Concen-
trations are assumed to be strictly positive.) S is the
stoichiometric matrix of the system, where rows refer to
reactions and columns refer to metabolites. A positive or
negative matrix element of S represents the stoichiometric
coefficient with which the metabolite indicated by the col-
umn number appears as a product or substrate of the reac-
tion indicated by the row number. Changes of the
standard Gibb's energies of reactions can be additively
composed of changes of the standard Gibb's energies of
the formation of their reactants [28]:

Owing to the first law of thermodynamics the values of
the standard Gibb's free energy changes are not independ-
ent from each other but have to obey the principle of
micro-reversibility dictating the sum of standard free
energy values in a closed system to be zero. In several flux
balance studies [16,17,29-32] this criterion has been
referred to as generalization of Kirchhoff's loop law which
[see Additional file 3]. The problem is that experimentally
determined values for the changes of standard Gibb's
energies are not consistent with the principle of micro-
reversibility per se because of experimental errors. There-
fore, we add correction terms (forming the vector E) to all

observed values of standard Gibb's energy changes and
determine minimal corrections necessary to assure the
principle of micro-reversibility. The corresponding opti-
mization problem reads

where ||E|| is the 2-norm of the vector E, and  are

hypothetic Gibb's free energy changes of formation.

 is then used as the modified vector of standard

Gibb's energy changes fulfilling the condition of micro-
reversibility.

Constraints on metabolite concentrations
In case that the metabolite concentrations might assume
arbitrary non-negative values it would be always possible
to let a chemical reaction proceed in either forward or
backward direction. Hence, including information on
metabolite concentrations as additional constraints in
FBA makes only sense if the concentration of the metabo-
lites can be restricted to a feasible range. If the concentra-
tion of a metabolite is known, we use this value as set-
point which should be approximated as best as possible
by the calculated metabolite concentration. Thus, we add
the term

to the objective function where W denotes the set of
metabolites m for which a set-point (logarithmic) concen-
tration value sm is available and cm is the component of C
related to metabolite m. If the concentration of a metabo-
lite is not exactly known but can be restricted to a nar-
rower concentration range based on metabolite profiling
(for E. coli such a profile has been summarized by Küm-
mel et al. [14]) we use this information to define so-called
soft concentration bounds denoted by clow and chigh. In
case that such physiologically feasible concentration
range has not been reported yet we set the lower and
upper soft bound close to the minimum and maximum of
all known cellular metabolite concentrations. However, it
may happen that a non-trivial flux distribution can only
be found if the concentration of some metabolites drops
off the range defined by the soft bounds. This may be due
to the improper choice of soft bounds for some metabo-
lites resulting from large experimental errors in the deter-
mination of cellular metabolite concentrations or the
(unknown) binding of metabolites to macromolecular
structures lowering their effective free concentrations
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inside the cell. Therefore, concentrations lying outside the
range of the soft bounds are allowed in our algorithm but
are penalized in the optimization criterion:

Here c is the (logarithmic) active concentration of the
metabolite. The penalty function for the whole concentra-
tion vector is

As in Henry et al. [23] we introduce a second type of
bounds, so-called hard bounds, to exclude metabolite
concentrations which are impossible from the biochemi-
cal point of view. The combined effect of set-point values,
soft and hard concentration bounds on the scoring func-
tion of the optimization algorithm is shown in figure 1.

Metabolic network models may contain reactions which
are simplified in a way that reactants are dropped from the
reaction formula. For example, the oxidation of glutath-
ione (GSH) to glutathione disulfide (GSSG) is usually

written as an overall reaction 2GSH → GSSG. Actually,

this reaction should read 2GSH + R-OOH → GSSG + R-
OHH2O where R-OOH represents a large group of not fur-

ther specified hydroperoxides that can be detoxified by
the glutathione system. For these lumped reactions it is

impossible to give a realistic  value. For other reac-

tions a  value is simply not known (e. g. for 37 reac-

tions in E. coli [23]). For such reactions the consensus rule
(eq. 1) is not applied.

Setting up the constrained optimization problem
In FBA, formulation of the optimization problem requires
to define the following three elements: (i) a physiologi-
cally meaningful scoring function to evaluate flux distri-
butions, (ii) the steady-state conditions for all internal
metabolites valid for the time-scale of interest (e. g. the
time-scale of growth) and (iii) further constraints taking
into account biochemical knowledge as, for example,
maximal enzyme capacities limiting the flux rates [10] or
thermodynamic constraints on flux directions as those
discussed above. The steady-state condition can be formu-
lated as

S'V = 0 (9)
where S' derives from the full stoichiometric matrix S of
the network upon deletion of all columns referring to
those metabolites which are exchanged with the external
environment and thus need not to be balanced. According
to the principle of minimal fluxes [8,9] we set up the scor-
ing function as the sum of the absolute values of all reac-
tion fluxes |V| while assigning fixed values Lj, j ∈ J to all
output fluxes, which are directly linked to cellular func-
tions, the so-called target fluxes, the set of which is
denoted by J. Adding the weighted terms (eq. 6) and (eq.
8) to the scoring function and including the constraint
(eq. 9) the complete optimization problem is written as

s c
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Penalty score for concentration valuesFigure 1
Penalty score for concentration values. Illustration of 
the penalty score used in the objective function to incorpo-
rate constraints to metabolite concentrations. The x-axis 
refers to logarithmic concentration values of the metabolite. 
If the concentration value coincides with the set-point value 
the penalty score is zero. For concentration values lying 
within the soft bounds the score depends quadratically on 
the distance from the set-point value. For concentration val-
ues lying outside the soft bounds the score increases linearly 
with increasing distance from the adjacent soft bound. Con-
centration values outside the hard bounds are forbidden as 
indicated by the truncated line.
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 is a vector of ranges defined by the hard concentration
bounds. V is the vector of flux rates and vj is the j-th com-

ponent of V. λ1, λ2 ∈ �+ are empirical factors weighting the

relative contribution of the various penalty scores relative
to the scoring function of fluxes. (For our computations

we have chosen λ1 = 100, λ2 = 0.01 putting a lower weight

to the attainment of set-point concentration values than
to the restriciton of the metaboite concentration values to
physiologically feasible soft bounds.) n is the number of

reactions, and for any 1 ≤ j ≤ n, dj is a binary variable. α is

set to a positive number which is larger than any possible
flux value and larger than any possible Gibb's energy

value, and it can easily be shown that the constraints 0 ≤

vj + αdj ≤ α and 0 ≤ -  + αdj ≤ α are equivalent to vj ≠ 0

→ sgn(vj) = -sgn ( ). Intentionally, for a zero flux

through a reaction the change of Gibb's free energy is not
constrained because it might be substantially different
from zero if the corresponding enzyme is missing or
inhibited. The optimization problem corresponds to a
mixed integer (boolean) linear program with quadratic
scoring function.

We call a flux distribution obtained by solving the above
optimization problem (eq. 10) thermodynamically realiz-
able and refer to it in the following as TR-fluxmin, i.e.
thermodynamically realizable flux-minimized solution.
If the maximization of biomass is used as flux objective,
the sum of internal fluxes appearing in the objective func-
tion is replaced by the negative biomass production rate.

Testing
Application to a metabolic network of human erythrocytes
The method described above was applied to a metabolic
network of human red blood cells [24,33] for which sta-
tionary flux distributions have already been calculated in
our previous work [8]. The network comprises basically

two cardinal metabolic pathways of this cell: glycolysis
including the so-called 2,3-bisphosphoglycerate shunt,
and the pentose phosphate cycle dividing into an oxida-
tive and a non-oxidative part. The network consists of 27
biochemical reactions, 5 transport processes and 32
metabolites (see figure 2 and the supplementary material
for the complete description of the model). The orienta-
tion of the arrows in the reaction scheme corresponds to
the net direction of the reaction flux at standard concen-
trations. Standard Gibb's energies have been derived from
the equilibrium constants contained in the kinetic model
[24,33]. The functionally essential target reactions that
have to be maintained by the network are the following:
(i) formation of 2,3-bisphospho-D-glycerate (2,3P2G,
reaction #9) required to modulate oxygen affinity of
hemoglobin, (ii) ATP-utilization (ATPase, #16), which is
mostly spent on the Na+/K+-ATPase to build up the Na+/
K+-gradient across the plasma membrane, (iii) oxidation
of GSH (GSHox, #21) to prevent oxidative damage of cel-
lular proteins and lipids, (iv) synthesis of PRPP (PRPPS,
#26) required for the salvage of adenine nucleotides. The
magnitude of these 4 target reactions depends on the spe-
cific external conditions of the cell as, for example, osmo-
larity of the blood or preservation medium, oxidative
stress caused by reactive oxygen species, or lowering of the
oxygen tension during hypoxia. In our calculations the
flux values for these 4 target reactions were chosen as
reported for the normal in vivo state of erythrocytes:
DPGM = 0.49 mmol/h, ATPase = 2.38 mmol/h, GSHox =
93 µmol/h, PRPPS = 26 µmol/h. With these values for the
target fluxes, the comprehensive kinetic model [24,33]
yielded metabolite concentrations as shown in figure 2.
These values are in good concordance with experimentally
determined concentrations and thus will be referred to in
the following as 'observed' concentrations.

Using the same values of standard Gibb's free reaction
energy changes as used in the kinetic model and putting
the set-point values of the metabolite concentrations to
the 'observed' ones, the TR-fluxmin solution of the opti-
mization problem turns out to be identical with the flux-
minimized solution determined by our previous
approach [8]. A detailed description of the model and the
solution mentioned below can be found in the supple-
ments [see Additional file 1].

Perturbation analysis
To investigate the impact of errors in the observed metab-
olite concentrations on the predicted flux distribution the
concentration values given in figure 2 were perturbed by
multiplying them with a random factor obeying an expo-
nential normal distribution with controlled standard
deviation (see caption of figure 3). The hard concentra-
tion bounds were chosen as follows: 0.1 µM...100 mM
(glucose), 0.1 µM...25 mM (CO2 and phosphate), and
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0.01 µM...10 mM (28 remaining compounds). Calcula-
tion of the flux distribution with randomly altered set-
point concentration values was repeated in 1000 trials.
Surprisingly, for smaller perturbations the reference solu-
tion (= TR-fluxmin for 'true' set-point values) was retained
in all trials. But perturbations with a standard deviation of
2 (corresponding to an average factor 7.4 in the change of
the concentration values) resulted in a second, slightly dif-
ferent, flux distribution in some trials. For perturbations
with standard deviation of 6 (corresponding to an average
400-fold change in the concentration values) this second
alternative flux distribution dominated and on top a third
alternative flux distributions was obtained in a significant
number of trials (see figure 3).

In a second perturbation analysis, the standard Gibb's
energy change values were randomly altered in a similar
manner. Also here, there was an increasing tendency
towards the two alternative flux distributions found
before when increasing the magnitude of perturbations
(see figure 4). These alternative flux distributions already
occurred at a standard deviation of 3 (corresponding to an
average deviation of 7.7 kJ/mol of the standard Gibb's
energy changes) and their relative share became dominant
at a standard deviation value of 6 (corresponding to an
average deviation of 15.5 kJ/mol of the standard Gibb's
energy changes).

Inspection of alternative flux distributions
The three alternative flux distributions obtained in the
perturbation studies differ in the uptake flux of glucose

Reaction scheme of the human erythrocyte networkFigure 2
Reaction scheme of the human erythrocyte network. The flux values of the TR-fluxmin solution are marked in the 
boxes with grey background (fluxes in mmol/h). The observed concentration values used as set-points are given in red near the 
metabolite. Flux values of the first alternative TR-fluxmin solution that appeared in the perturbation analyses are written in vio-
let near to the boxes if they differ from the value inside the box. The scheme has been generated with the aid of the program 
'FluxAnalyzer' [44].
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(1.50495 mmol/h for the unperturbed network; 1.5015
mmol/h and 1.4972 mmol/h for the two alternative flux
distributions) and the fluxes in the non-oxidative pentose
phosphate pathway converting ribulose-5-phosphate
(Ru5P) into fructose-5-phosphate (Fru6P) and glyceralde-
hyde 3-phosphate (GraP). The reference solution predicts
this pathway to proceed in forward direction thereby
forming 20.7 µmol/h ribulose-5-phosphate. In the second
solution (glucose uptake 1.5015 mmol/h) this pathway is
not used at all whereas in the third flux distribution (glu-
cose uptake 1.4972 mmol/h) it is used in backward direc-
tion producing 25.8 µmol/h ribulose-5-phosphate.
Interestingly, the latter flux distribution is also obtained
for the unperturbed network if the maximization of bio-

mass production used as flux criterion. Notably, all three
different flux distributions obtained as solution of the
minimization problem (eq. 10) for randomly altered ther-
modynamic parameters and set-point concentrations are
feasible from the kinetic view point, i.e. the kinetic model
of the erythrocyte metabolism yields a stable stationary
solution.

Effect of external concentrations
Our algorithm allows assessing how the predicted flux
distributions are affected by changes in the concentration
of external metabolites. In vivo, such a situation may
occur if some essential fuels for the cellular metabolism
are depleted, for example, due to a reduced blood flow
through vessels with severe atherosclerotic stenoses, or
some end products of the cellular metabolism accumulate
because of a reduced excretion capacity of the body. For
example, in case of strong physical exercise the concentra-
tion of lactate in human blood may rise to values as high
as 19.5 mM (in blood plasma) respectively 7.0 mM (in
erythrocyte cytoplasm) [34] indicating that the lactate
production by the anaerobic skeletal muscle clearly
exceeds its rate of re-conversion to glucose in the liver and
its utilization rate in the heart muscle. To investigate the
consequences of such high blood lactate levels for the
metabolism of red cells we calculated thermodynamically
realizable flux distributions at gradually increasing con-
centration of external lactate. For all metabolites except
external lactate, the hard bounds were put to ± 25% and

Impact of random perturbations of equilibrium constants on calculated flux distributions for the erythrocyte networkFigure 4
Impact of random perturbations of equilibrium con-
stants on calculated flux distributions for the eryth-
rocyte network. Each bar shows the relative frequency of 
alternative flux distributions (y-axis) in dependence on the 
standard deviation of the perturbation (x-axis) of the equilib-
rium constants.

Impact of random perturbations of observed metabolite con-centrations on calculated flux distributions for the erythro-cyte networkFigure 3
Impact of random perturbations of observed metab-
olite concentrations on calculated flux distributions 
for the erythrocyte network. Each bar shows the relative 
frequency of alternative flux distributions (y-axis) in depend-
ence on the standard deviation of the perturbation (x-axis) of 
the set-point concentration values. The perturbationanalysis 
is based on random numbers generated with the Cliff ran-
dom number generator [45] transformed to normal distribu-
tion by theBox-Muller method [46] where the expectation 
value is fixed to zero and for each series (1000 runs) the 
standard deviation is fixed to a specified value (given in the 
figures). For the perturbation of the concentrations each 
concentration value is multiplied with eX where X is a newly 
generated pseudo-random number. Each concentration value 
is modified independently from the perturbation of the other 
concentration values. The standard deviation value s can be 
translated to a 'deviation factor' as es. For the perturbation of 
the equilibrium constants each value is also multiplied with eX 

where X is a newly generated pseudo-random number. After 
the perturbation the values are modified again to ensure 
well-formedness by the algorithm described in the text. The 
standard deviation value s can be translated into deviations of 
Gibb's free energy change as 2.58·s kJ/mol.
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the soft bounds to ± 10% deviation from of the 'observed'
concentration values. For external lactate concentrations
up to a critical value of 12.4 mM our algorithm predicted
a thermodynamically realizable flux distribution. For con-
centrations higher than 12.4 mM no stationary flux distri-
bution solution was found. Increasing gradually the
concentration of external lactate up to the critical value of
12.4 mM, the concentrations of pyruvate, NAD+ and
NADH tended towards the hard bounds to ensure the flux
through the lactate dehydrogenase (EC:1.1.1.27) to be
directed towards formation of lactate. Our find of a meta-
bolic threshold effect with respect to blood lactate levels
corresponds well with clinical observations. At lactate lev-
els higher than 4 mM a reduced deformability of erythro-
cytes is observed, which may account for the exercise-
induced arterial hypoxemia occuring in athletes [35].
Decreasing deformability of erythrocytes is a clear indica-
tion for a severely perturbed metabolism of the cell.

Application to a metabolic network of E. coli
To check the applicability of our algorithm to genome-
scale metabolic networks comprising hundreds of reac-
tions and metabolites, we performed the same type of
analysis as described above with respect to the metabolic
network iJR904 of the bacterium E. coli reconstructed by
Palsson and co-workers [25]. In this model a minimal
medium composed of glucose, ammonium, sulfate, oxy-
gen, phosphate is sufficient for growth according to the
biomass creation formula associated with the model.
Experimental flux data for E. coli has been determined by
Emmerling et al. [36] which correspond to 17 internal
fluxes of the iJR904 network (using the projection of Segre
et al. [37] onto the iJE660a network of E. coli [38].) The
thermodynamic properties of the iJR904 network, consist-
ing of 659 metabolites and 931 reactions, have been ana-
lyzed previously [14,15,20,23,32]. Since experimentally
determined Gibb's free energies are available only for a
minor fraction of reactions [20,39] we use computed val-
ues given by Henry et al. [23].

These values were obtained by a slightly modified version
of the group contribution method [40,41]. Physiological
concentration ranges were available for 22 internal
metabolites (given in Kümmel et al. [14]) and 10 external
metabolites (given in Henry et al. [23]). For the other
metabolites generic concentration bounds were used
based on typical cellular concentration ranges reported in
the literature: 20 µM-0.5 mM (soft bounds), 5 µM-2 mM
(hard bounds). Further details of the model are given in
the supplement [see Additional file 2].

We calculated the flux distribution in this network accord-
ing to the proposed optimization principle (eq. 10) using
as flux objective the maximization of the biomass produc-
tion. No a priori assumptions were made with respect to

the directionality of reactions with two exceptions: The
direction of the exchange fluxes was fixed according to the
experimental conditions [36] and the direction of 37
internal reactions for which no Gibb's energy value was
given in Henry et al. [23] was also fixed [see Additional
file 2, archive member 'Ecoli-model.txt', section 'reactions
excluded from the TR-property', to see which]. As shown
in Fig. 5) (case: 'TR-biomax', data points symbolized by
blue triangles) the thermodynamically realizable solution
provided a good concordance with observed flux values

Comparison between measured and predicted flux rates of E. coliFigure 5
Comparison between measured and predicted flux 
rates of E. coli. x-axis: observed flux rates measured by 
Emmerling et al. [36]. y-axis: predicted flux rates obtained 
with three different variants of FBA. Fluxes were trans-
formed into dimensionless units by putting the highest 
observed and calculated value equal to unity. All flux distribu-
tions were obtained by using the maximization of biomass as 
flux objective. Blue triangles: All reactions are fully reversible 
(except exchange fluxes and 37 internal fluxes with unknown 
value of free energy changes); solution of the complete opti-
mization problem (eq. 10), i.e. condition of thermodynamic 
realizability included. Red squares: All reactions are fully 
reversible (except the exchange fluxes and 37 internal fluxes 
with unknown value of free energy changes); solution to bio-
mass maximization at fixed glucose intake; the condition of 
thermodynamic realizability was omitted. Green diamonds: 
Irreversibility of 532 reactions prescribed as originally pro-
posed by Reed et al. [25]; solution to biomass maximization 
at fixed glucose intake. Coefficients marked with r = denote 
the Pearson's product-moment correlation coefficient.
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available for 17 internal reactions. To check the influence
of the thermodynamic side constraints on the quality of
the flux distribution, we omitted the condition of thermo-
dynamic realizability from the optimization algorithm,
again making no a priori assumptions on flux directional-
ities. In this case ('biomax, fully reversible', data symbol-
ized by red squares in Fig. 5)) the concordance between
predicted and observed flux values diminished signifi-
cantly. This example shows that our algorithm may signif-
icantly improve the reliability of flux predictions even if
the concentration range of most metabolites is only
roughly restrained.

In a third calculation we again omitted the condition of
thermodynamic realizability from the optimization algo-
rithm but instead used the heuristic classification of reac-
tions into reversible and irreversible ones as outlined in
[25] (case: 'biomass, heuristic irreversibilities', data points
symbolized by green diamonds). The obtained flux distri-
bution also yielded a reasonably good concordance
between predicted and observed flux values. Notably, this
'classical' variant of FBA gave no better predictions of the
observed fluxes than the TR-solution obtained with our
algorithm. This qualifies our method as a valuable flux
predictor for large-scale networks without the need to
apply heuristic rules for the assignment of flux direction-
alities.

Perturbation analysis
Using the same perturbation analysis as outlined above
for the erythrocyte network we investigated the impact of
alterations in the values of the Gibb's free standard ener-
gies on the predicted flux distributions. Such an analysis
is of importance as the values of standard Gibb's free
energy changes computed by the group contribution
method may generally exhibit a large degree of uncer-
tainty [42].

Compared with the findings for the erythrocyte network,
much smaller perturbations already resulted in a multi-
tude of alternative flux distributions (see figure 6). Thus,
the higher the complexity of the network the more suscep-
tible is the predicted flux distribution is to the choice of
the standard Gibb's energies. Closer inspection of the pre-
dicted alternative flux distributions showed that the main
differences are concentrated in some distinct parts of the
networks. We found the largest variability of predicted
fluxes for the exchange of CO2, the 3-reaction pathway
leading from acetaldehyde and CoA to formation of ATP
from ADP via acetyl-phosphate as intermediate, and in
the import of a-ketoglutarate. The possible fluxes through
these reactions appear to be strongly determined by ther-
modynamic constraints and thus are difficult to predict
given low accuracy of thermodynamic data.

Discussion & Conclusion
Quantitative evaluation of genome-scale metabolic mod-
els by means of FBA is becoming more and more appeal-
ing because it works without knowledge of the kinetics
and regulation of the underlying enzymes and membrane
transporters. However, the outcome of FBA is rather hypo-
thetical because it relies on plausible but hardly provable
optimality principles that are thought to govern metabolic
flux distributions.

Therefore, a challenge for computational systems biology
lies in the incorporation of all biochemical knowledge
that is obtainable at genome-scale (which is not the case
for enzyme kinetics). One important restriction of fluxes
in the network arises from thermodynamics. Reactions
associated with a decrease of free energy larger than 30 kJ/
mol are generally thought to be irreversible. This condi-
tion can be used as an additional constraint on feasible
flux distributions. Kümmel and co-workers [20] have
recently developed an algorithm that – based on thermo-
dynamics, network topology and heuristic rules – auto-
matically assigns reaction directions in metabolic models
such that the reaction network is thermodynamically fea-
sible with respect to the production of energy equivalents.
However, an a priori distinction between reversible and
irreversible reactions may become problematic under
extreme conditions, e.g. depletion of substrates or accu-
mulation of intermediates due to inhibition of enzymes,
where metabolite concentrations may drastically change

Equilibrium constants perturbation analysis for the E. coli networkFigure 6
Equilibrium constants perturbation analysis for the E. 
coli network. Each bar shows the relative frequency of the 
15 most frequently occurring alternative flux distributions (y-
axis) in dependence on the standard deviation of the pertur-
bation (x-axis) of the equilibrium constants. The less fre-
quently occurring solutions are summarized in the bar 
designated by 'rest'.
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thus allowing to reverse reactions that are normally desig-
nated to be irreversible.

For example, under hypoxic conditions, the cellular con-
centration of oxygen may become so low that the respira-
tory chain – usually thought to carry electrons from
hydrogen to oxygen in a strictly irreversible manner – may
indeed operate in the reverse direction, i.e. reducing NAD
to NADH2 [43]. Thus, it is necessary to replace the rigid
priori classification of reactions into reversible and irre-
versible ones by a more flexible constraint that assures the
flux directions to be compatible with the change of Gibb's
free energies, exhibiting a wide range of values depending
on the actual metabolite concentrations. An important
step into this direction was recently made by Henry et al.
[23] who included the thermodynamic consensus rule as
additional side constraint into FBA. In their study, they
investigated the range of metabolite concentrations that
allow in a genome-scale network of E. coli the realization
of a specific flux distribution assuring optimal bacterial
growth. In contrast to this approach, the algorithm pro-
posed in this work aims at employing reliable informa-
tion on metabolite concentrations to restrain the solution
space of FBA.

Hence, depending on reported ranges of metabolite con-
centrations, our algorithm may yield different flux distri-
butions. In other words, in our approach we do not ask for
metabolite concentrations that are compatible with a
given flux distribution but in contrast ask for the flux dis-
tribution that is compatible with a given metabolite pro-
file. As demonstrated for two exemplary metabolic
networks, even if no measurements of metabolite concen-
trations are available restriction of concentrations to phys-
iologically feasible ranges alone allows the prediction of
reliable flux distributions if no a priori assumptions are
made on the reversibility of the reactions. As demon-
strated for the erythrocyte network, our approach may
provide valuable information about alterations in the
external conditions of a cell that may result in a metabolic
dysfunction. Of course, FBA cannot assess whether a sta-
ble steady state may exist at very high concentrations of
external lactate because this is determined by kinetic reg-
ulation. Possibly the metabolite concentrations may vary
even in a larger interval than imposed in our calculations.
This problem can be addressed better by a comprehensive
kinetic network model. Nevertheless, our method may
provide valuable information on external conditions
causing metabolic problems merely for thermodynamic
reasons. Concerning the predictive capacity of our
method it must be critically noted that – based on a com-
parison with a relatively small number of measured fluxes
– the most reliable flux distribution for the E. coli network
is still obtained if the directionality of fluxes is a priori
defined based on biochemical conventions. This is obvi-

ously due to the fact that – owing to the lack of reliable
experimental data – the soft bounds for the metabolite
concentration used in our method have been too gener-
ously chosen. Indeed, enlarging systematically the physi-
ologically feasible concentration ranges one eventually
obtains a network without any constraint of flux direc-
tionalities. Hence, the usefulness of the proposed method
essentially depends upon the availability of reliable infor-
mation on values of free energy changes and metabolite
concentrations. As long as this information is not availa-
ble, the benefit of our method consists mostly in the gen-
eration of alternative flux distributions by varying the
values of standard Gibb's free energy changes and/or in
the physiologically relevant concentration ranges of
metabolites. Applying such perturbation analysis to two
networks of different complexity has provided evidence
that the larger the network is, the more alternative flux dis-
tributions occur, even at relatively modest variation of
energy values of about 5 kJ/mol. Inspection of such alter-
native flux distributions reveals critical reactions for
which fluxes are largely undetermined by the FBA
approach. In this respect, our method represents a useful
complement to the thermodynamic evaluation method
recently proposed by Kümmel et al. to identify putative
regulatory sites by network-embedded thermodynamic
analysis of metabolome data [14].
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Additional material

Additional file 1
This archive contains three files relating to the erythrocyte network. The 
file "Ery-model.txt" gives the definition of the network as tab-separated 
text file which is organized in the sections: 'Metabolites', 'Reactions', 
'Reactions excluded from the TR property', 'Equilibrium constants', 'Tar-
getfluxes', 'Fixed concentrations', The file "Ery.sbml" gives the network 
description in SBML format. The file "Ery-solutions.txt" contains three 
solutions: the thermodynamically realizable fluxmin solution (TR-flux-
min) together with the associated metabolite concentrations and the two 
alternative solutions obtained in the perturbation analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-23-S1.zip]
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Additional file 2
This archive includes two directories relating to the E. coli iJR904 compu-
tations: "FullyReversible" and "HeuristicIrreversibilities". Both contain 
the file "Ecoli-model.txt", a tab-separated text file, as the definition of the 
network which is organized in the sections: 'Metabolites', 'Reactions', 
'Reactions excluded from the TR property', 'Equilibrium constants', 'Tar-
getfluxes', 'Concentration bounds', and 'Setpoint concentrations'. Both 
directories also contain the file "Ecoli.sbml", the network description in 
SBML format. The file "Biomax.txt" also residing in both directories con-
tains the solution of the biomass maximization without the constraint of 
thermodynamic realizability as a tab-separated text file assigning a reac-
tion identifier with a flux value if it is not zero.. Additionally the directory 
"FullyReversible" contains the file "TR-Biomax.txt" as the solution to the 
thermodynamically realizable biomass maximization together with the 
hypothetic metabolite concentrations compatible with the flux directions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-23-S2.zip]

Additional file 3
This document shows the proof that thermodynamic realizability implies 
that there is no net flux in a closed loop – a consequence of the generali-
zation of Kirchhoff's loop law.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-23-S3.pdf]
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